Specifications
RP2040 microcontroller chip designed by Raspberry Pi in the UK
Dual-core ARM Cortex M0+ processor, with a flexible clock running up to 133 MHz
264 kB SRAM, and 2 MB on-board Flash memory
Castellated module allows soldering directly to carrier boards
USB 1.1 host and device support
Energy-efficient sleep and dormant modes
Drag and drop programming using mass storage via USB
26x multifunction GPIO pins
2x SPI, 2x I²C, 2x UART, 3x 12-bit ADC, 16x controllable PWM channels
On-chip accurate clock and timer
Temperature sensor
On-chip accelerated floating point libraries
8x programmable IO (PIO) state machines for custom peripherals
Why a Raspberry Pi Pico?
Designing your own microcontroller instead of buying an existing one brings a number of advantages. According to Raspberry Pi itself, not one of the existing products available for this comes close to their price/performance ratio.
This Raspberry Pi Pico has also given Raspberry Pi the ability to add some innovative and powerful features of their own. These features are not available anywhere else.
A third reason is that the Raspberry Pi Pico has given Raspberry Pi the ability to create powerful software around the product. Surrounding this software stack is an extensive documentation set. The software and documentation meet the high standard of Raspberry Pi's core products (such as the Raspberry Pi 400, Pi 4 Model B and Pi 3 Model A+).
Who is this microcontroller for?
The Raspberry Pi Pico is suitable for both advanced and novice users. From controlling a display to controlling many different devices that you use every day. Automating everyday operations is made possible by this technology.
Beginner users
The Raspberry Pi Pico is programmable in the C and MicroPython languages and is customizable for a wide range of devices. In addition, the Pico is as easy to use as dragging and dropping files. This makes this microcontroller ideally suited for the novice user.
Advanced users
For advanced users, it is possible to take advantage of the Pico's extensive peripherals. The peripherals include the SPI, I²C, and eight programmable I/O (PIO)-state machines.
What makes the Raspberry Pi Pico unique?
What's unique about the Pico is that it was developed by Raspberry Pi itself. The RP2040 features a dual-core Arm Cortex-M0+ processor with 264 KB of internal RAM and support for up to 16 MB of off-chip Flash.
The Raspberry Pi Pico is unique for several reasons:
The product has the highest price/quality ratio in the microcontroller board market.
The Raspberry Pi Pico has been developed by Raspberry Pi itself.
The software stack surrounding this product is of high quality and comes paired with a comprehensive documentation set.
ESP32-C3-DevKitM-1 is an entry-level development board based on ESP32-C3-MINI-1, a module named for its small size. This board integrates complete Wi-Fi and Bluetooth LE functions. Most of the I/O pins on the ESP32-C3-MINI-1 module are broken out to the pin headers on both sides of this board for easy interfacing. Developers can either connect peripherals with jumper wires or mount ESP32-C3-DevKitM-1 on a breadboard. Specifications ESP32-C3-MINI-1 ESP32-C3-MINI-1 is a general-purpose Wi-Fi and Bluetooth LE combo module that comes with a PCB antenna. At the core of this module is ESP32-C3FN4, a chip that has an embedded flash of 4 MB. Since flash is packaged in the ESP32-C3FN4 chip, rather than integrated into the module, ESP32-C3-MINI-1 has a smaller package size. 5 V to 3.3 V LDO Power regulator that converts a 5 V supply into a 3.3 V output. 5 V Power On LED Turns on when the USB power is connected to the board. Pin Headers All available GPIO pins (except for the SPI bus for flash) are broken out to the pin headers on the board. For details, please see Header Block. Boot Button Download button. Holding down Boot and then pressing Reset initiates Firmware Download mode for downloading firmware through the serial port. Micro-USB Port USB interface. Power supply for the board as well as the communication interface between a computer and the ESP32-C3FN4 chip. Reset Button Press this button to restart the system. USB-to-UART Bridge Single USB-UART bridge chip provides transfer rates up to 3 Mbps. RGB LED Addressable RGB LED, driven by GPIO 8. Downloads ESP32-C3 Datasheet ESP32-C3-MINI-1 Datasheet ESP32-C3-DevKitM-1 Schematic ESP32-C3-DevKitM-1 PCB Layout ESP32-C3-DevKitM-1 Dimensions
The nRF52840 dongle is a small, low-cost USB dongle that supports Bluetooth 5.3, Bluetooth mesh, Thread, ZigBee, 802.15.4, ANT and 2.4 GHz proprietary protocols. The dongle is the perfect target hardware for use with nRF Connect for Desktop as it is low-cost but still support all the short range wireless standards used with Nordic devices.
The dongle has been designed to be used as a wireless HW device together with nRF Connect for Desktop. For other use cases please do note that there is no debug support on the dongle, only support for programming the device and communicating through USB.
It is supported by most of the nRF Connect for Desktop apps and will automatically be programmed if needed. In addition custom applications can be compiled and downloaded to the dongle. It has a user programmable RGB LED, a green LED, a user programmable button as well as 15 GPIO accessible from castellated solder points along the edge. Example applications are available in the nRF5 SDK under the board name PCA10059.
The nRF52840 dongle is supported by nRF Connect for Desktop as well as programming through nRFUtil.
Features
Bluetooth 5.2 ready multiprotocol radio
2 Mbps
Long Range
Advertising Extensions
Channel Selection Algorithm #2 (CSA #2)
IEEE 802.15.4 radio support
Thread
ZigBee
Arm Cortex-M4 with floating point support
DSP instruction set
ARM CryptoCell CC310 cryptographic accelerator
15 GPIO available via edge castellation
USB interface direct to nRF52840 SoC
Integrated 2.4 GHz PCB antenna
1 user-programmable button
1 user-programmable RGB LED
1 user-programmable LED
1.7-5.5 V operation from USB or external
Downloads
Datasheet
Hardware Files
The Google Coral USB Accelerator adds an Edge TPU coprocessor to your system, enabling high-speed machine learning inferencing on a wide range of systems, simply by connecting it to a USB port.
Features
Supported host OS: Debian Linux, macOS, Windows 10
Compatible with Raspberry Pi boards
Supported Framework: TensorFlow Lite
Performs high-speed ML inferencing
The on-board Edge TPU coprocessor is capable of performing 4 trillion operations (tera-operations) per second (TOPS), using 0.5 watts for each TOPS (2 TOPS per watt). For example, it can execute state-of-the-art mobile vision models such as MobileNet v2 at almost 400 FPS, in a power-efficient manner.
Supports all major platforms
Connects via USB to any system running Debian Linux (including Raspberry Pi), macOS, or Windows 10.
Supports TensorFlow Lite
No need to build models from the ground up. TensorFlow Lite models can be compiled to run on the Edge TPU.
Supports AutoML Vision Edge
Easily build and deploy fast, high-accuracy custom image classification models to your device with AutoML Vision Edge.
Specifications
ML accelerator
Google Edge TPU coprocessor:4 TOPS (int8); 2 TOPS per watt
Connector
USB 3.0 Type-C (data/power)
Dimensions
65 x 30 mm
Downloads/Documentation
Datasheet
Get started with the USB Accelerator
Model compatibility on the Edge TPU
Edge TPU inferencing overview
Run multiple models with multiple Edge TPUs
Pipeline a model with multiple Edge TPUs
PyCoral API (Python)
Libcoral API (C++)
Libedgetpu API (C++)
Edge TPU compiler
Pre-compiled models
All software downloads
Features RP2040 microcontroller with 2 MB Flash Dual-core cortex M0+ at up to 133 MHz 264 KB multi-bank high performance SRAM External Quad-SPI Flash with eXecute In Place (XIP) High performance full-crossbar bus fabric 30 multi-function General Purpose IO (4 can be used for ADC) 1.8-3.3 V IO Voltage (NOTE. Pico IO voltage is fixed at 3.3 V) 12-bit 500 ksps Analogue to Digital Converter (ADC) Various digital peripherals 2× UART, 2× I²C, 2× SPI, 16× PWM channels 1× Timer with 4 alarms, 1× Real Time Counter 2× Programmable IO (PIO) blocks, 8 state machines total Flexible, user-programmable high-speed IO Can emulate interfaces such as SD Card and VGA Includes W5100S Supports Hardwired Internet Protocols: TCP, UDP, WOL over UDP, ICMP, IGMPv1/v2, IPv4, ARP, PPPoE Supports 4 Independent Hardware SOCKETs simultaneously Internal 16 KB Memory for TX/ RX Buffers SPI Interface Micro-USB B port for power and data (and for reprogramming the Flash) 40 pin 21x51 'DIP' style 1mm thick PCB with 0.1' through-hole pins also with edge castellations 3-pin ARM Serial Wire Debug (SWD) port 10 / 100 Ethernet PHY embedded Supports Auto Negotiation Full / Half Duplex 10 / 100 Based Built-in RJ45 (RB1-125BAG1A) Built-in LDO (LM8805SF5-33V) Downloads RP2040 Datasheet W5100S Datasheet Schematic & Part list & Gerber File C/C++ Examples CircuitPython Examples
Arduino Uno is an open-source microcontroller board based on the ATmega328P. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. You can tinker with your Uno without worring too much about doing something wrong, worst case scenario you can replace the chip for a few dollars and start over again.
'Uno' means one in Italian and was chosen to mark the release of Arduino Software (IDE) 1.0. The Uno board and version 1.0 of Arduino Software (IDE) were the reference versions of Arduino, now evolved to newer releases. The Uno board is the first in a series of USB Arduino boards, and the reference model for the Arduino platform; for an extensive list of current, past or outdated boards see the Arduino index of boards.
Specifications
Microcontroller
ATmega328P
Operating Voltage
5 V
Input Voltage (recommended)
7-12 V
Input Voltage (limit)
6-20 V
Digital I/O Pins
14 (of which 6 provide PWM output)
PWM Digital I/O Pins
6
Analog Input Pins
6
DC Current per I/O Pin
20 mA
DC Current for 3.3 V Pin
50 mA
Flash Memory
32 KB (ATmega328P) of which 0.5 KB used by bootloader
SRAM
2 KB (ATmega328P)
EEPROM
1 KB (ATmega328P)
Clock Speed
16 MHz
LED_BUILTIN
13
Dimensions
68.6 x 53.4 mm
Weight
25 g
If you want to enter the programming world quickly and easily, JOY-iT Mega 2560 R3 is the board for you. Due to the abundance of tutorials and instructions for this microcontroller online, you will start programming without any complications.
Based on an ATmega2560, which offers sufficient power for your projects and ideas, JOY-iT Mega 2560 R3 has many connection options with 54 digital inputs and outputs and 16 analog inputs.
To start programming your JOY-iT Mega 2560 R3, you need to install the development environment, and, of course, the drivers, on your computer.
The Arduino IDE is best for using with the Mega 2560. This IDE is completely compatible with this board and offers you every driver you need for a quick start.
Specifications
Microcontroller
ATmega2560
Clock speed
16 MHz
Operating voltage
5 V/DC
Digital I/O Pins
54 (of which 15 with PWM)
Analog Input Pins
16
Analog Output Pins
15
Flash Memory
256 KB
EEPROM
4 KB
SRAM
8 KB
Downloads
Projects
The Uno R3 board is the perfect microcontroller for those who want to enter the programming world without any fuss. Its ATMega328 microcontroller provides you with enough power for your ideas and projects. The Uno board has a USB type B connector so that you can easily use it with programs – of course via the well-known programming environment Arduino IDE. You can connect it to the power source via the USB port or alternatively use its own power connection. Please note: The CH341 driver must be installed beforehand so that Uno board is recognized by the Arduino IDE. Microcontroller ATmega 328 Clock speed 16 MHz Operating voltage 5 V Input voltage 5-10 V Digital I/O Pins 14 with PWM 6 USB 1x SPI 1x I²C 1x ICSP 1x Flash Memory 32 KB EEPROM 1x
WCH CH32V307 RISC-V development board features 8 UART ports controlled over Ethernet The CH32V307 is an interconnected microcontroller, based on 32-bit RISC-V core, with hardware stack area and fast interrupt entry. Compared with standard RISC-V, the interrupt response speed is greatly improved. With single-precision float point instruction sets added and stack area extended, the CH32V307 has higher performance, the number of U(S)ART is extended to 8, and the number of motor timer is extended to 4. The CH32V307 provides USB2.0 high-speed interface (480 Mbps) and has built-in PHY transceiver. Ethernet MAC is upgraded to GbE and integrates 10M PHY module. Features RISC-V4F processor, max 144 MHz system clock frequency Single-cycle multiplication and hardware division, hardware float point unit (FPU) 64KB SRAM, 256 KB Flash Supply voltage: 2.5 V/3.3 V, GPIO unit is supplied independently Multiple low-power modes: sleep/stop/standby Power-on/power-down reset (POR/PDR), programmable voltage detector (PVD) 2 general DMA controllers, 18 channels in total 4 amplifiers Single true random number generator (TRNG) 2x 12-bit DAC 2-unit 16-channel 12-bit ADC, 16-channel TouchKey 10 timers USB2.0 full-speed OTG interface USB2.0 high-speed host/device interface (built-in 480 Mbps PHY) 3 USARTs, 5 UARTs 2 CAN interfaces (2.0B active) SDIO interface, FSMC interface, DVP 2x I²C, 3x SPI, 2x I²S 80 I/O ports, can be mapped to 16 external interrupts CRC calculation unit, 96-bit unique chip ID Serial 2-wire debug interface Packages: LQFP64M, LQFP100 Downloads Datasheet GitHub
With the NodeMCU-ESP32, comfortable prototyping is possible with simple programming via Luascript or the Arduino IDE and the breadboard-compatible design. This board has 2.4 GHz dual-mode Wifi and a BT wireless connection. In addition, a 512 KB SRAM and a 4 MB memory are integrated on the microcontroller development board. The board has 21 pins for interface connection, including I²C, SPI, UART, DAC and ADC. Specifications Type ESP32 Processor Tensilica LX6 Dual-Core Clock Frequency 240 MHz SRAM 512 kB Memory 4 MB Wireless Lan 802.11 b/g/n Frequency 2.4 GHz Bluetooth Classic / LE Data Interfaces UART / I²C / SPI / DAC / ADC Operating Voltage 3.3 V (operable via 5 V microUSB) Operating Temperature –40°C – 125°C Dimensions 48 x 26 x 11.5 mm Weight 10 g Downloads Manual
LILYGO T-Display-S3 ESP32-S3 1.9-inch ST7789 LCD Display Development Board WiFi Bluetooth 5.0 Wireless Module 170x320 Resolution
T-Display-S3 is a development board whose main control chip is ESP32-S3. It is equipped with a 1.9-inch LCD color screen and two programmable buttons. Communication using the I8080 interface Retains the same layout design as T-Display. You can directly use ESP32S3 for USB communication or programming.
Specifications
MCU
ESP32-S3R8 Dual-core LX7 microprocessor
Wireless Connectivity
Wi-Fi 802.11, BLE 5 + BT Mesh
Programming Platform
Arduino IDE Micropython
Flash
16 MB
PSRAM
8 MB
Bat voltage detection
IO04
Onboard functions
Boot + Reset + IO14 Button
Display
1.9" diagonal, Full-color TFT LCD
Drive Chip
ST7789V
Resolution
170 x 320 (RGB) 8-Bit Parallel Interface
Working power supply
3.3 V
Support
STEMMA QT/Qwiic
Connector
JST-GH 1.25 mm 2-pin
Downloads
Pinout
GitHub
This ESP32 terminal is a microcontroller based on the ESP32 master. It adopts Xtensa 32-bit LX7 dual-core processor with a main frequency of up to 240 Mhz, supports 2.4 GHz Wi-Fi and Bluetooth 5 (LE), and can easily handle common edge terminal device application scenarios, such as industrial control, agricultural production environment detection and processing, intelligent logistics monitoring, smart home scenarios and more.
The ESP32 module also has a 3.5-inch parallel RGB interface capacitive touch screen with a resolution of 320x480 to ensure perfect image output at a frame rate 60 FPS. The 4 Crowtail interfaces on the back of this terminal can be used with Crowtail series sensors, plug and play, and create more interesting projects quickly and conveniently. In addition, it is also equipped with an SD card slot for extended storage (SPI leads) and a buzzer function.
The ESP32 touchscreen supports ESP-IDF and Arduino IDE development and is compatible with Python/MicroPython/Arduino. It also supports LVGL, which is the most popular free and open-source embedded graphics library to create beautiful UIs for any MCU, MPU, and display type. Now it has also obtained the official certification of LVGL. LVGL's board certificate shows that the boards can be easily used with LVGL and has decent performance for UI applications. The onboard charging circuit and lithium battery interface can use the type-C power supply interface to supply power and charge the battery at the same time, providing more outdoor scene expansion possibilities.
Features
Integrated ESP32-S3 module, which is support 2.4 GHz Wi-Fi and Bluetooth 5 (LE)
LCD 3.5 inches parallel TFT-LCD with 320x480 resolution
Compatible with Arduino/Python/MicrmoPython
Mature software support, support ESP-IDF and Arduino IDE development
Support open-source Graphics Library-LVGL
Support 1T1R mode, data rate up to 150 Mbps, Wireless Multimedia (WMM)
Perfect security mechanism, support AES-128/256, Hash, RSA, HMAC, digital signatures and secure boot
Onboard charging chip and interface, use type-C interface to charge
With 4 Crowtail interfaces (HY2.0-4P connector), plug and play with various Crowtail sensor
Applications
Smart Home
Industrial Control
Medical Monitor
Home Appliance Display
Logistics Monitoring
Specifications
ESP32-S3 module with 16 MB Flash and 8 MB PSRAM
Wi-Fi Protocol: 802.11b/g/n (802.11n up to 150 Mbps) Wi-Fi Frequency Range: 2.402-2.483 Ghz
Support Bluetooth 5
With 4 Crowtail interfaces (HY2.0-4P connector) and onboard Micro TF card slot
3.5-inch TFT LCD RGB true color LCD screen with 320x480 resolution
Driver chip: ILI9488 (16-bit parallel line)
Capacitive touch panel controller IC FT6236 series
Operating Voltage: DC 5 V-500 mA
Sleep current:
USB power supply: 6.86 mA
Lithium battery power supply: 3.23 mA
LiPo Battery Interface: PH2.0
Operating temperature: -10°C ~ 65°C
Active Area: 73.63 x 49.79 mm (L x W)
Dimensions: 106 x 66 x 13 mm (L x W x H)
Included
1x 3.5-inch ESP RGB Display with Acrylic Shell
1x USB-C Cable
Downloads
Wiki
Schematic Diagram
16 learning Lessons for LVGL
Source code
Lesson code
LVGL Reference
ESP32-S3 Datasheet
ILI9488 Datasheet
Capacitive Touch Display Data
Differences between micro:bit v1 and micro:bit v2 The BBC micro:bit v2 is equipped with BLE Bluetooth 5.0 It has a Power off button(push and hold power button) MEMS microphone with a LED indicator Onboard speaker Touch-sensitive logo pin LED power indicator A notched edge connector for easier connections.
LILYGO T-Display ESP32 WiFi and Bluetooth Module Development Board 1.14-inch LCD Control BoardSpecifications
Chipset
Espressif-ESP32 240 MHz Xtensa single-/dual-core 32-bit LX6 microprocessor
Flash
QSPI flash 16 MB
SRAM
520 kB SRAM
Button
Reset
USB to TTL
CP2104
Modular interface
UART, SPI, SDIO, I²C, LED PWM, TV PWM, I²S, IRGPIO, ADC, capacitor touch sensor, DACLNA pre-amplifier
Display
IPS ST7789V 1.14 Inch
Working voltage
2.7-4.2 V
Working current
About 67 MA
Sleep current
About 350 uA
Working temperature range
-40°C ~ +85°C
Size & Weight
51.52 x 25.04 x 8.54 mm (7.81 g)
Power Supply
USB 5 V/1 A
Charging current
500 mA
Battery
3.7 V lithium battery
JST Connector
2-Pin 1.25 mm
USB
Type-C
WiFi
Standard
FCC/CE-RED/IC/TELEC/KCC/SRRC/NCC (ESP32 chip)
Protocol
802.11 b/g/n (802.11n, speed up to 150 Mbps) A-MPDU and A-MSDU polymerization, support 0.4μS Protection interval
Frequency range
2.4~2.5 GHz (2400~2483.5 M)
Transmit Power
22 dBm
Communication distance
300 m
Bluetooth
Protocol
Meet bluetooth v4.2BR/EDR and BLE standard
Radio frequency
With -97 dBm sensitivity NZIF receiver Class-1, Class-2 & Class-3 emitter AFH
Audio frequency
CVSD&SBC audio frequency
Software
Wi-Fi Mode
Station/SoftAP/SoftAP+Station/P2P
Security mechanism
WPA/WPA2/WPA2-Enterprise/WPS
Encryption Type
AES/RSA/ECC/SHA
Firmware upgrade
UART download/OTA (Through network/host to download and write firmware)
Software Development
Support cloud server development /SDK for user firmware development
Networking protocol
IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT
User Configuration
AT + Instruction set, cloud server, Android/iOS app
OS
FreeRTOS
Included
1x T-Display (16 MB)
1x Charging Cable
2x Pin
T-PicoC3 is LILYGO's first motherboard with dual MCUs – equipped with Raspberry Pi RP2040 and ESP32-C3 chip (supporting WiFi and Bluetooth).Specifications
MCU
RP2040 Dual ARM Cortex-M0+
Flash
4 MB
Programming language
C/C++, MicroPython
Support machine leraning library
TensorFlow Lite
Onboard functions
Buttons: IO06+IO07, battery power detection
1.14 inch ST7789V IPS LCD
Resolution
135 x 240
Display
Full-color TFT
Interface
4-Wire SPI
Power supply
3.3 V
Operating temperature
-20~70°C
Dimensions
2.4 x 5.3 cm (W x H)
DownloadsGitHub
LoRa-E5 Development Kit is an easy-to-use compact development toolset for you to unlock the powerful performance of the LoRa-E5 STM32WLE5JC. It consists of a LoRa-E5 Dev Board, an antenna (EU868), a USB type C cable, and a 2-AA 3 V Battery Holder. LoRa-E5 Dev Board embedded with LoRa-E5 STM32WLE5JC Module, which is the world-first combo of LoRa RF and MCU chip into one single tiny chip and is FCC and CE certified. It is powered by ARM Cortex-M4 core and Semtech SX126X LoRa chip, supports both LoRaWAN and LoRa protocol on the worldwide frequency and (G)FSK, BPSK, (G)MSK, and LoRa modulations. The LoRa-E5 development board features a very long transmission range, extremely low power consumption and user-friendly interfaces. LoRa-E5 Dev Board has a long-distance transmission range of LoRa-E5 up to 10 km in an open area. The sleep current of LoRa-E5 modules on board is as low as 2.1 uA (WOR mode). It is designed with industrial standards with a wide working temperature at -40℃ ~ 85℃, high sensitivity between -116.5 dBm ~ -136 dBm, and power output up to +20.8 dBm at 3.3 V. LoRa-E5 Dev Board also has rich interfaces. Developed to unlock the full functionality of the LoRa-E5 module, LoRa-E5 Dev Board has led out full 28 pins of LoRa-E5 and provides with rich interfaces including Grove connectors, RS-485 terminal, male/female pin headers for you to connect sensors and modules with different connectors and data protocols, saving your time on wire soldering. You could also easily power the board by connecting the battery holder with 2-AA batteries, enabling temporary use when lacking an external power source. It is a user-friendly board for easy testing and rapid prototyping. Specifications Size LoRa-E5 Dev Board: 85.6 x 54 mm Voltage (supply) 3-5 V (Battery) / 5 V (USB-C) Voltage (output) EN 3V3 / 5 V Power (output) Up to +20.8 dBm at 3.3 V Frequency EU868 Protocol LoRaWAN Sensitivity -116.5 dBm ~ -136 dBm Interfaces USB Type C / JST2.0 / 3x Grove (2x I²C/1x UART) / RS485 / SMA-K / IPEX Modulation LoRa, (G)FSK, (G)MSK, BPSK Working temperature -40℃ ~ 85℃ Current LoRa-E5 module sleep current as low as 2.1 uA (WOR mode) Included 1x LoRa-E5 Dev Board 1x Antenna (EU868) 1x USB Type C Cable (20 cm) 1x 2-AA 3 V Battery Holder
The ESP32-S3-DevKitC-1 is an entry-level development board equipped with ESP32-S3-WROOM-1U, a general-purpose Wi-Fi + Bluetooth Low Energy MCU module that integrates complete Wi-Fi and Bluetooth Low Energy functions.
Most of the I/O pins on the module are broken out to the pin headers on both sides of this board for easy interfacing. Developers can either connect peripherals with jumper wires or mount ESP32-S3-DevKitC-1 on a breadboard.
Features
Module integrated: ESP32-S3-WROOM-1U-N8R8
Flash: 8 MB QD
PSRAM: 8 MB OT
SPI voltage: 3.3 V
Specifications
ESP32-S3-WROOM-1U
ESP32-S3-WROOM-1U is a powerful, generic Wi-Fi + Bluetooth Low Energy MCU module that has a rich set of peripherals. It provides acceleration for neural network computing and signal processing workloads. ESP32-S3-WROOM-1U comes with an external antenna connector.
5 V to 3.3 V LDO
Power regulator that converts a 5 V supply into a 3.3 V output.
Pin Headers
All available GPIO pins (except for the SPI bus for flash) are broken out to the pin headers on the board for easy interfacing and programming.
USB-to-UART Port
A Micro-USB port used for power supply to the board, for flashing applications to the chip, as well as for communication with the chip via the on-board USB-to-UART bridge.
Boot Button
Download button. Holding down Boot and then pressing Reset initiates Firmware Download mode for downloading firmware through the serial port.
Reset Button
Press this button to restart the system.
USB Port
ESP32-S3 full-speed USB OTG interface, compliant with the USB 1.1 specification. The interface is used for power supply to the board, for flashing applications to the chip, for communication with the chip using USB 1.1 protocols, as well as for JTAG debugging.
USB-to-UART Bridge
Single USB-to-UART bridge chip provides transfer rates up to 3 Mbps.
RGB LED
Addressable RGB LED, driven by GPIO38.
3.3 V Power On LED
Turns on when the USB power is connected to the board.
Downloads
Pinout
GreatFET One is a hardware hacker’s best friend. With an extensible, open source design, two USB ports, and 100 expansion pins, GreatFET One is your essential gadget for hacking, making, and reverse engineering. By adding expansion boards called neighbors, you can turn GreatFET One into a USB peripheral that does almost anything.Whether you need an interface to an external chip, a logic analyzer, a debugger, or just a whole lot of pins to bit-bang, the versatile GreatFET One is the tool for you. Hi-Speed USB and a Python API allow GreatFET One to become your custom USB interface to the physical world.Features
Serial protocols: SPI, I²C, UART, and JTAG
Programmable digital I/O
Analog I/O (ADC/DAC)
Logic analysis
Debugging
Data acquisition
Four LEDs
Versatile USB functions
High-throughput hardware-assisted streaming serial engine
Downloads
Documentation
GitHub
The T-Journal is a cheap ESP32 Camera Development Board that features an OV2640 camera, an antenna, a 0.91 inch OLED display, some exposed GPIOs, and a micro-USB interface. It makes it easy and quick to upload code to the board. Specifications Chipset Expressif-ESP32-PCIO-D4 240 MHz Xtensa single-/dual-core 32-bit LX6 microprocessor FLASH QSPI flash/SRAM, up to 4x 16 MB SRAM 520 kB SRAM KEY reset, IO32 Display 0.91' SSD1306 Power indicator lamp red USB to TTL CP2104 Camera OV2640, 2 Megapixel Steering engine analog servo On-board clock 40 MHz crystal oscillator Working voltage 2.3-3.6 V Working current about 160 mA Working temperature range -40℃ ~ +85℃ Size 64.57 x 23.98 mm Power Supply USB 5 V/1 A Charging current 1 A Battery 3.7 V lithium battery WiFi Standard FCC/CE/TELEC/KCC/SRRC/NCC (ESP32-chip) Protocol 802.11 b/g/n/e/i (802.11n, speed up to 150 Mbps) A-MPDU and A-MSDU polymerization, support 0.4 μS Protection interval Frequency range 2.4 GHz~2.5 GHz (2400 M ~ 2483.5 M) Transmit Power 22 dBm Communication distance 300m Bluetooth Protocol meet bluetooth v4.2BR/EDR and BLE standard Radio frequency with -98 dBm sensitivity NZIF receiver Class-1, Class-2 & Class-3 emitter AFH Audio frequency CVSD & SBC audio frequency Software Wifi Mode Station/SoftAP/SoftAP+Station/P2P Security mechanism WPA/WPA2/WPA2-Enterprise/WPS Encryption Type AES/RSA/ECC/SHA Firmware upgrade UART download/OTA (Through network/host to download and write firmware) Software Development Support cloud server development /SDK for user firmware development Networking protocol IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT User Configuration AT + Instruction set, cloud server, Android/iOS app OS FreeRTOS Included 1x ESP32 Camera Module (Fish-eye Lens) 1x Wi-Fi Antenna 1x Power Line Downloads Camera library for Arduino
BeagleY-AI is a low-cost, open-source, and powerful 64-bit quad-core single-board computer, equipped with a GPU, DSP, and vision/deep learning accelerators, designed for developers and makers.
Users can take advantage of BeagleBoard.org's provided Debian Linux software images, which include a built-in development environment. This enables the seamless running of AI applications on a dedicated 4 TOPS co-processor, while simultaneously handling real-time I/O tasks with an 800 MHz microcontroller.
BeagleY-AI is designed to meet the needs of both professional developers and educational environments. It is affordable, easy to use, and open-source, removing barriers to innovation. Developers can explore in-depth lessons or push practical applications to their limits without restriction.
Specifications
Processor
TI AM67 with quad-core 64-bit Arm Cortex-A53, GPU, DSP, and vision/deep learning accelerators
RAM
4 GB LPDDR4
Wi-Fi
BeagleBoard BM3301 module based on TI CC3301 (802.11ax Wi-Fi)
Bluetooth
Bluetooth Low Energy 5.4 (BLE)
USB
• 4x USB-A 3.0 supporting simultaneous 5 Gbps operation• 1x USB-C 2.0 supports USB 2.0 device
Ethernet
Gigabit Ethernet, with PoE+ support (requires separate PoE+ HAT)
Camera/Display
1x 4-lane MIPI camera/display transceivers, 1x 4-lane MIPI camera
Display Output
1x HDMI display, 1x OLDI display
Real-time Clock (RTC)
Supports an external button battery for power failure time retention. It is only populated on EVT samples.
Debug UART
1x 3-pin debug UART
Power
5 V/5 A DC power via USB-C, with Power Delivery support
Power Button
On/Off included
PCIe Interface
PCI-Express Gen3 x1 interface for fast peripherals (requires separate M.2 HAT or other adapter)
Expansion Connector
40-pin header
Fan connector
1x 4-pin fan connector, supports PWM speed control and speed measurement
Storage
microSD card slot, with support for high-speed SDR104 mode
Tag Connect
1x JTAG, 1x Tag Connect for PMIC NVM Programming
Downloads
Pinout
Documentation
Quick start
Software
This development board (also known as "Cheap Yellow Display") is powered by the ESP-WROOM-32, a dual-core MCU with integrated Wi-Fi and Bluetooth capabilities. It operates at a main frequency of up to 240 MHz, with 520 KB SRAM, 448 KBROM, and a 4 MB Flash memory. The board features a 2.8-inch display with a resolution of 240x320 and resistive touch.
Furthermore, the board includes a backlight control circuit, touch control circuit, speaker drive circuit, photosensitive circuit, and RGB-LED control circuit. It also provides a TF card slot, serial interface, DHT11 temperature and humidity sensor interface, and additional IO ports.
The module supports development in Arduino IDE, ESP-IDE, MicroPython, and Mixly.
Applications
Image transmission for Smart Home device
Wireless monitoring
Smart agriculture
QR wireless recognition
Wireless positioning system signal
And other IoT applications
Specifications
Microcontroller
ESP-WROOM-32 (Dual-core MCU with integrated Wi-Fi and Bluetooth)
Frequency
Up to 240 MHz (computing power is up to 600 DMIPS)
SRAM
520 KB
ROM
448 KB
Flash
4 MB
Operating voltage
5 V
Power consumption
approx. 115 mA
Display
2.8-inch color TFT screen (240x320)
Touch
Resistive Touch
Driver chip
ILI9341
Dimensions
50 x 86 mm
Weight
50 g
Included
1x ESP32 Dev Board with 2.8" Display and acrylic Shell
1x Touch pen
1x Connector cable
1x USB cable
Downloads
GitHub
The LILYGO TTGO T-Display-GD32 is a compact and minimalist development board featuring a powerful GD32VF103CBT6 RISC-V microcontroller.
Ideal for IoT applications, wearables, and rapid prototyping, it provides versatile connectivity options like GPIO, SPI, UART, and I²C interfaces. Thanks to its efficient RISC-V architecture and clear, high-quality screen, this board is perfect for small projects requiring graphical interfaces or data visualization in a space-saving form factor.
Specifications
Chipset
GD32VF103CBT6
FLASH
128 kB
SRAM
32 kB
On-board clock
108 MHz crystal oscillator
Working Voltage
2.7-3.6 V
Button
BOOT - RESET
LCD
ST7789 1.14" IPS 240 x 135
USB to TTL
CP2104
Modular interface
TIMER, UART, SPI, I²C, PWM, ADC, DAC, CAN, USBOTG
Working Temperature Range
−40~85°C
Peripheral
Button, RGB LED, SD slot, LCD
Power Supply Input
USB 5 V @ 1 A
Charging Current
500 mA
Battery Input
3.7-4.2 V
USB
USB-C
Dimensions
51.49 x 25.2 x 10 mm
Weight
10 g
Downloads
GitHub