Clearance Sale %

296 products

  •  -50% T80 - C Soldering Tip for Soldering Station AE970D - Elektor

    ATETOOL T80-C Soldering Tip for Soldering Station AE970D

    T80-C (T80-D16) Soldering Tip for Soldering Station AE970D (1.6 mm, chisel)

    € 9,95€ 4,95

    Members identical

  •  -50% ESP32 - S2 - WROVER - Elektor

    Espressif ESP32-S2-WROVER

    At the core of this module is ESP32-S2, an Xtensa® 32-bit LX7 CPU that operates at up to 240 MHz. The chip has a low-power co-processor that can be used instead of the CPU to save power while performing tasks that do not require much computing power, such as monitoring of peripherals. ESP32-S2 integrates a rich set of peripherals, ranging from SPI, I²S, UART, I²C, LED PWM, TWAITM, LCD, Camera interface, ADC, DAC, touch sensor, temperature sensor, as well as up to 43 GPIOs. It also includes a full-speed USB On-The-Go (OTG) interface to enable USB communication.FeaturesMCU ESP32-S2 embedded, Xtensa® single-core 32-bit LX7 microprocessor, up to 240 MHz 128 KB ROM 320 KB SRAM 16 KB SRAM in RTC Wi­Fi 802.11 b/g/n Bit rate: 802.11n up to 150 Mbps A-MPDU and A-MSDU aggregation 0.4 µs guard interval support Center frequency range of operating channel: 2412 ~ 2484 MHz Hardware Interfaces: GPIO, SPI, LCD, UART, I²C, I²S, Camera interface, IR, pulse counter, LED PWM, TWAI (compatible with ISO 11898-1), USB OTG 1.1, ADC, DAC, touch sensor, temperature sensor 40 MHz crystal oscillator 4 MB SPI flash Operating voltage/Power supply: 3.0 ~ 3.6 V Operating temperature range: –40 ~ 85 °C Dimensions: 18 × 31 × 3.3 mm Applications Generic Low-power IoT Sensor Hub Generic Low-power IoT Data Loggers Cameras for Video Streaming Over-the-top (OTT) Devices USB Devices Speech Recognition Image Recognition Mesh Network Home Automation Smart Home Control Panel Smart Building Industrial Automation Smart Agriculture Audio Applications Health Care Applications Wi-Fi-enabled Toys Wearable Electronics Retail & Catering Applications Smart POS Machines

    € 7,95€ 3,95

    Members identical

  •  -50% JOY - iT Motorino - Motor Control for Arduino - Elektor

    JOY-iT JOY-iT Motorino – Motor Control for Arduino

    The Motorino board is an extension-board to control and use up to 16 PWM-controlled 5V-Servo-motors. The included clock generator ensures a very precise PWM signal and a very precise positioning. The board has 2 inputs for voltage from 4.8 V to 6 V which can be used for up to 11 A. With this input, a perfect power supply is always guaranteed and even bigger projects are no problem. The supply runs directly over the Motorino which provides a connection for voltage, ground and control. With the build in capacitor, the voltage is buffered which prevents a sudden voltage-drop at a high load. But there is also the possibility to connect another capacitor. The control and the programing can be done, as usual, with the Arduino. Manuals and code examples allows a quick introduction for beginners. Specifications Special features 16 Channels, own clock generator Input 1 Coaxial power connector 5.5 / 2.1 mm, 4.8-6 V / 5 A max Input 2 Screw-terminal, 4.8-6 V / 6 A max Communication 16 x PWM Compatible with Arduino Uno, Mega and may more microcontroller with Arduino compatible pinout Dimensions 69 x 24 x 56 mm Included Board, Manual, Retail package

    € 26,95€ 13,50

    Members identical

  •  -50% Pimoroni Piano HAT for Raspberry Pi - Elektor

    Pimoroni Pimoroni Piano HAT for Raspberry Pi

    Unlock your inner Mozart with Piano HAT, a mini musical companion for your Raspberry Pi! Piano HAT is inspired by Zachary Igielman's PiPiano and made with his blessing. It has taken his fabulous idea for a dinky piano add-on for the Raspberry Pi, made it touch-sensitive and added barrels of our trademark Pimoroni polish. Play music in Python, control software synths on your Pi, and take control of hardware synthesizers! Features 16 capacitive touch pads (link each to their own Python function!) 13 piano keys (a full octave) Octave up/down buttons Instrument cycle button (great for use with synthesizers) 16 bright white LEDs (let them light automagically, or take control with Python) 2x Microchip CAP1188 capacitive touch driver chips Use it to control software or hardware synths over MIDI Compatible with all 40-pin header Raspberry Pi models Comes fully assembled Downloads Python library Pinout

    € 29,95€ 14,95

    Members identical

  •  -51% FPC Display Cable for Raspberry Pi 5 (500 mm) - Elektor

    Raspberry Pi Foundation FPC Display Cable for Raspberry Pi 5 (500 mm)

    Raspberry Pi 5 provides two four-lane MIPI connectors, each of which can support either a camera or a display. These connectors use the same 22-way, 0.5 mm-pitch “mini” FPC format as the Compute Module Development Kit, and require adapter cables to connect to the 15-way, 1 mm-pitch “standard” format connectors on current Raspbery Pi camera and display products.These mini-to-standard adapter cables for cameras and displays (note that a camera cable should not be used with a display, and vice versa) are available in 200 mm, 300 mm and 500 mm lengths.

    € 3,95€ 1,95

    Members identical

  •  -50%Last Stock! Waveshare PCIe to Gigabit Ethernet & USB 3.2 HAT for Raspberry Pi 5 - Elektor

    Waveshare Waveshare PCIe to Gigabit Ethernet & USB 3.2 HAT for Raspberry Pi 5

    2 in stock

    The Waveshare PCIe to Gigabit Ethernet and USB 3.2 Gen 1 HAT+ is an expansion board designed specifically for the Raspberry Pi 5. It enhances the Raspberry Pi's connectivity by adding three high-speed USB 3.2 Gen 1 ports and a Gigabit Ethernet port, all in a driver-free, plug-and-play setup. Features Based on 16-pin PCIe Interface of Raspberry Pi 5 Equipped with RTL8153B high-performance Gigabit Ethernet chip Supports Raspberry Pi OS, Ubuntu, OpenWRT, etc. Stable and reliable network speed Real-time monitoring of power status Supports USB port power control via software Included 1x PCIe to Gigabit Ethernet USB 3.2 HAT+ 1x Network cable (1.5 m) 1x 16P Cable (40 mm) 1x Standoff pack Downloads Wiki

    2 in stock

    € 32,95€ 16,50

    Members identical

  •  -50% Phambili Newt 2.7" IoT Display (powered by ESP32 - S2) - Elektor

    Phambili Phambili Newt 2.7" IoT Display (powered by ESP32-S2)

    A low-power, open source, 2.7-inch IoT display powered by an ESP32-S2 module and featuring SHARP's Memory-in-Pixel (MiP) screen technology The Newt is a battery-powered, always-on, wall-mountable display that can go online to retrieve weather, calendars, sports scores, to-do lists, quotes…really anything on the Internet! It is powered by an ESP32-S2 microcontroller that you can program with Arduino, CircuitPython, MicroPython, or ESP-IDF. It's perfect for makers: Sharp’s Memory-in-Pixel (MiP) technology avoids the slow refresh times associated with E-Ink displays A real-time clock (RTC) was added to support timers and alarms The Newt was designed with battery operation in mind; every component on the board was chosen for its ability to operate at low power. Newt was designed to operate 'untethered,' which means it can be mounted in places where a power cord would be inconvenient, for example a wall, refrigerator, mirror, or dry-erase board. With the optional stand, desks, shelves, and nightstands are also good options. Newt is open source, and all design files and libraries are available for review, use, and modification. However, doing that is not required. Each Newt is delivered with working code with the following features: Current weather details Hourly and daily weather forecast Alarm Timer Inspirational quotes Air-quality forecast Habit calendar Pomodoro timer Oblique Strategy cards Only following the Wi-Fi provisioning instructions is needed to get started. No app downloads are required. Specifications Display Sharp Memory LCD Screen Size 2.7 inch Resolution 240 x 400 Deep Sleep Current 30 uA Refresh Rate < 0.001 s Periodic Screen Refresh Required No Input Buttons 10 capacitive pads, 1 push button RTC included Yes Speaker included Yes Power Input USB Type-C Battery included No Programming Languages Arduino, CircuitPython, ESP IDF, MicroPython Dimensions 91 x 61 x 9 mm Microcontroller Espressif ESP32-S2-WROVER Module with 4 MB flash and 2 MB PSRAM Wi-Fi capable Supports Arduino, MicroPython, CircuitPython, and ESP-IDF Deep sleep current as low as 25 μA Display 2.7-inch, 240 x 400 pixel MiP LCD Capable of delivering high-contrast, high-resolution, low-latency content with ultra-low power consumption Reflective mode leverages ambient light to eliminate the need for a backlight Time Keeping, Timers, and Alarms Micro Crystal RV-3028-C7 RTC Optimized for extreme low-power consumption (45 μA) Able to simultaneously manage a periodic timer, a countdown timer, and an alarm Hardware interrupt for timers and alarms 43 bytes of non-volatile user memory, 2 bytes of user RAM Separate UNIX time counter Buzzer Speaker/buzzer with mini class-D amplifier on DAC output A0 can play tones or lo-fi audio clips User Input Power switch Two programmable tactile buttons for Reset and Boot 10 capacitive touchpads Power Newt is designed to operate for one to two months between charges using a 500 mAH LiPo battery. The exact run time varies. (Heavy Wi-Fi use, in particular, will reduce battery charge more quickly.) USB Type-C connector for programming, power, and charging Low-quiescence voltage regulator (TOREX XC6220) that can output 1 A of current and operate as low as 8 μA. JST connector for a Lithium-Ion battery Battery-charging circuity (MCP73831) Low-battery indicator (1 μA quiescence current) Software Newt hardware is compatible with open-source Arduino libraries for ESP32-S2, Adafruit GFX (fonts), Adafruit Sharp Memory Display (display writing), and RTC RV-3028-C7 (RTC) Arduino libraries and sample programs are under development and will be available in our GitHub repository before launch CircuitPython libraries and registration are on the roadmap, with the development of a CircuitPython library for the RV-3028 real-time clock as a key dependency Included Phambili Newt – Fully assembled with pre-loaded firmware Laser-cut desktop stand Mini-magnet feet Required screws Support & Documentation Full instructions for use GitHub: Arduino Library and Codebase GitHub: Board schematics Videos of prototypes or demos (build tracked on Hackaday)

    € 144,95€ 72,50

    Members identical

  •  -50% SparkFun Thing Plus Matter (MGM240P) - Elektor

    SparkFun SparkFun Thing Plus Matter (MGM240P)

    The SparkFun Thing Plus Matter is the first easily accessible board of its kind that combines Matter and SparkFun’s Qwiic ecosystem for agile development and prototyping of Matter-based IoT devices. The MGM240P wireless module from Silicon Labs provides secure connectivity for both 802.15.4 with Mesh communication (Thread) and Bluetooth Low Energy 5.3 protocols. The module comes ready for integration into Silicon Labs' Matter IoT protocol for home automation. What is Matter? Simply put, Matter allows for consistent operation between smart home devices and IoT platforms without an Internet connection, even from different providers. In doing so, Matter is able to communicate between major IoT ecosystems in order to create a single wireless protocol that is easy, reliable, and secure to use. The Thing Plus Matter (MGM240P) includes Qwiic and LiPo battery connectors, and multiple GPIO pins capable of complete multiplexing through software. The board also features the MCP73831 single-cell LiPo charger as well as the MAX17048 fuel gauge to charge and monitor a connected battery. Lastly, a µSD card slot for any external memory needs is integrated. The MGM240P wireless module is built around the EFR32MG24 Wireless SoC with a 32-bit ARM Cortext-M33 core processor running at 39 MHz with 1536 kb Flash memory and 256 kb RAM. The MGM240P works with common 802.15.4 wireless protocols (Matter, ZigBee, and OpenThread) as well as Bluetooth Low Energy 5.3. The MGM240P supports Silicon Labs' Secure Vault for Thread applications. Specifications MGM240P Wireless Module Built around the EFR32MG24 Wireless SoC 32-bit ARM-M33 Core Processor (@ 39 MHz) 1536 kB Flash Memory 256 kB RAM Supports Multiple 802.15.4 Wireless Protocols (ZigBee and OpenThread) Bluetooth Low Energy 5.3 Matter-ready Secure Vault Support Built-in Antenna Thing Plus Form-Factor (Feather-compatible): Dimensions: 5.8 x 2.3 cm (2.30 x 0.9') 2 Mounting Holes: 4-40 screw compatible 21 GPIO PTH Breakouts All pins have complete multiplexing capability through software SPI, I²C and UART interfaces mapped by default to labeled pins 13 GPIO (6 labeled as Analog, 7 labeled for GPIO) All function as either GPIO or Analog Built-in-Digital to Analog Converter (DAC) USB-C Connector 2-Pin JST LiPo Battery Connector for a LiPo Battery (not included) 4-Pin JST Qwiic Connector MC73831 Single-Cell LiPo Charger Configurable charge rate (500 mA Default, 100 mA Alternate) MAX17048 Single-Cell LiPo Fuel Gauge µSD Card Slot Low Power Consumption (15 µA when MGM240P is in Low Power Mode) LEDs: PWR – Red Power LED CHG – Yellow battery charging status LED STAT – Blue status LED Reset Button: Physical push-button Reset signal can be tied to A0 to enable use as a peripheral device Downloads Schematic Eagle Files Board Dimensions Hookup Guide Datasheet (MGM240P) Fritzing Part Thing+ Comparison Guide Qwiic Info Page GitHub Hardware Repo

    € 34,95€ 17,50

    Members identical

  •  -50% ESP32 - S2 - WROOM - Elektor

    Espressif ESP32-S2-WROOM

    At the core of this module is ESP32-S2, an Xtensa® 32-bit LX7 CPU that operates at up to 240 MHz. The chip has a low-power co-processor that can be used instead of the CPU to save power while performing tasks that do not require much computing power, such as monitoring of peripherals. ESP32-S2 integrates a rich set of peripherals, ranging from SPI, I²S, UART, I²C, LED PWM, TWAITM, LCD, Camera interface, ADC, DAC, touch sensor, temperature sensor, as well as up to 43 GPIOs. It also includes a full-speed USB On-The-Go (OTG) interface to enable USB communication.FeaturesMCU ESP32-S2 embedded, Xtensa® single-core 32-bit LX7 microprocessor, up to 240 MHz 128 KB ROM 320 KB SRAM 16 KB SRAM in RTC Wi­Fi 802.11 b/g/n Bit rate: 802.11n up to 150 Mbps A-MPDU and A-MSDU aggregation 0.4 µs guard interval support Center frequency range of operating channel: 2412 ~ 2484 MHz Hardware Interfaces: GPIO, SPI, LCD, UART, I²C, I²S, Camera interface, IR, pulse counter, LED PWM, TWAI (compatible with ISO 11898-1), USB OTG 1.1, ADC, DAC, touch sensor, temperature sensor 40 MHz crystal oscillator 4 MB SPI flash Operating voltage/Power supply: 3.0 ~ 3.6 V Operating temperature range: –40 ~ 85 °C Dimensions: 18 × 31 × 3.3 mm Applications Generic Low-power IoT Sensor Hub Generic Low-power IoT Data Loggers Cameras for Video Streaming Over-the-top (OTT) Devices USB Devices Speech Recognition Image Recognition Mesh Network Home Automation Smart Home Control Panel Smart Building Industrial Automation Smart Agriculture Audio Applications Health Care Applications Wi-Fi-enabled Toys Wearable Electronics Retail & Catering Applications Smart POS Machines

    € 6,95€ 3,50

    Members identical

  •  -50%Last Stock! Seeed Studio Grove SI1145 Sunlight Sensor - Elektor

    Seeed Studio Seeed Studio Grove SI1145 Sunlight Sensor

    2 in stock

    Want to make a UV detector to know the UV index when you are under the sun? Grove Sunlight Sensor is a multi-channel digital light sensor, which has the ability to detect UV-light, visible light and infrared light. This device is based on SI1151, a new sensor from SiLabs. The Si1151 is a low-power, reflectance-based, infrared proximity, UV index and ambient light sensor with I²C digital interface and programmable-event interrupt output. This device offers excellent performance under a wide dynamic range and a variety of light sources including direct sunlight. Grove Sunlight Sensor includes an on-board Grove connector, which helps you to connect it to your Arduino easily. You can use this device for making some projects which need to detect the light, such as a simple UV detector for your Raspberry Pi weather station, or a smart irrigation system using Arduino if you need to monitor the visible spectrum. Features Multi-channel digital light sensor: can detect UV-light, visible light and infrared light Wide spectrum detection range: 280-950 nm Easy to use: I²C Interface (7-bit), compatible with Grove port, just plug-and-play Programmable configuration: Versatile for various applications 3.3/5 V Supply, suitable for many microcontrollers and SBCs Applications Light detection Smart irrigation system DIY weather station Included 1x Grove Sunlight Sensor 1x Grove Cable Downloads Schematic in PDF Schematic in Eagle File Si1145 Datasheet GitHub Repositoriy for Grove Sunlight Sensor Spectrum Lumen (unit) Ultraviolet index

    2 in stock

    € 15,95€ 7,95

    Members identical

  •  -50%Last Stock! Seeed Studio Grove 3 - Axis Digital Accelerometer (LIS3DHTR) - Elektor

    Seeed Studio Seeed Studio Grove 3-Axis Digital Accelerometer (LIS3DHTR)

    2 in stock

    Grove 3-Axis Digital Accelerometer (LIS3DHTR) is a low-cost 3-Axis accelerometer in a bundle of Grove products. It is based on the LIS3DHTR chip which provides multiple ranges and interfaces selection. You can never believe that such a tiny 3-Axis accelerometer can support I²C, SPI, and ADC GPIO interfaces, which means you can choose any way to connect with your development board. Besides, this accelerometer can also monitor the surrounding temperature to tune the error caused by it. Features Measurement range: ±2g, ±4g, ±8g, ±16g, multiple ranges selection. Multiple interfaces option: Grove I²C interface, SPI interface, ADC interface. Temperature adjustable: able to adjust and tune the error caused by temperature. 3/5V power supply Specifications Power Supply 3/5V Interfaces IC/SPI/GPIO ADC I²C address Default 0x19, can be changed to 0x18 when connecting SDO Pin with GND ADC GPIO Power input 0-3.3V Interruption An interruption Pin reserved SPI Mode set up Connect the CS Pin with GND Included 1x Grove 3-Axis Digital Accelerometer (LIS3DHTR) 1x Grove cable Downloads LIS3DHTR Datasheet Hardware schematic Arduino Library

    2 in stock

    € 7,95€ 3,95

    Members identical

  •  -50% Heltec HT - M00 Dual - Channel LoRa Gateway (EU868) - Elektor

    Heltec Automation Heltec HT-M00 Dual-Channel LoRa Gateway (EU868)

    The HT-M00 is a dual-channel gateway that is specifically designed to cater to smart family LoRa applications that work with less than 30 LoRa nodes. The gateway has been built around two SX1276 chips that are driven by ESP32. To enable monitoring of 125 KHz SF7~SF12 spreading factor, a software mixer has been developed, which is commonly referred to as a baseband simulation program. The software mixer is a critical component that enables the HT-M00 gateway to operate with high efficiency. It is designed to simulate baseband signals, which are then mixed with the radio frequency signals to produce the desired output. The software mixer has been developed with great care and precision, and has undergone rigorous testing to ensure that it is capable of delivering accurate and reliable results. Features ESP32 + SX1276 Emulates LoRa demodulators Automatic adaptive spread spectrum factor, SF7 to SF12 for each channel is optional Maximum output: 18 ±1dBm Support for LoRaWAN Class A, Class C protocol Specifications MCU ESP32-D0WDQ6 LoRa Chipset SX1276 LoRa Band 863~870 MHz Power Supply Voltage 5 V Receiving Sensitivity -110 dBm @ 300 bps Interface USB-C Max. TX Power 17dB ±1dB Operating Temperature −20~70°C Dimensions 30 x 76 x 14 mm Included 1x HT-M00 Dual Channel LoRa Gateway 1x Wall bracket 1x USB-C cable Downloads Manual Software Documentation

    € 74,95€ 37,50

    Members identical

  •  -50% DIYIC Proto Board Kit - Elektor

    Evil Mad Science DIYIC Proto Board Kit

    The matte-black circuit board is extra thick and has subtle white markings, including an alphanumeric grid and PIN labels. The wiring pattern – that of classic breadboards – is easy to see by looking at the exposed traces on the bottom of the board. The kit comes complete with the 'Integrated Circuit Leg' stand and 8 colour-coded thumbscrew terminal posts. Using the terminal posts and solder points, you can hook up to your 'IC' with bare wires, lugs, alligator clips, and/or solder joints. Connections to the 8 terminal posts are through the three-position strips on the PCB; each is labelled with the corresponding PIN. Features Anodized aluminium stand 8-32 size press-fit threaded inserts (8 pieces) pre-installed in the protoboard All materials (including the circuit board and stand) are RoHS compliant (lead-free) Tri lobular thread forming screws (6 pieces, black, 6-32 thread size) and spacers for mounting the stand. Dimensions: 13.25 x 8.06 x 2.54 mm Dimensions assembled: 13.25 x 9.9 x 4.3 cm

    € 34,95€ 17,50

    Members identical

  •  -50% RoundyFi - Round LCD Board (based on ESP - 12E) - Elektor

    SB Components RoundyFi – Round LCD Board (based on ESP-12E)

    Specifications Operating Voltage: 3.3 V ESP-12E MCU Display Size: 1.28 inch USB Port for Power & Data Transmission Interface Pins: 4 GPIO, 1 GND, 1 Power Driver: GC9A01 Resolution240 x 240 Pixel Color: 65 K RGB Interface: SPI Downloads STEP File Dimensions 3D File Schematic GitHub

    € 54,95€ 27,50

    Members identical

  •  -50% Pimoroni Inventor 2040 W (incl. Pico W) - Elektor

    Pimoroni Pimoroni Inventor 2040 W (incl. Pico W)

    Inventor 2040 W is a multi-talented board that does (almost) everything you might want a robot, prop or other mechanical thing to do. Drive a couple of fancy motors with encoders attached? Yep! Add up to six servos? Sure? Attach a little speaker so you can make noise? No problem! It's also got a battery connector so you can power your inventions from AA/AAA or LiPo batteries and carry your miniature automaton/animated top hat/treasure chest that growls at your enemies around with you untethered. You also get a ton of options for hooking up sensors and other gubbins – there's two Qw/ST connectors (and an unpopulated Breakout Garden slot) for attaching breakouts, three ADC pins for analog sensors, photoresistors and such, and three spare digital GPIO you could use for LEDs, buttons or digital sensors. Speaking of LEDs, the board features 12 addressable LEDs (AKA Neopixels) – one for each servo and GPIO/ADC channel. Features Raspberry Pi Pico W Aboard Dual Arm Cortex M0+ running at up to 133 Mhz with 264 kB of SRAM 2 MB of QSPI flash supporting XiP Powered and programmable by USB micro-B 2.4 GHz wireless 2 JST-SH connectors (6 pin) for attaching motors Dual H-Bridge motor driver (DRV8833) Per motor current limiting (425 mA) Per motor direction indicator LEDs 2 pin (Picoblade-compatible) connector for attaching speaker JST-PH (2 pin) connector for attaching battery (input voltage 2.5-5.5 V) 6 sets of header pins for connecting 3 pin hobby servos 6 sets of header pins for GPIO (3 of which are ADC capable) 12x addressable RGB LEDs/Neopixels User button Reset button 2x Qw/ST connectors for attaching breakouts Unpopulated headers for adding a Breakout Garden slot Fully assembled No soldering required (unless you want to add the Breakout Garden slot). C/C++ and MicroPython libraries Schematic Downloads Download pirate-brand MicroPython Getting Started with Raspberry Pi Pico Motor function reference Servo function reference MicroPython examples C++ examples

    € 44,95€ 22,50

    Members identical

  •  -50% Mixer Geek Theremin+ Musical Instrument - Elektor

    Generic Mixer Geek Theremin+ Musical Instrument

    The Mixer Geek Theremin+ is a fun and innovative electronic musical instrument inspired by the classic Theremin. Unlike traditional instruments, the Theremin+ is played without physical contact, using hand movements in the air to control pitch and volume. The Theremin+ offers an exciting and hands-on way to explore music and sound experimentation. Features Ready to use out of the box Equipped with a loudspeaker and full-color screen Intuitive button-based navigation and confirmation Choose from over 70 tones Multiple customizable function settings Displays waveform, time, frequency, volume, and corresponding piano pitch (display can be turned off) Powered via USB-C port; compatible with power banks Compact design with removable telescopic antenna for easy storage Connects to headphones, external speakers, or recording devices Dimensions: 98 x 70 x 18 mm Included 1x Theremin+ Musical Instrument 2x Antennas 1x USB-C cable

    € 59,95€ 29,95

    Members identical

  •  -50% Ardi RFID Shield for Arduino Uno - Elektor

    SB Components Ardi RFID Shield for Arduino Uno

    Designed with convenience and security in mind, the Ardi RFID Shield is based on the EM-18 module, operating at a frequency of 125 KHz. This shield allows you to easily integrate RFID (Radio Frequency Identification) technology into your projects, enabling seamless identification and access control systems. Equipped with a powerful 1-channel optoisolated relay, the Ardi RFID Shield offers a reliable switching solution with a maximum DC rating of 30 V and 10 A, as well as an AC rating of 250 V and 7 A. Whether you need to control lights, motors, or other high-power devices, this shield provides the necessary functionality. Additionally, the Ardi RFID Shield features an onboard buzzer that can be utilized for audio feedback, allowing for enhanced user interaction and system feedback. With the onboard 2-indication LEDs, you can easily monitor the status of RFID card detection, power supply, and relay activation, providing clear visual cues for your project's operation. Compatibility is key, and the Ardi RFID Shield ensures seamless integration with the Arduino Uno platform. Paired with a read-only RFID module, this shield opens up a world of possibilities for applications such as access control systems, attendance tracking, inventory management, and more. Features Onboard 125 kHz EM18 RFID small, compact module Onboard High-quality relays Relay with Screw terminal and NO/NC interfaces Shield compatible with both 3.3 V and 5 V MCU Onboard 3 LEDs power, relay ON/OFF State and RFID Scan status Multi-tone Buzzer onboard for Audio alerts Mounts directly onto ArdiPi, Ardi32 or other Arduino compatible boards Specifications RFID operating Frequency: 125 kHz Reading distance: 10 cm, depending on TAG Integrated Antenna Relay Max Switching Voltage: 250 V AC/30 V DC Relay Max Switching Current: 7 A/10 A

    € 24,95€ 12,50

    Members identical

  •  -50% JOY - iT PiEnergy Mini - Elektor

    JOY-iT JOY-iT PiEnergy Mini

    Wide Range Power Supply for Raspberry Pi With the PiEnergy Mini, you can operate your Raspberry Pi with a voltage of 6 to 36 V DC. You can use the button integrated on the board to both power up and power down your Raspberry Pi. Communication with the Raspberry Pi is via GPIO4, but this connection can also be cut by removing a resistor to use the pin freely. Thanks to the ultra-flat design, it can also be used in many housings. The pin header is included and not soldered on to keep the design even flatter. Specifications Input voltage 6 to 36 V DC Output voltage 5.1 V Output current Up to 3 A (active ventilation recommended for additionally connected loads) Cable cross-section at the power input 0.2-0.75 mm² Interface to the Raspberry Pi GPIO4 Microcontroller ATtiny5 Further connections 5 V fan connector (2-pin/2.54 mm)Solder pads for external on/off switch Compatible with Raspberry Pi 3, 4, 5 Dimensions 23 x 56 x 11 mm Included Board with mounted heat sink Pin header (2x5) Spacer, screw, nut Downloads Datasheet (English) Datasheet (Italiano) Manual (English) Manual (Italiano)

    € 19,95€ 9,95

    Members identical

  •  -10% Voltera V - One Desktop PCB Printer - Elektor

    Voltera Voltera V-One Desktop PCB Printer

    Solder Paste Dispensing and Reflow All-in-One The Voltera V-One creates two-layer prototype circuit boards on your desk. Gerber files go in, printed circuit boards come out. The dispenser lays down a silver-based conductive ink to print your circuit right before your eyes. Assembling traditional and additive boards is easy with the V-One’s solder paste dispensing and reflow features. Simply mount your board on the print bed and import your Gerber file into Voltera’s software. No more stencils required Voltera’s software is designed to be understood easily. From importing your Gerber files to the moment you press print, the software safely walks you through each step. Compatible with EAGLE, Altium, KiCad, Mentor Graphics, Cadence, DipTrace, Upverter. Included V-One PCB printer V-One dispenser V-One probe Nozzle pack Tip caps 3 x 4" FR1 substrate pack 2 x 3" FR1 substrate pack Substrate clamps Thumbscrew pack Hello World kit Solder wire Tweezers Power supply Power adapter Cables User guides Downloads Specifications V-One Software Manuals Safety Datasheets Technical Datasheets Voltera CAM file for EAGLE Substrates and Templates More Info Frequently Asked Questions More from the Voltera community Technical Specifications Printing Specifications Minimum trace width 0.2 mm Minimum passive size 1005 Minimum pin-to-pin pitch (conductive ink) 0.8 mml Minimum pin-to-pin pitch (solder paste) 0.5 mml Resistivity 12 mΩ/sq @ 70 um height Substrate material FR4 Maximum board thickness 3 mm Soldering Specifications Solder paste alloy Sn42/Bi57.6/Ag0.4 Solder wire alloy SnBiAg1 Soldering iron temperature 180-210°C Print Bed Print area 135 x 113.5 mm Max. heated bed temperature 240°C Heated bed ramp rate ~2°C/s Footprint Dimensions 390 x 257 x 207 mm (L x W x H) Weight 7 kg Computing Requirements Compatible operating systems Windows 7 or higher, MacOS 10.11 or higher Compatible file format Gerber Connection type Wired USB Certification EN 61326-1:2013 EMC requirements IEC 61010-1 Safety requirements CE Marking Affixed to the Voltera V-One printers delivered to European customers Designed and assembled in Canada. More technical information Quickstart Explore Flexible Printed Electronics on the V-One Voltera V-One Capabilities Reel Voltera V-One PCB Printer Walkthrough Unpacking the V-One V-One: Solder Paste Dispensing and Reflow All-in-One Voltera @ Stanford University's Bao Research Group: Robotic Skin and Stretchable Sensors Voltera @ Princeton: The Future of Aerospace Innovation

    € 5.499,00€ 4.949,00

    Members identical

  •  -50% Waveshare SC3336 3 MP Camera Module (B) - Elektor

    Waveshare Waveshare SC3336 3 MP Camera Module (B)

    This camera module adopts a SmartSens SC3336 sensor chip with 3 MP resolution. It features high sensitivity, high SNR, and low light performance and it is capable of a more delicate and vivid night vision imaging effect, and can better adapt to ambient light changes. Also, it is compatible with Luckfox Pico series boards. Specifications Sensor Sensor: SC3336 CMOS size: 1/2.8" Pixels: 3 MP Static resolution: 2304x1296 Maximum video frame rate: 30fps Shutter: Rolling shutter Lens Focal length: 3.95 mm Aperture: F2.0 FOV: 98.3° (diagonal) Distortion: <33% Focusing: Manual focus Downloads Wiki

    € 16,95€ 8,50

    Members identical

  •  -50% SparkFun RedBoard (Programmed with Arduino) - Elektor

    SparkFun SparkFun RedBoard (Programmed with Arduino)

    Are you tired of all the different Arduino boards, and having to choose which features you need? Wouldn't it be much simpler to have all the best features on the same board and not have to compromise? That is precisely what the people at SparkFun thought and delivered the fantastic SparkFun RedBoard Programmed with Arduino. Features ATmega328 microcontroller with Optiboot (UNO) Bootloader Input voltage: 7-15 V 0-5 V outputs with 3.3 V compatible inputs 6 Analog Inputs 14 Digital I/O Pins (6 PWM outputs) ISP Header 16 MHz Clock Spee 32 k Flash Memory R3 Shield Compatible All SMD Construction USB Programming Facilitated by the Ubiquitous FTDI FT231X Red PCB The SparkFun RedBoard combines the stability of the FTDI, the simplicity of the Uno's Optiboot bootloader, and the R3 shield compatibility of the Uno R3. RedBoard has the hardware peripherals you are used to: 6 Analog Inputs 14 Digital I/O pins (6 PWM pins) SPI UART External interrupts Downloads Drivers GitHub

    € 24,95€ 12,50

    Members identical

  •  -50% DFRobot Bluno - Arduino - compatible Board with Bluetooth 4.0 - Elektor

    DFRobot DFRobot Bluno – Arduino-compatible Board with Bluetooth 4.0

    Bluno is the first of its kind in integrating Bluetooth 4.0 (BLE) module into Arduino Uno, making it an ideal prototyping platform for both software and hardware developers to go BLE. You will be able to develop your own smart bracelet, smart pedometer, and more. Through the low-power Bluetooth 4.0 technology, real-time low energy communication can be made really easy. Bluno integrates a TI CC2540 BT 4.0 chip with the Arduino UNno. It allows wireless programming via BLE, supports Bluetooth HID, AT command to config BLE and you can upgrade BLE firmware easily. Bluno is also compatible with all 'Arduino Uno' pins which means any project made with Uno can directly go wireless! Specifications On-board BLE chip: TI CC2540 Wireless Programming via BLE Support Bluetooth HID Support AT command to config the BLE Transparent communication through Serial Upgrade BLE firmware easily DC Supply: USB Powered or External 7~12 V DC Microcontroller: Atmega328 Bootloader: Arduino Uno ( disconnect any BLE device before uploading a new sketch ) Compatible with the Arduino Uno pin mapping Size: 60 x 53 mm(2.36 x 2.08') Weight: 30 g

    € 34,95€ 17,50

    Members identical

  •  -50% Milk - V Duo 256M RISC - V Singe - board Computer - Elektor

    milkV Milk-V Duo 256M RISC-V Singe-board Computer

    The Milk-V Duo 256M is an ultra-compact embedded development platform based on the SG2002 chip. It can run Linux and RTOS, providing a reliable, low-cost, and high-performance platform for professionals, industrial ODMs, AIoT enthusiasts, DIY hobbyists, and creators. This board is an upgraded version of Duo with a memory boost to 256M, catering to applications demanding larger memory capacities. The SG2002 elevates computational power to 1.0 TOPS @ INT8. It enables seamless switching between RISC-V/ARM architectures and supports simultaneous operation of dual systems. Additionally, it includes an array of rich GPIO interfaces such as SPI, UART, suitable for a wide range of hardware development in edge intelligent monitoring, including IP cameras, smart peephole locks, visual doorbells, and more. SG2002 is a high-performance, low-power chip designed for various product fields such as edge intelligent surveillance IP cameras, smart door locks, visual doorbells, and home intelligence. It integrates H.264 video compression and decoding, H.265 video compression encoding, and ISP capabilities. It supports multiple image enhancement and correction algorithms such as HDR wide dynamic range, 3D noise reduction, defogging, and lens distortion correction, providing customers with professional-grade video image quality. The chip also incorporates a self-developed TPU, delivering 1.0 TOPS of computing power under 8-bit integer operations. The specially designed TPU scheduling engine efficiently provides high-bandwidth data flow for all tensor processing unit cores. Additionally, it offers users a powerful deep learning model compiler and software SDK development kit. Leading deep learning frameworks like Caffe and Tensorflow can be easily ported to its platform. Furthermore, it includes security boot, secure updates, and encryption, providing a series of security solutions from development, mass production, to product applications. The chip integrates an 8-bit MCU subsystem, replacing the typical external MCU to achieve cost-saving and power efficiency goals. Specifications SoC SG2002 RISC-V CPU C906 @ 1 Ghz + C906 @ 700 MHz Arm CPU 1x Cortex-A53 @ 1 GHz MCU 8051 @ 6 KB SRAM Memory 256 MB SIP DRAM TPU 1.0 TOPS @ INT8 Storage 1x microSD connector or 1x SD NAND on board USB 1x USB-C for power and data, USB Pads available CSI 1x 16P FPC connector (MIPI CSI 2-lane) Sensor Support 5 M @ 30 fps Ethernet 100 Mbps Ethernet with PHY Audio Via GPIO Pads GPIO Up to 26x GPIO Pads Power 5 V/1 A OS Support Linux, RTOS Dimensions 21 x 51 mm Downloads Documentation GitHub

    € 32,95€ 16,50

    Members identical

  •  -50% SparkFun MicroMod DIY Carrier Kit (5 pack) - Elektor

    SparkFun SparkFun MicroMod DIY Carrier Kit (5 Pack)

    The MicroMod DIY Carrier Kit includes five M.2 connectors (4.2mm height), screws, and standoffs so that you can get all the special parts you may need to make your own carrier board. MicroMod uses the standard M.2 connector. This is the same connector found on modern motherboards and laptops. There are various locations for the plastic ‘key’ on the M.2 connector to prevent a user from inserting an incompatible device. The MicroMod standard uses the ‘E’ key and further modifies the M.2 standard by moving the mounting screw 4mm to the side. The ‘E’ key is fairly common so a user could insert an M.2 compatible Wifi module. Still, because the screw mount doesn’t align, the user would not secure an incompatible device into a MicroMod carrier board. Features 5x Machine Screws Phillips Head #0 (but #00 to #1 works) Thread: M2.5 Length: 3 mm 5x SMD Reflow Compatible Standoffs Thread: M2.5 x 0.4 Height: 2.5 mm 5x M.2 MicroMod Connectors Key: E Height: 4.2 mm Pin count: 67 Pitch: 0.5 mm

    € 6,95€ 3,50

    Members identical

Login

Forgot password?

Don't have an account yet?
Create account