M5Stamp Fly is a programmable open-source quadcopter, featuring the StampS3 as the main controller. It integrates a BMI270 6-axis gyroscope and a BMM150 3-axis magnetometer for attitude and direction detection. The BMP280 barometric pressure sensor and two VL53L3 distance sensors enable precise altitude hold and obstacle avoidance. The PMW3901MB-TXQT optical flow sensor provides displacement detection.
The kit includes a buzzer, a reset button, and WS2812 RGB LEDs for interaction and status indication. It is equipped with a 300 mAh high-voltage battery and four high-speed coreless motors. The PCB features an INA3221AIRGVR for real-time current/voltage monitoring and has two Grove connectors for additional sensors and peripherals.
Preloaded with debugging firmware, the Stamp Fly can be controlled using an Atom Joystick via the ESP-NOW protocol. Users can choose between automatic and manual modes, allowing for easy implementation of functions like precise hovering and flips. The firmware source code is open-source, making the product suitable for education, research, and various drone development projects.
Applications
Education
Research
Drone development
DIY projects
Features
M5StampS3 as the main controller
BMP280 for barometric pressure detection
VL53L3 distance sensors for altitude hold and obstacle avoidance
6-axis attitude sensor
3-axis magnetometer for direction detection
Optical flow detection for hovering and displacement detection
Buzzer
300 mAh high-voltage battery
Current and voltage detection
Grove connector expansion
Specifications
M5StampS3
ESP32-S3@Xtensa LX7, 8 MB Flash, WiFi, OTG\CDC support
Motor
716-17600kv
Distance Sensor
VL53L3CXV0DH/1 (0x52) @ max 3 m
Optical Flow Sensor
PMW3901MB-TXQT
Barometric Sensor
BMP280 (0x76) @ 300-1100hPa
3-axis Magnetometer
BMM150 (0x10)
6-axis IMU Sensor
BMI270
Grove
I²C+UART
Battery
300mAh 1S high-voltage lithium battery
Current/Voltage Detection
INA3221AIRGVR (0x40)
Buzzer
Built-in Passive Buzzer @ 5020
Operating temperature
0-40°C
Dimensions
81.5 x 81.5 x 31 mm
Weight
36.8 g
Included
1x Stamp Fly
1x 300 mAh high-voltage Lithium battery
Downloads
Documentation
M5Atom Joystick is a versatile programmable dual-joystick remote controller featuring the AtomS3 as the main controller, with an STM32 handling co-processing functions.
It is equipped with two 5-way joysticks with hall sensors, two function buttons, and built-in RGB LEDs for human-machine interaction and status indication.
The device includes two high-voltage battery charging circuits. It comes pre-loaded with the Stamp Fly control firmware and communicates with Stamp Fly via the ESP-NOW protocol. The firmware source code is open-source. This product is suitable for drone control, robot control, smart cars, and various DIY projects.
Applications
Drone control
Robot control
Smart cars
DIY projects
Features
STM32F030F4P6
Equipped with M5AtomS3
Compatible with Atom Lite, Atom Matrix, AtomS3 Lite, AtomS3
Dual joysticks, dual buttons, toggle switch
WS2812 RGB LEDs
Dual high-voltage lithium battery charging circuits
Battery detection
Specifications
MCU
STM32F030F4P6
RGB
WS2812C
Charging IC
TP4067 @ 4.35 V
Battery
300 mAh
Charging Current
500 mA
Button
Left/Right Button
Buzzer
Built-in Passive Buzzer @ 5020
Operating temperature
0-40°C
Dimensions
84 x 60 x 31.5 mm
Weight
63.5 g
Included
1x Atom JoyStick
1x 300 mAh high-voltage Lithium battery
Downloads
Documentation
The siru.box is a compact and intelligent miniature laboratory power supply designed for precision and ease of use. It is only operated via a USB 2.0 connection and provides an adjustable output voltage of 0 to 15 V and an output current of up to 600 mA, with a maximum output power of 2.5 W.
Features
Power is supplied via the USB 2.0 port
Controllable with web browser or REST-API
Output voltage adjustable 0~15 V
Output current adjustable 0~600 mA (2.5 W max)
For Linux, Windows, macOS, Raspberry Pi
No driver installation necessary
Dimensions: 100 x 100 x 10 mm
Included
1x siru.box USB Power Supply
1x Micro USB cable
2x Connection terminals (red/black)
Downloads
Manual
Firmware v5.0.4
An all-in-one, Pico W powered industrial/automation controller with 2.46 GHz wireless connectivity, relays and a plethora of inputs and outputs. Compatible with 6 V to 40 V systems.
Automation 2040 W is a Pico W / RP2040 powered monitoring and automation board. It contains all the great features from the Automation HAT (relays, analog channels, powered outputs and buffered inputs) but now in a single compact board and with an extended voltage range so you can use it with more devices. Great for controlling fans, pumps, solenoids, chunky motors, electronic locks or static LED lighting (up to 40 V).
All the channels (and the buttons) have an associated indicator LED so you can see at a glance what's happening with your setup, or test your programs without having hardware connected.
Features
Raspberry Pi Pico W Aboard
Dual Arm Cortex M0+ running at up to 133 Mhz with 264 kB of SRAM
2 MB of QSPI flash supporting XiP
Powered and programmable by USB micro-B
2.4 GHz wireless
3x 12-bit ADC inputs up to 40 V
4x digital inputs up to 40 V
3x digital sourcing outputs at V+ (supply voltage)
4 A max continuous current
2 A max current at 500 Hz PWM
3x relays (NC and NO terminals)
2 A up to 24 V
1 A up to 40 V
3.5 mm screw terminals for connecting inputs, outputs and external power
2x tactile buttons with LED indicators
Reset button
2x Qw/ST connectors for attaching breakouts
M2.5 mounting holes
Fully assembled
No soldering required.
C/C++ and MicroPython libraries
Schematic
Dimensional drawing
Power
Board is compatible with 12 V, 24 V and 36 V systems
Requires supply 6-40 V
Can provide 5 V up to 0.5 A for lower voltage applications
Software
Pirate-brand MicroPython
Getting Started with Raspberry Pi Pico
MicroPython examples
MicroPython function reference
C++ examples
C++ function reference
Getting Started with Automation 2040 W
Components are both shrinking and getting increasingly finer pitch year after year but your PCBs might have grown in size or the number of interconnected PCBs or the number of handsfree PCBite probes needed to test your design may have increased making it crowded on our other smaller base plates.
Features
With a size of 297 x 420 mm (DIN A3) the extra large baseplate has room for most PCBs and many handsfree PCBite probes for those measurements sessions where more channels than available is needed.
So if you are looking for more space, extra protection or just want to clean up your work surface then this accessory is a perfect match.
Designed to be used with Sensepeeks magnetic PCBite line of products including PCB holders, hands free probes and magnifier.
Included
1x XL base plate (DIN A3) with pre-fitted insulation cover
This mini IPS 7-inch HD monitor supports a resolution of 1024x600. IPS monitors help keep colors consistent at a wide viewing angle. The 2 removable speakers enhance your audio-visual experiences. Features Four corner holes let you mount the small monitor onto your DIY IoT projects that you’re working on. This Raspberry Pi display also comes with 2 stands, is easy to install and remove, great for on-the-go use. With a capacitive USB touchscreen, simply power the USB touch port to achieve touch function and no need to install the driver, just plug and play! Signal via HDMI-compatible port, power&touch via micro USB port, drive free. No cable solution to Raspberry Pi 4, just using 2 simple adapters to connect your Raspberry Pi 4 directly. You can use it with your Raspberry Pi 4/3/2, Laptop, TV, video game console like Nintendo Switch/Xbox/PS4, and security camera. 170-degree wide view angle 5-point capacitive HD touch display Specifications Display size 7 inch (154 x 86 mm) Resolution 1024 x 600 Display type IPS Touch Capacitive Touchscreen Frame rate 60 fps Brightness 260 cd/m² Speaker Support Interface HD & USB Working temperature −20 to +60°C Dimensions 164 x 99 mm Weight 235 g Included 1x 7-inch Monitor 1x USB to Micro USB Connector 1x HD to Micro HD Connector 1x USB to Micro USB Cable 1x HD to HD Cable 4x M2.5 Screws 4x Small Copper Pillars 2x Pro Stand 2x M3 Screws 2x Speakers 1x User Manual Downloads User Manual
The Qwiic Mux also has eight configurable addresses of its own, allowing for up to 64 I²C buses on a connection. To make it even easier to use this multiplexer, all communication is enacted exclusively via I²C, utilizing our handy Qwiic system. The Qwiic Mux also allows you to change the last three bits of the address byte, allowing for eight jumper selectable addresses if you happen to need to put more than one Qwiic Mux Breakout on the same I²C port. The address can be changed by adding solder to any of the three ADR jumpers. Each SparkFun Qwiic Mux Breakout operates between 1.65 V and 5.5 V, making it ideal for all of the Qwiic boards we produce in house.
The LILYGO T-Panel S3 is a versatile development board designed for IoT applications, featuring a 4-inch IPS LCD with a 480x480 resolution.
Powered by the ESP32-S3 microcontroller, it offers 2.4 GHz Wi-Fi and Bluetooth 5 (LE) connectivity, with 16 MB of flash memory and 8 MB of PSRAM. The board supports development environments such as Arduino, PlatformIO-IDE, and MicroPython. Notably, it includes a capacitive touch interface, enhancing user interaction capabilities. Onboard functions comprise Boot (IO00), Reset, and two additional keys, providing flexibility for various applications. This combination of features makes the T-Panel S3 suitable for a wide range of IoT projects and smart device control interfaces.
Specifications
MCU1
ESP32-S3
Flash
16 MB
PSRAM
8 MB
Wireless Connectivity
2.4 GHz Wi-Fi + Bluetooth 5 (LE)
MCU2
ESP32-H2
Flash
4 MB
Wireless Connectivity
IEEE 802.15.4 + Bluetooth 5 (LE)
Developing
Arduino, PlatformIO-IDE, Micropython
Display
4.0" 480x480 IPS ST7701S LCD
Resolution
480 x 480 (RGB)
Interface
SPI + RGB
Compatibility library
Arduino_ GFX, LVGL
Onboard functions
QWiiCx2 + TF Card + AntennaESP32 4x Button= S3(Boot + RST) + H2(Boot + RST)
Transceiver Module
RS485
Using bus communication protocol
UART
Included
1x T-Panel S3
1x Female pin (2x 8x1.27)
Downloads
GitHub
The Arduino Nano 33 BLE Rev2 stands at the forefront of innovation, leveraging the advanced capabilities of the nRF52840 microcontroller. This 32-bit Arm Cortex-M4 CPU, operating at an impressive 64 MHz, empowers developers for a wide range of projects. The added compatibility with MicroPython enhances the board's flexibility, making it accessible to a broader community of developers.
The standout feature of this development board is its Bluetooth Low Energy (Bluetooth LE) capability, enabling effortless communication with other Bluetooth LE-enabled devices. This opens up a realm of possibilities for creators, allowing them to seamlessly share data and integrate their projects with a wide array of connected technologies.
Designed with versatility in mind, the Nano 33 BLE Rev2 is equipped with a built-in 9-axis Inertial Measurement Unit (IMU). This IMU is a game-changer, offering precise measurements of position, direction, and acceleration. Whether you're developing wearables or devices that demand real-time motion tracking, the onboard IMU ensures unparalleled accuracy and reliability.
In essence, the Nano 33 BLE Rev2 strikes the perfect balance between size and features, making it the ultimate choice for crafting wearable devices seamlessly connected to your smartphone. Whether you're a seasoned developer or a hobbyist embarking on a new adventure in connected technology, this development board opens up a world of possibilities for innovation and creativity. Elevate your projects with the power and flexibility of the Nano 33 BLE Rev2.
Specifications
Microcontroller
nRF52840
USB connector
Micro USB
Pins
Built-in LED Pins
13
Digital I/O Pins
14
Analog Input Pins
8
PWM Pins
All digital pins (4 at once)
External interrupts
All digital pins
Connectivity
Bluetooth
u-blox NINA-B306
Sensors
IMU
BMI270 (3-axis accelerometer + 3-axis gyroscope) + BMM150 (3-axis Magnetometer)
Communication
UART
RX/TX
I²C
A4 (SDA), A5 (SCL)
SPI
D11 (COPI), D12 (CIPO), D13 (SCK). Use any GPIO for Chip Select (CS)
Power
I/O Voltage
3.3 V
Input Voltage (nominal)
5-18 V
DC Current per I/O Pin
10 mA
Clock Speed
Processor
nRF52840 64 MHz
Memory
nRF52840
256 KB SRAM, 1 MB flash
Dimensions
18 x 45 mm
Downloads
Datasheet
Schematics
This smart plinth lighting automatically switches on and off when you get up at night. The motion sensor sees you get out of bed and the light turns on! There is an illuminated path from bed to toilet. Obstacles on the way to the toilet are immediately visible and tripping hazards are prevented. Scientific research shows that the fear of falling is significantly reduced when using a Guide Light.
The LED lighting has a perfect light intensity. The light is subtle enough not to wake you up, but bright enough for a reliable orientation. The Guiding Light is much more than just a night light.
The Ardi Display Shield features a vibrant 2" IPS screen with a resolution of 240 x 320 pixels, providing sharp and crisp visuals for your projects. Whether you're working on a small-scale project or a complex prototype, this display shield ensures clear and vibrant display output.
With 2 programmable buttons, you have the flexibility to create interactive experiences and user-friendly interfaces. Customize the buttons to trigger specific actions or navigate through menus effortlessly.
The possibilities are endless, limited only by your imagination. In addition to the programmable buttons, the Ardi Display Shield also includes a 5-way joystick for intuitive control. With the joystick's SPI interface, you can easily navigate menus, scroll through options, and control various aspects of your Arduino project with precision and ease.
Designed with compatibility and ease of use in mind, the Ardi Display Shield seamlessly integrates with the Arduino Uno board. Simply connect it to your Arduino Uno and unlock a world of possibilities for visual feedback, user interaction, and data visualization.
Features
Onboard 2.0" TFT Display
Compatible with 3.3 V/5 V MCU, Selection provided
Onboard 5-Way Joystick allows better control-related projects
Two programmable Buttons to add additional functionality to project
Mounts directly onto ArdiPi, Ardi32 or other Arduino compatible boards
Specifications
Display resolution: 240x320 pixels
Pixel Pitch: 0.1275 x 0.1275 mm
Active Area: 30.6 x 40.8 mm
Module Size: 34.6 x 47.8 x 2.05 mm
SPI Interface
Display Colors: 65K colors
Drive IC: ST7789V2
Viewing Direction: All-view the best image
SPECIFICATIONS WIRELESS TRANSMISSION METHOD radiofrequency transmission RANGE up to 10 meters COMMUNICATION ADRESS 0 - 99 COMMUNICATION CHANNEL 0 - 30 BATTERY OF CONTROL PANEL 3.7 V 2000 mAh DISPLAY SIZE 2.4 Inch (6.35cm) DIMENSIONS 120 x 80 x 25mm WEIGHT 108 g ITEMS SHIPPED Control panel, cables
Inky Frame 5.7' features a nice, big seven color E Ink display with loads of space for displaying images, text, graphs or interfaces. There's five buttons with LED indicators for interacting with the display, two Qw/ST connectors for plugging in breakouts and a micro SD card slot for all-important storage of cat photos. Every Inky Frame comes with a pair of sleek little metal legs so you can stand it up on your desk (and a selection of mounting holes if you'd prefer to do something else). There's also a battery connector so you can power it without annoying trailing wires, and some neato power saving features that mean you can run it from batteries for ages. Inky Frame is great for: Checking your calendar and upcoming appointments at a glance Attaching to your office door to display your availability Displaying motivational posters, quotes, or images (fungible or otherwise) Showing readouts from other wirelessly connected environmental boards Features Raspberry Pi Pico W Aboard Dual Arm Cortex M0+ running at up to 133 Mhz with 264 kB of SRAM 2 MB of QSPI flash supporting XiP Powered and programmable by USB micro-B 2.4 GHz wireless 5.7' EPD display (600 x 448 pixels) E Ink Gallery Palette 4000 ePaper ACeP (Advanced Color ePaper) 7-color with black, white, red, green, blue, yellow, orange. Ultra wide viewing angle – >170° Dot pitch – 0.1915 x 0.1915 mm 5x Tactile buttons with LED indicators Two Qw/ST connectors for attaching breakouts microSD card slot Dedicated RTC chip (PCF85063A) for deep sleep/wake Fully assembled No soldering required. C/C++ and MicroPython libraries Schematic Included 1x Inky Frame 5.7' (incl. Pico W) 2x Metal legs Downloads MicroPython (Learn) Getting Started with Inky Frame (Readme) Installing MicroPython
(Readme) MicroPython FAQs (and troubleshooting)
Download pirate-brand MicroPython (you'll want the Inky Frame.uf2) MicroPython examples PicoGraphics function reference C/C++ C examples Picographics function reference
Features
Synchronous mode: Auto, Normal, Single, None, Scan
Rising/Falling edge trigger
Modes of vertical precise, horizontal precise measurement and triggering threshold
Auto Measurement: frequency, cycle time, duty cycle, DC RMS voltage/Vpp /Vmax/Vmin/Vavg
Inbuilt signal generator/10 Hz-1 MHz square wave (duty adjustable) or 10 Hz-20 KHz
Sine/Square/Triangle/Sawtooth wave
Specifications
Analog bandwidth
1 MHz
Max sample rate
10 Msa/s
Max sample memory depth
8K
Analog input impedance
1 MΩ
Max input voltage
±40 V (X1)
Coupling
AC/DC
Vertical sensitivity
20 mv/Div~10 V/Div (1-2-5)
Horizontal sensitivity
1 uS/Div~2 S/Div (1-2-5)
Storage
Built-in 8 MB U disk storage for waveform data and images
Power supply
Internal 550 mAh Lithium battery, recharging through Micro USB port
Display
2.8' Full Color TFT LCD (320x240 pixels)
Dimensions
100 x 56.5 x 10.7 mm
Downloads
User Manual
Source Code
App
The SparkFun JetBot AI Kit V3.0 is a great launchpad for creating entirely new AI projects for makers, students, and enthusiasts interested in learning AI and building fun applications. It’s straightforward to set up and use and is compatible with many popular accessories.
Several interactive tutorials show you how to harness AI's power to teach the SparkFun JetBot to follow objects, avoid collisions, and more. The Jetson Nano Developer Kit (not included in this kit) offers useful tools like the Jetson GPIO Python library and is compatible with standard sensors and peripherals; including some new python compatibility with the SparkFun Qwiic ecosystem.
Additionally, the included image is delivered with the advanced functionality of JetBot ROS (Robot Operating System) and AWS RoboMaker Ready with AWS IoT Greengrass already installed. SparkFun’s JetBot AI Kit is the only kit currently on the market ready to move beyond the standard JetBot examples and into the world of connected and intelligent robotics.
This kit includes everything you need to get started with JetBot minus a Phillips head screwdriver and an Ubuntu desktop GUI. If you need these, check out the includes tabs for some suggestions from our catalogue. Please be aware that the ability to run multiple neural networks in parallel may only be possible with a full 5V-4A power supply.
Features
SparkFun Qwiic ecosystem for I²C communication
The ecosystem can be expanded using 4x Qwiic connectors on GPIO header
Example Code for Basic Motion, Teleoperation, Collision avoidance, & Object Following
Compact form factor to optimize existing neural net from NVIDIA
136° FOV camera for machine vision
Pre-flashed MicroSD card
Chassis assembly offers expandable architecture
No soldering required
Included
64 GB MicroSD card - pre-flashed SparkFun JetBot image:
Nvidia Jetbot base image with the following installed: SparkFun Qwiic python library package
Driver for Edimax WiFi adapter
Greengrass
Jetbot ROS
Leopard Imaging 136FOV wide-angle camera & ribbon cable
EDIMAX WiFi Adapter
SparkFun Qwiic Motor Driver
SparkFun Micro OLED Breakout (Qwiic)
All hardware & prototyping electronics needed to complete your fully functional robot!
Required
NVIDIA Jetson Nano Developer Kit
Downloads
Assembly Guide
The OWON XSA815-TG (9 kHz-1.5 GHz) is a cost effective spectrum analyzer with tracking generator included and a frequency resolutions of 1 Hz.
Features
Frequency Range from 9 kHz to 1.500009 GHz
9-inch display
9 kHz to 1 MHz -95 dBm Displayed Average Noise Level, 1 MHz to 500 MHz 140 dBm (Typical), <-130 dBm
Phase Noise
-10 kHz <-80 dBc/Hz
100 kHz <-100 dBc/Hz
1 MHz <-115 dBc/Hz
Resolution Bandwidth (-3 dB): 1 Hz to 1 MHz, in 1-3-5-10 sequence
Tracking Generator Kit: 100 kHz to 1.500009 GHz
Specifications
Frequency Range
9 kHz to 500.009 MHz
Frequency Resolution
1 Hz
Frequency Span
9 kHz to 1.500009 GHz
Span Range
0 Hz, 100 Hz to max frequency of instrument
Span Uncertainty
±span / (sweep points-1)
SSB Phase Noise (20°C to 30°C, fc=1 GHz)
Carrier Offset
10 kHz <-80 dBc/Hz | 100 kHz <-100 dBc/Hz | 1 MHz <-115 dBc/Hz
Resolution Bandwidth (-3 dB)
1 Hz to 1 MHz, in 1-3-5-10 sequence
RBW Accuracy
<5% typical
Resolution Filter Shape Factor (60 dB: 3 dB)
<5 typical
Video Bandwidth (-3 dB)
10 Hz to 1 MHz, in 1-3-5-10 sequence
Amplitude measurement range
DANL to +10 dBm, 100 kHz to 10 MHz, Preamp Off
DANL to +20 dBm, 10 MHz to 1.5 GHz, Preamp Off
Reference Level
-80 dBm to +30 dBm, 0.01dB by step
Preamp
20 dB, nominal, 100 kHz to 1.5 GHz
Input Attenuator
0 to 40 dB, 1 dB by step
Display Average Noise Level Input attenuation = 0 dB, RBW = VBW = 100 Hz, sample detector, trace average ≥ 50, 20°C to 30°C, input impedance = 50 Ω)
Preamp Off 9 kHz to 1 MHz
-95 dBm (Typical), <-88 dBm
Preamp Off 1 MHz to 500 MHz
-140 dBm (Typical), <-130 dBm
Preamp On 100 kHz to 1 MHz
-135 dBm (Typical), <-128 dBm
Preamp On 1 MHz to 500 MHz
-160 dBm (Typical),<-150 dBm
Tracking Generator (optional)
Frequency Range
100 kHz to 1.500009 GHz
Output power level range
-40 dBm to 0 dBm
Output level resolution 1 dB
Output flatness
Relative to 50 MHz | ±3 dB
Tracking generator spurious
Harmonic spurious -30 dBc (Tracking generator output power -10 dBm)
Non-harmonic spurious -40 dBc (Tracking generator output power -10 dBm)
Tracking generator to input terminal isolation
-60 dB (Tracking generator output power 0 dBm)
Tracking generator to input terminal isolation
-60 dB (Tracking generator output power 0 dBm)
Tracking generator to input terminal isolation
-60 dB (Tracking generator output power 0 dBm)
Dimensions
375 x 185 x 120 mm
Weight
3.7 kg
Included
1x XSA815-TG
1x 220 V AC power cord
1x USB Cable
1x Quickstart guide
Downloads
Quick Guide
Specifications
The Unicorn Pack fits nicely on the back of your Pico - with a tidy 7x16 matrix (that's 112 RGB LEDs!) it's surely the fanciest backpack going. The four tactile buttons can be used to switch between modes, as controls for simple games, or adjusting brightness. It's possible to control the colour and brightness of each LED individually so you can use it to display animations, text, simple images, and more. Make a mini photo FX lamp, a smart status light for Zoom, use it to display colourful scrolling messages on your fridge, or just enjoy some pretty animations. Features 16x7 matrix of RGB LEDs (112 total) Individual colour/brightness control of each LED 4 x tactile buttons Pre-soldered female headers for attaching to Pico Compatible with Raspberry Pi Pico. Fully assembled No soldering required (as long as your Pico has header pins attached). Dimensions: approx 62mm x 25mm x 10mm (L x W x H, including headers and buttons) C/C++ and MicroPython libraries
A low-power, open source, 2.7-inch IoT display powered by an ESP32-S2 module and featuring SHARP's Memory-in-Pixel (MiP) screen technology
The Newt is a battery-powered, always-on, wall-mountable display that can go online to retrieve weather, calendars, sports scores, to-do lists, quotes…really anything on the Internet! It is powered by an ESP32-S2 microcontroller that you can program with Arduino, CircuitPython, MicroPython, or ESP-IDF. It's perfect for makers:
Sharp’s Memory-in-Pixel (MiP) technology avoids the slow refresh times associated with E-Ink displays
A real-time clock (RTC) was added to support timers and alarms
The Newt was designed with battery operation in mind; every component on the board was chosen for its ability to operate at low power.
Newt was designed to operate 'untethered,' which means it can be mounted in places where a power cord would be inconvenient, for example a wall, refrigerator, mirror, or dry-erase board. With the optional stand, desks, shelves, and nightstands are also good options.
Newt is open source, and all design files and libraries are available for review, use, and modification. However, doing that is not required. Each Newt is delivered with working code with the following features:
Current weather details
Hourly and daily weather forecast
Alarm
Timer
Inspirational quotes
Air-quality forecast
Habit calendar
Pomodoro timer
Oblique Strategy cards
Only following the Wi-Fi provisioning instructions is needed to get started. No app downloads are required.
Specifications
Display
Sharp Memory LCD
Screen Size
2.7 inch
Resolution
240 x 400
Deep Sleep Current
30 uA
Refresh Rate
< 0.001 s
Periodic Screen Refresh Required
No
Input Buttons
10 capacitive pads, 1 push button
RTC included
Yes
Speaker included
Yes
Power Input
USB Type-C
Battery included
No
Programming Languages
Arduino, CircuitPython, ESP IDF, MicroPython
Dimensions
91 x 61 x 9 mm
Microcontroller
Espressif ESP32-S2-WROVER Module with 4 MB flash and 2 MB PSRAM
Wi-Fi capable
Supports Arduino, MicroPython, CircuitPython, and ESP-IDF
Deep sleep current as low as 25 μA
Display
2.7-inch, 240 x 400 pixel MiP LCD
Capable of delivering high-contrast, high-resolution, low-latency content with ultra-low power consumption
Reflective mode leverages ambient light to eliminate the need for a backlight
Time Keeping, Timers, and Alarms
Micro Crystal RV-3028-C7 RTC
Optimized for extreme low-power consumption (45 μA)
Able to simultaneously manage a periodic timer, a countdown timer, and an alarm
Hardware interrupt for timers and alarms
43 bytes of non-volatile user memory, 2 bytes of user RAM
Separate UNIX time counter
Buzzer
Speaker/buzzer with mini class-D amplifier on DAC output A0 can play tones or lo-fi audio clips
User Input
Power switch
Two programmable tactile buttons for Reset and Boot
10 capacitive touchpads
Power
Newt is designed to operate for one to two months between charges using a 500 mAH LiPo battery. The exact run time varies. (Heavy Wi-Fi use, in particular, will reduce battery charge more quickly.)
USB Type-C connector for programming, power, and charging
Low-quiescence voltage regulator (TOREX XC6220) that can output 1 A of current and operate as low as 8 μA.
JST connector for a Lithium-Ion battery
Battery-charging circuity (MCP73831)
Low-battery indicator (1 μA quiescence current)
Software
Newt hardware is compatible with open-source Arduino libraries for ESP32-S2, Adafruit GFX (fonts), Adafruit Sharp Memory Display (display writing), and RTC RV-3028-C7 (RTC)
Arduino libraries and sample programs are under development and will be available in our GitHub repository before launch
CircuitPython libraries and registration are on the roadmap, with the development of a CircuitPython library for the RV-3028 real-time clock as a key dependency
Included
Phambili Newt – Fully assembled with pre-loaded firmware
Laser-cut desktop stand
Mini-magnet feet
Required screws
Support & Documentation
Full instructions for use
GitHub: Arduino Library and Codebase
GitHub: Board schematics
Videos of prototypes or demos (build tracked on Hackaday)
This highly sensitive source picoammeter is designed for measuring and logging very small currents down to the pA range – making it an ideal instrument for scientific and research applications, including physics, materials science and electron microscopy.
Full-featured at an affordable price, the SPA100 combines sensitivity, accuracy and stability to allow users to measure low currents with high precision as well as conveniently source bias voltages for experimentation. SPA100 also doubles as an ultra-high resistance meter, measuring accurately into the teraohm range.
The SPA100 connects to PC via USB and utilises the complimentary software SPA – enabling users to easily measure, graph and capture readings with timestamps and measurement stability information.
Features
Input: ±2 mA to ±200 pA in 8 ranges
Accuracy and Resolution (2 Hz):
±2 mA range: ±0.1%, resolution <20 nA
±200 uA range: ±0.1%, resolution <2 nA
±20 uA range: ±0.2%, resolution <200 pA
±2 uA range: ±0.2%, resolution <20 pA
±200 nA range: ±0.5%, resolution <2 pA
±20 nA range: ±0.5%, resolution <200 fA
±2 nA range: ±1.0%, resolution <20 fA
±200 pA range: ±1.5%, resolution <2 fA
Sample rate: 2 Hz (18 bit) or 10 Hz (16 bit)
Adjustable filter: 1 sample to 64 samples
Output voltage: -40 V to +40 V (in 1 V increments), output resistance 2.7 Kohms
Resistance Measurement: ~1 Kohms to 40 Tohms (e.g 40 V source, 1 pA measure)
Accuracy: >±0.5% 1 Mohm to 1 Tohm
Powered via USB 2.0 (instrument uses up to 0.3 A when in-use)
Included
1x SPA100 Source Picoammeter
1x USB cable
Downloads
Manual
Software
The SparkFun DataLogger IoT (9DoF) is a data logger that comes preprogrammed to automatically log IMU, GPS, and various pressure, humidity, and distance sensors. All without writing a single line of code! The DataLogger automatically detects, configures, and logs Qwiic sensors. It was specifically designed for users who just need to capture a lot of data to a CSV or JSON file and get back to their larger project. Save the data to a microSD card or send it wirelessly to your preferred Internet of Things (IoT) service!
Included on every DataLogger IoT is an IMU for built-in logging of a triple-axis accelerometer, gyro, and magnetometer. Whereas the original 9DOF Razor used the old MPU-9250, the DataLogger IoT uses the ISM330DHCX from STMicroelectronics and MMC5983MA from MEMSIC. Simply power up the DataLogger IoT, configure the board to record readings from supported devices, and begin logging! Data can be time-stamped when the time is synced to NTP, GNSS, or RTC.
The DataLogger IoT is highly configurable over an easy-to-use serial interface. Simply plug in a USB-C cable and open a serial terminal at 115200 baud. The logging output is automatically streamed to both the terminal and the microSD card. Pressing any key in the terminal window will open the configuration menu.
The DataLogger IoT (9DoF) automatically scans, detects, configures, and logs various Qwiic sensors plugged into the board (no soldering, no programming!).
Specifications
ESP32-WROOM-32E Module
Integrated 802.11b/g/n WiFi 2.4 GHz transceiver
Configurable via CH340C
Operating voltage range
3.3 V to 6.0 V (via VIN)
5 V with USB (via 5 V or USB type C)
3.6 V to 4.2 V with LiPo battery (via BATT or 2-pin JST)
Built-in MCP73831 single cell LiPo charger
Minimum 500 mA charge rate
3.3 V (via 3V3)
MAX17048 LiPo Fuel Gauge
Ports
1x USB-C
1x JST style connector for LiPo battery
2x Qwiic enabled I²C
1x microSD socket
Support for 4-bit SDIO and microSD cards formatted to FAT32
9-axis IMU
Accelerometer & Gyro (ISM330DHCX)
Magnetometer (MMC5983MA)
LEDs
Charge (CHG)
Status (STAT)
WS2812-2020 Addressable RGB
Jumpers
IMU interrupt
Magnetometer interrupt
RGB LED
Status LED
Charge LED
I²C pull-up resistors
USB Shield
Buttons
Reset
Boot
Dimensions: 1.66 x 2.0' (4.2 x 5.1 cm)
Weight: 10.7 g
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
CH340 Drivers
Firmware
GitHub Hardware Repo
The Arduino Micro contains everything needed to support the microcontroller; simply connect it to a computer with a micro USB cable to get started. It has a form factor that enables it to be easily placed on a breadboard.
The Micro board is similar to the Arduino Leonardo in that the ATmega32U4 has built-in USB communication, eliminating the need for a secondary processor. This allows the Micro to appear to a connected computer as a mouse and keyboard, in addition to a virtual (CDC) serial / COM port.
Specifications
Microcontroller
ATmega32U4
Operating Voltage
5 V
Input Voltage
7 V - 12 V
Analog Input Pins
12
PWM Pins
7
DC I/O Pin
20
DC Current per I/O Pin
20 mA
DC Current for 3.3 V Pin
50 mA
Flash Memory
32 KB of which 4 KB used by the bootloader
SRAM
2.5 KB
EEPROM
1 KB
Clock Speed
16 MHz
LED_Builtin
13
Length
45 mm
Width
18 mm
Weight
13 g
Ardi32 is the ultimate Arduino Uno alternative packed with powerful specs and exciting features in the Arduino Uno form factor. Ardi32 is powered by the latest ESP32-S3-WROOM-1. The built-in Wi-Fi and Bluetooth connectivity makes the board ideal for IoT projects or projects requiring wireless communication.
Features
Powered by powerful ESP32-S3-WROOM-1 module with inbuild WiFi and BLE support.
Arduino Uno form factor, so you can connect 3.3 V compatible Arduino shields
SD card slot for storage and data transfer
The facility of USB-C interface for programming and to the power board
Boot and Reset buttons are available to operate in various modes.
Multifunction GPIO breakout supporting general I/O, UART, I²C, SPI, ADC & PWM functions.
Multi-tune Buzzer to add audio alert into the project
Multi-platform support like Arduino IDE, Espressif IDF, and MicroPython/CircuitPython
Comes with HID support, so the device can simulate a mouse or keyboard
Specifications
ESP32-S3 series of SoCs having Xtensa dual-core 32-bit LX7 microprocessor
4 GHz Wi-Fi (802.11 b/g/n) and Bluetooth 5 (LE)
Flash up to 16 MB, PSRAM up to 8 MB
Board supply 5 V and GPIO pins operating voltage 3.3 V
22 multipurpose GPIOs breakout in Arduino style for easy peripheral and shield interfacing
I²C, SPI, and UART communications protocol support
Cross-platform development and multiple programming language support
Can you use the SparkFun Top pHAT to prototype machine learning on your Raspberry Pi 4, NVIDIA Jetson, Google Coral or another single-board computer? Indubitably! The SparkFun Top pHAT supports machine learning interactions, including voice control with onboard microphones & speaker, graphical display for camera control feedback, and uninhibited access to the RPi camera connector. Additionally, you can use the programmable buttons, joystick, and RGB LED for user-defined I/O, dynamic system interaction, or system status displays.
Can you use it as an interface to introduce your project to the SparkFun Qwiic ecosystem? Indeed! In addition to all the previous features, we have also included a Qwiic connector to allow easy integration over I²C. Billions of combinations of Qwiic-enabled boards are available to you to expand upon the capabilities of the SparkFun Top pHAT.
With all the I/O interaction on this board and the lack of soldering needed to get up and running, the SparkFun Top pHAT is the fundamental machine learning add-on for Raspberry Pi or any 2x20 GPIO SBC!
Features
A Raspberry Pi pHAT that focuses on user interaction with an SBC/RPi.
Support for machine learning interactions
Voice control (microphones, speaker)
Graphical display on 2.4' colour TFT
Two Programmable buttons for user-defined I/O
Programmable Joystick – for dynamic/interaction with the system (GUI menus, robot driving).
Programmable RGB LEDs – for system status, display.
Does not inhibit access to RPi camera or display connector
On/Off switch for RPi.
Supports access to the SparkFun Qwiic ecosystem
Intended to be at the top of a pHAT stack - no pins for stacking on top of this board. It’s the Top pHAT!
Get ready to start soldering kits thanks to this all-inclusive tool set!Want to start soldering gadgets, or do you want to fix some home appliances, but you don't know what tools to get? Then this is the perfect set for you! It includes all the basic tools and practical necessities to start your journey as an electronics engineer or maker!Included
AS19: Silicone soldering mat (350 x 250 mm)
Lead-free solder Sn 99.3% – Cu 0.7% with dispenser (1.0 mm, 15 g)
Desolder: Desoldering braid
Stand20: Universal soldering iron stand
VT281: Side cutter pliers
VTD7: Powerful desoldering pump
VTHHN: Helping hand with magnifier
VTSI30C: High-Q ceramic soldering iron 30 W / 220-240 VAC