The Raspberry Pi AI Camera is a compact camera module based on the Sony IMX500 Intelligent Vision Sensor. The IMX500 combines a 12 MP CMOS image sensor with on-board inferencing acceleration for various common neural network models, allowing users to develop sophisticated vision-based AI applications without requiring a separate accelerator.
The AI Camera enhances captured still images or video with tensor metadata, while keeping the Raspberry Pi's processor free for other tasks. Support for tensor metadata in the libcamera and Picamera2 libraries, as well as the rpicam-apps application suite, ensures ease of use for beginners while providing unparalleled power and flexibility for advanced users.
The Raspberry Pi AI Camera is compatible with all Raspberry Pi models.
Features
12 MP Sony IMX500 Intelligent Vision Sensor
Sensor modes: 4056x3040 (@ 10fps), 2028x1520 (@ 30fps)
1.55 x 1.55 µm cell size
78-degree field of view with manually adjustable focus
Integrated RP2040 for neural network and firmware management
Specifications
Sensor
Sony IMX500
Resolution
12.3 MP (4056 x 3040 pixels)
Sensor size
7.857 mm (type 1/2.3)
Pixel size
1.55 x 1.55 μm
IR cut filter
Integrated
Autofocus
Manual adjustable focus
Focus range
20 cm – ∞
Focal length
4.74 mm
Horizontal FOV
66 ±3°
Vertical FOV
52.3 ±3°
Focal ratio (F-stop)
F1.79
Output
Image (Bayer RAW10), ISP output (YUV/RGB), ROI, metadata
Input tensor maximum size
640 x 640 (H x V)
Framerate
• 2x2 binned: 2028x1520 10-bit 30fps• Full resolution: 4056x3040 10-bit 10fps
Ribbon cable length
20 cm
Cable connector
15 x 1 mm FPC or 22 x 0.5 mm FPC
Dimensions
25 x 24 x 11.9 mm
Downloads
Datasheet
Documentation
The PTS200 is a powerful, ESP32-controlled portable smart soldering iron with an adjustable output power range of 18 to 100 W. Paired with a 100-watt power supply and a 4-ohm soldering tip, this soldering iron eliminates the need for a traditional soldering station, fully meeting the demands of various soldering tasks. It features 4 adjustable operating voltages, allowing it to be configured for different power sources.
Features
100 W Power Output: Experience rapid heating with a powerful 100 W output, reaching 450°C (842°F) in just 8 seconds for quick and efficient soldering.
Universal Tip Compatibility: Compatible with T12/TS100/TS101 tips, making the PTS200 adaptable to a wide range of soldering tasks.
Fast Charging Protocols: Supports PD3.0 and QC2.0/QC3.0, enabling power from fast charging adapters or power banks, ideal for soldering on the go.
Automatic Sleep Function: Extends the lifespan of the soldering tips. The superfast wake-up feature ensures the soldering iron is always ready when needed.
Ergonomic Design: Crafted with a CNC-machined metal body, the PTS200 offers both ergonomic comfort and reliable heat dissipation.
Specifications
Output Power
18-100 W
Input Voltage (adjustable)
• 9 V/2 A• 12 V/1.5 A• 15 V/3 A• 20 V/5 A
Temperature Range
50-450°C (122-842°F)
Heating Time
8 seconds
Temperature Stability
±2%
Microcontroller
ESP32-S2
Display
0.96" OLED (128 x 64 pixels)
Power Supply
USB-C
Special Features
• Automatic sleep• CNC metal shell• Compatible with T12/TS101/TS100/Pinecil soldering tips• 20 V/5 A (100 W maximum power)
Included
PTS200 Soldering Iron
Soldering tip BC2 (4 Ω)
Soldering tip K (4 Ω)
Soldering tip B2 (4 Ω)
Soldering tip I (4 Ω)
100 W power supply (EU)
USB-C cable
Software
Firmware
This versatile microscope covers a wide magnification range (60-240x, 18-720x, 1560-2040x) with 3 lenses. With this digital microscope, you can examine plants, insects, gems and coins, or do electronic work such as repairing or making circuit boards.
Specifications
AD246S-M
AD249S-M
Magnification
Lens A
18-720
18-720
Focus range
12-320 mm
12-320 mm
Lens D
1800-2040
1800-2040
Focus range
4-5 mm
4-5 mm
Lens L
60-240
60-240
Focus range
90-300 mm
90-300 mm
Screen size
7 inch (17.8 cm)
10 inch (25.7 cm)
Video resolution (max.)
UHD 2880x2160 (24fps)
UHD 2880x2160 (24fps)
Video format
MP4
MP4
Photo format
JPG
JPG
Photo resolution
5600x2400 (with interpolation)
5600x2400 (with interpolation)
Frame rate
Max. 120fps
Max. 120fps
HDMI output
Yes (support dual-screen display)
Yes (only HDMI monitor displays)
PC output
Yes
Yes
Stand size
20 x 18 x 30 cm
20 x 18 x 30 cm
Included
1x Andonstar AD249S-M Digital Microscope
3x Lenses (A, D & L)
1x Slide holder
1x 32 GB microSD card
1x USB cable
1x Switch cable
1x HDMI cable
1x Remote control
5x Prepared Slides
1x Observation box
1x Tweezers
1x Manual
Downloads
Manual
Software
The TV-B-Gone universal remote control allows you to turn virtually any TV On or OFF. You control when you see TV, rather than what you see. The TV-B-Gone Keychain remote is so small that it easily fits in your pocket so that you have it handy whenever you need it, wherever you go: bars, restaurants, laundromats, ballparks, arenas, etc.The TV-B-Gone Kit is a great way to teach about electronics. When soldered together, it allows you to turn off almost any television within 150 feet or more. It works on over 230 total power codes – 115 American/Asian and another 115 European codes. You can select which zone you want during kit assembly.This is an unassembled kit which means that soldering and assembly is required – but it’s very easy and a great introduction to soldering in general.This kit makes the popular TV-B-Gone remote more fun because you created it yourself with some basic soldering and assembly! Show your friends and family how technologically savvy you are, and entertain them with the power of the TV-B-Gone!The kit is powered by 2x AA batteries and the output comes from 2x narrow beam IR LEDs and 2x wide-beam IR LEDs.IncludedAll required parts/componentsRequiredTools, soldering iron, and batteriesDownloadsGitHub
This 830 tie-point breadboard is a must-have for prototyping and electronics experiments. It offers a solderless solution for building and testing circuits quickly and easily. With a standard layout, it includes two power rails on each side and 630 tie points in the main grid area.
Specifications
Terminal strip, tie-point 630
Distribution strips, tie-point 200
Solderless breadboard (MB-102)
Wire size: Suitable for 20-29 AWG wires, jumper wire of 0.8 mm diameter
Material: ABS. Transparent material
Brand new and high quality
They allow electronic components to be interconnected in an almost endless number of ways to produce working circuits
Because no soldering is required, modifying or revising the circuits can be done quite easily
The breadboard consists of a set of formed metal sockets inserted into a durable plastic housing
Phosphor bronze nickel plated spring clips
Adhesive sheet on the bottom of the board
Dimensions: 165 x 53 x 8.5 mm
For Speed, Area, Power, and Reliability
This book teaches the fundamentals of FPGA operation, covering basic CMOS transistor theory to designing digital FPGA chips using LUTs, flip-flops, and embedded memories. Ideal for electrical engineers aiming to design large digital chips using FPGA technology.
Discover:
The inner workings of FPGA architecture and functionality.
Hardware Description Languages (HDL) like Verilog and VHDL.
The EDA tool flow for converting HDL source into a functional FPGA chip design.
Insider tips for reliable, low power, and high performance FPGA designs.
Example designs include:
Computer-to-FPGA UART serial communication.
An open-source Sump3 logic analyzer implementation.
A fully functional graphics controller.
What you need:
Digilent BASYS3 or similar FPGA eval board with an AMD/Xilinx FPGA.
Vivado EDA tool suite (available for download from AMD website free of charge).
Project source files available from author’s GitHub site.
Understanding and Using Them Effectively
What happens in electronics is invisible to the naked eye. The instrument that allows to accurately visualize electrical signals, the one through which the effects of electronics become apparent to us, is the oscilloscope.
Alas, when one first ventures into electronics, it is often without an oscilloscope. And one is left fumbling, both physically and mentally. Observing an electrical signal on a screen for the first time is a revelation. Nobody wishes to forgo that marvel again. There is no turning back.
In electronics, if one wishes to progress with both enjoyment and understanding, an oscilloscope is essential. This marks the beginning of a period of questioning: how to choose one? And no sooner is that question answered than a whole string of others arises, which can be summed up in just one: how does one use the oscilloscope in such a way that what it displays truly reflects the reality of the signals?
Rémy Mallard is a passionate communicator with a gift for making complex technical subjects understandable and engaging. In this book, he provides clear answers to essential questions about using an oscilloscope and offers a wealth of guidance to help readers explore and understand the electrical signals behind electronic systems. With his accessible style and practical insights, this book is a valuable tool for anyone eager to deepen their understanding of electronics.
The Throwing Star LAN Tap Pro is a passive Ethernet tap, requiring no power for operation. There are active methods of tapping Ethernet connections (e.g., a mirror port on a switch), but none can beat passive taps for portability. To the target network, the Throwing Star LAN Tap looks just like a section of cable, but the wires in the cable extend to the monitoring ports in addition to connecting one target port to the other.The monitoring ports (J3 and J4) are receive-only; they connect to the receive data lines on the monitoring station but do not connect to the station’s transmit lines. This makes it impossible for the monitoring station to accidentally transmit data packets onto the target network.The Throwing Star LAN Tap Pro is designed to monitor 10BASET and 100BASETX networks. It is not possible for an unpowered tap to perform monitoring of 1000BASET (Gigabit Ethernet) networks, so the Throwing Star LAN Tap intentionally degrades the quality of 1000BASET target networks, forcing them to negotiate a lower speed (typically 100BASETX) that can be passively monitored. This is the purpose of the two capacitors (C1 and C2).Like all passive LAN Taps, the Throwing Star LAN Tap Pro degrades signal quality to some extent. Except as described above for Gigabit networks, this rarely causes problems on the target network. In situations where very long cables are in use, the signal degradation could reduce network performance. It is a good practice to use cables that are not any longer than necessary.DownloadsOpen source design files
The ESP32-C3 chip has industry-leading low-power performance and radio frequency performance, and supports Wi-Fi IEEE802.11b/g/n protocol and BLE 5.0. The chip is equipped with a RISC-V 32-bit single-core processor with an operating frequency of up to 160 MHz. Support secondary development without using other microcontrollers or processors. The chip has built-in 400 KB SRAM, 384 KB ROM, 8 KB RTC SRAM, built-in 4 MB Flash also supports external Flash. The chip supports a variety of low power consumption working states, which can meet the power consumption requirements of various application scenarios. The chip's unique features such as fine clock gating function, dynamic voltage clock frequency adjustment function, and RF output power adjustable function can achieve the best balance between communication distance, communication rate and power consumption. The ESP-C3-12F module provides a wealth of peripheral interfaces, including UART, PWM, SPI, I²S, I²C, ADC, temperature sensor and up to 15 GPIOs. Features Support Wi-Fi 802.11b/g/n, 1T1R mode data rate up to 150 Mbps Support BLE5.0, does not support classic Bluetooth, rate support: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps RISC-V 32-bit single-core processor, supports a clock frequency of up to 160 MHz, has 400 KB SRAM, 384 KB ROM, 8 KB RTC SRAM Support UART/PWM/GPIO/ADC/I²C/I²S interface, support temperature sensor, pulse counter The development board has RGB three-in-one lamp beads, which is convenient for the second development of customers. Support multiple sleep modes, deep sleep current is less than 5 uA Serial port rate up to 5 Mbps Support STA/AP/STA+AP mode and promiscuous mode Support Smart Config (APP)/AirKiss (WeChat) of Android and iOS, one-click network configuration Support serial port local upgrade and remote firmware upgrade (FOTA) General AT commands can be used quickly Support secondary development, integrated Windows and Linux development environment About Flash configuration ESP-C3-12F uses the built-in 4 MB Flash of the chip by default, and supports the external Flash version of the chip.
The Elektor Super Servo Tester can control servos and measure servo signals. It can test up to four servo channels at the same time.
The Super Servo Tester comes as a kit. All the parts required to assemble the Super Servo Tester are included in the kit. Assembling the kit requires basic soldering skills. The microcontroller is already programmed.
The Super Servo Tester features two operating modes: Control/Manual and Measure/Inputs.
In Control/Manual mode the Super Servo Tester generates control signals on its outputs for up to four servos or for the flight controller or ESC. The signals are controlled by the four potentiometers.
In Measure/Inputs the Super Servo Tester measures the servo signals connected to its inputs. These signals may come from for instance an ESC, a flight controller, or the receiver or another device. The signals are also routed to the outputs to control the servos or the flight controller or ESC. The results are shown on the display.
Specifications
Operating modes
Control/Manual & Measure/Inputs
Channels
3
Servo signal inputs
4
Servo signal outputs
4
Alarm
Buzzer & LED
Display
0.96' OLED (128 x 32 pixels)
Input voltage on K5
7-12 VDC
Input voltage on K1
5-7.5 VDC
Input current
30 mA (9 VDC on K5, nothing connected to K1 and K2)
Dimensions
113 x 66 x 25 mm
Weight
60 g
Included
Resistors (0.25 W)
R1, R3
1 kΩ, 5%
R2, R4, R5, R6, R7, R9, R10
10 kΩ, 5%
R8
22 Ω, 5%
P1, P2, P3, P4
10 kΩ, lin/B, vertical potentiometer
Capacitors
C1
100 µF 16 V
C2
10 µF 25 V
C3, C4, C7
100 nF
C5, C6
22 pF
Semiconductors
D1
1N5817
D2
LM385Z-2.5
D3
BZX79-C5V1
IC1
7805
IC2
ATmega328P-PU, programmed
LED1
LED, 3 mm, red
T1
2N7000
Miscellaneous
BUZ1
Piezo buzzer with oscillator
K1, K2
2-row, 12-way pinheader, 90°
K5
Barrel jack
K4
1-row, 4-way pin socket
K3
2-row, 6-way boxed pinheader
S1
Slide switch DPDT
S2
Slide switch SPDT
X1
Crystal, 16 MHz
28-way DIP socket for IC2
Elektor PCB
OLED display, 0.96', 128 x 32 pixels, 4-pin I²C interface
Links
Elektor Magazine
Elektor Labs
Differences between micro:bit v1 and micro:bit v2 The BBC micro:bit v2 is equipped with BLE Bluetooth 5.0 It has a Power off button(push and hold power button) MEMS microphone with a LED indicator Onboard speaker Touch-sensitive logo pin LED power indicator A notched edge connector for easier connections.
ESP32-DevKitC is a low-footprint and entry-level development board that is part of the ESP32 series. This board has a rich peripheral set. The built-in ESP32 pinout is optimized for hassle-free prototyping! Wi-Fi & Bluetooth Connectivity This minimum-system development board is powered by an ESP32 module. It integrates Wi-Fi and Bluetooth functions, and provides a rich peripheral set for rapid prototyping! Rapid Prototyping ESP32-DevKitC achieves optimal RF performance. You can get right into application design and development, without worrying about RF performance and antenna design. ESP32-DevKitC has your basic system-requirements already covered. Just plug in the USB cable and you are ready to go! Flexible and Feature-Rich ESP32-DevKitC contains the entire support circuitry of ESP32-WROOM series, ESP32-WROVER series, and ESP32-SOLO series of modules, also including a USB-UART bridge, reset- and boot-mode buttons, an LDO regulator and a micro-USB connector. Every important GPIO is available to the developer. Breadboard-Friendly The ESP32-DevKitC pinout is optimized to enable prototyping on a breadboard. The on-board LDO output is led out for powering up additional off-board electronics. Peripheral outputs are grouped together for hassle-free prototyping. Specifications Board ESP32-DevKitC-32E Related Module ESP32-WROOM-32E Flash Memory 4 MB Antenna PCB Downloads Datasheet
The ETH-USB-Hub-Box is a Hub kit with ETH/USB Hub HAT (B) inside. It is tailored for Raspberry Pi Zero series, small in size, each cut-out of the case is exactly aligned with the connector. The case adopts classic Raspberry Pi red/white color combination, with quality dull polish surface, effectively keeping the Zero away from dust. This Hub Box will provide RJ45 Ethernet port and more USB capability for your Zero, make it easy to connect the Internet and sorts of USB devices.
Features
Designed for Raspberry Pi Zero, compatible with Zero series boards
3x extended USB ports, compatible with USB 2.0 / 1.1
Incorporates RTL8152B Ethernet chip, supports 1x RJ45 Ethernet port, 10/100M auto-negotiation
Pogo pin design, for direct connecting with Raspberry Pi Zero/Zero W/Zero WH
Angle rounded design, smooth hand feeling, 'simple snap' case lid
Quality ABS material, dull polish surface, anti-fingerprint
Comes with two different lids, changing as you like
Included
1x ETH/USB Hub HAT (B)
1x ABS case
4x Rubber feets
1x Screws pack
1x Screwdriver
Downloads
Documentation
The Raspberry Pi Pico 2 W is a microcontroller board based on the RP2350 featuring 2.4 GHz 802.11n wireless LAN and Bluetooth 5.2. It gives you even more flexibility in your IoT or smart product designs and expanding the possibilities for your projects.
The RP2350 provides a comprehensive security architecture built around Arm TrustZone for Cortex-M. It incorporates signed boot, 8 KB of antifuse OTP for key storage, SHA-256 acceleration, a hardware TRNG, and fast glitch detectors.
The unique dual-core, dual-architecture capability of the RP2350 allows users to choose between a pair of industry-standard Arm Cortex-M33 cores and a pair of open-hardware Hazard3 RISC-V cores. Programmable in C/C++ and Python, and supported by detailed documentation, the Raspberry Pi Pico 2 W is the ideal microcontroller board for both enthusiasts and professional developers.
Specifications
CPU
Dual Arm Cortex-M33 or dual RISC-V Hazard3 processors @ 150 MHz
Wireless
On-board Infineon CYW43439 single-band 2.4 GHz 802.11n wireless Lan and Bluetooth 5.2
Memory
520 KB on-chip SRAM; 4 MB on-board QSPI flash
Interfaces
26 multi-purpose GPIO pins, including 4 that can be used for AD
Peripherals
2x UART
2x SPI controllers
2x I²C controllers
24x PWM channels
1x USB 1.1 controller and PHY, with host and device support
12x PIO state machines
Input power
1.8-5.5 V DC
Dimensions
21 x 51 mm
Downloads
Datasheet
Pinout
Schematic
The default configuration holds a mini breadboard (included), an SD card adapter, 2x micro SD cards, 2x USB devices, a micro-USB shim and of course the Raspberry Pi Zero itself.
Users can decide to use the micro-USB shim slot to hold a micro-HDMI adapter, or you may want to hold a Portsplus or similar GPIO reference card in the SD adapter slot. You can choose to store your USB micro-SD card reader or even other larger USB devices such as the USBDoctor. Use it in whatever way works best for you.
All of the Raspberry Pi Zero ports are accessible from the ZeroDock, including the camera port and reset/composite pin header. pHATs are also not obstructed, so you’re free to prototype with your favourite add-on boards.
The case is a stylish mix of clear and black acrylic layers, black fixings and a clear breadboard, fitting in well alongside most desktop PCs/monitors.
Assembly guide available here.
Kit includes
4 layer laser-cut acrylic case
Case and Raspberry Pi fixings
Mini breadboard
Learn programming for Alexa devices, extend it to smart home devices and control the Raspberry Pi
The book is split into two parts: the first part covers creating Alexa skills and the second part, designing Internet of Things and Smart Home devices using a Raspberry Pi.
The first chapters describe the process of Alexa communication, opening an Amazon account and creating a skill for free. The operation of an Alexa skill and terminology such as utterances, intents, slots, and conversations are explained. Debugging your code, saving user data between sessions, S3 data storage and Dynamo DB database are discussed.
In-skill purchasing, enabling users to buy items for your skill as well as certification and publication is outlined. Creating skills using AWS Lambda and ASK CLI is covered, along with the Visual Studio code editor and local debugging. Also covered is the process of designing skills for visual displays and interactive touch designs using Alexa Presentation Language.
The second half of the book starts by creating a Raspberry Pi IoT 'thing' to control a robot from your Alexa device. This covers security issues and methods of sending and receiving MQTT messages between an Alexa device and the Raspberry Pi.
Creating a smart home device is described including forming a security profile, linking with Amazon, and writing a Lambda function that gets triggered by an Alexa skill. Device discovery and on/off control is demonstrated.
Next, readers discover how to control a smart home Raspberry Pi display from an Alexa skill using Simple Queue Service (SQS) messaging to switch the display on and off or change the color.
A node-RED design is discussed from the basic user interface right up to configuring MQTT nodes. MQTT messages sent from a user are displayed on a Raspberry Pi.
A chapter discusses sending a proactive notification such as a weather alert from a Raspberry Pi to an Alexa device. The book concludes by explaining how to create Raspberry Pi as a stand-alone Alexa device.
This 0.96-inch monochrome graphical OLED display, with a resolution of 128 x 32 pixels, is mounted on a 28 x 28 mm PCB. The active display area is 11 x 23 mm. It includes a 4-pin connector that supports the I²C bus (with SCL and SDA signals). The display is compatible with both 5 V and 3.3 V applications.
Specifications
Display size: 0.96"
Resolution: 128 x 32 pixels
Board size: 28 x 28 mm
Effective display surface: 11 x 23 mm
Visual angle: >160°
Input voltage: 3.3 V ~ 6 V
Wide voltage support: 3.3 V, 5 V
Viewing angle: >160°
Drive IC: SSD1306
Operating temperature: -30 to 80°C
I²C
Signals: SCL, SDA
I²C address: 0x78 (or 0x3c, default) or 0x7a (or 0x3d).
Note: I²C addresses can (unfortunately) be specified in two ways: including R/W bit or not. Therefore 0x78 (0x7a) including the R/W bit is equal to 0x3c (0x3d) without R/W bit.
OLED Advantages
Smaller volume
Ultra-low power consumption
High Contrast
Display dot self-luminous
Wide voltage support
Warning: The display’s glass is fragile, please be careful while handling it. If the glass is broken, the screen will not work well.
ILI9341 is a 262144-color single-chip SOC driver for a TFT liquid crystal display with resolution of 240x320 dots (RGB), comprising a 720-channel source driver, a 320-channel gate driver, 172800 bytes GRAM for graphic display data of 240x320 dots (RGB), and power supply circuit.ILI9341 supports parallel 8-/9-/16-/18-bit data bus MCU interface, 6-/16-/18-bit data bus RGB interface and 3-/4-line serial peripheral interface (SPI).The moving picture area can be specified in internal GRAM by window address function. The specified window area can be updated selectively, so that moving picture can be displayed simultaneously independent of still picture area.ILI9341 can operate with 1.65V ~ 3.3V I/O interface voltage and an incorporated voltage follower circuit to generate voltage levels for driving an LCD.ILI9341 supports full color, 8-color display mode and sleep mode for precise power control by software and these features make the ILI9341 an ideal LCD driver for medium or small size portable products such as digital cellular phones, smart phone, MP3 and PMP where long battery life is a major concern.Features
Display resolution: 240 x 320 (RGB)
Output: 720 source outputs | 320 gate outputs | Common electrode output (VCOM)
a-TFT LCD driver with on-chip full display RAM: 172,800 bytes
System Interface
8-bits, 9-bits, 16-bits, 18-bits interface with 8080-Ⅰ/8080- Ⅱ series MCU
6-bits, 16-bits, 18-bits RGB interface with graphic controller
3-line / 4-line serial interface
Display mode:
Full color mode (Idle mode OFF): 262K-color
Reduced color mode (Idle mode ON): 8-color
Power saving modes:
Sleep mode
Deep standby mode
On chip functions:
VCOM generator and adjustment
Timing generator
Oscillator
DC/DC converter
Line/frame inversion
1 preset Gamma curve with separate RGB Gamma correction
Content Adaptive Brightness Control
MTP (3 times):
8-bits for ID1, ID2, ID3
7-bits for VCOM adjustment
Low-power consumption architecture
Low operating power supplies:
VDDI = 1.65V ~ 3.3V (logic)
VCI = 2.5V ~ 3.3V (analog)
LCD Voltage drive:
Source/VCOM power supply voltage
AVDD - GND = 4.5V ~ 5.5V
VCL - GND = -2.0V ~ -3.0V
Gate driver output voltage
VGH - GND = 10.0V ~ 20.0V
VGL - GND = -5.0V ~ -15.0V
VGH - VGL 3 ≦ 2V
VCOM driver output voltage
VCOMH = 3.0V ~ (AVDD – 0.5)V
VCOML = (VCL+0.5)V ~ 0V
VCOMH - VCOML ≦ 6.0V
Operate temperature range: -40℃ to 85℃
The FNIRSI S1 portable digital multimeter can accurately measure AC/DC voltage, resistance, NCV, diode, continuity, capacitance, temperature, frequency and live wire. It is a really useful tool for solving electrical issues in industry and the home. It is suitable for household sockets, fuses, batteries (including vehicles), troubleshooting automotive circuits, charging systems, testing electronics in cars, etc.
Smart Multimeter
The multimeter can automatically detect AC/DC voltage, resistance and continuity, which is suitable for both beginners and professionals.
Specifications
AC voltage
0~1000 V
±(0.8% +3)
DC voltage
0~1000 V
±(0.8% +3)
Resistance
0~100 MΩ
±(1.2% +3)
Capacitance
0 nF~10 mF
±(4.5% +5)
Frequency
0 Hz~10 Mhz
±(0.1% +3)
Temperature
−20~1000°C
±(2% +5)
Diode
Yes
Automatic OFF
Yes
Lighting
Yes
On-off buzzer
Yes
Auto range
Yes
NCV induced voltage
Yes
Live mode
Yes
Data hold
Yes
Analog
Yes
Low voltage indication
Yes
Max range
9999 counts
Valid value
50 Hz~1 kHz
Material
ABS
Display
VA color screen
Power supply
via USB-C (1000 mA rechargeable lithium battery)
Dimensions
143 x 75 x 19 mm
Weight
135 g
Included
FNIRSI S1 Multimeter
Tip table pen
Temperature probe
USB cable
Manual
Downloads
Manual
DC brushed motors are the most commonly used and widely available motors in the market. The Cytron 10 Amp 5-30 V DC Motor Driver will help you add functionality to your DC motor. It supports both sign-magnitude PWM signal and locked-antiphase. It is compatible with full solid-state components resulting in higher response time and eliminates the wear and tear of the mechanical relay. Features Supports motor voltage from 5 V to 30 V DC Current up to 13 A continuous and 30 A peak 3.3 V and 5 V logic level input Compatible with Arduino and Raspberry Pi Speed control PWM frequency up to 20 kHz Fully NMOS H-Bridge for better efficiency No heat sink is required Bi-directional control for one Brushed DC motor Regenerative Braking Downloads User Manual Arduino Library
Solderless breadboard labelled for the Raspberry Pi Pico It can be tricky to work out which pin is which when the Raspberry Pi Pico is attached to solderless breadboard. The MonkMakes Breadboard for Pico solves this problem by labelling the Pico pins on the 400 point solderless breadboard. Features 400 tie point 2 power busses Size: 8.2 x 5.5 x 0.85 cm Self-adhesive back
The OWON XDM2041 is a low-cost, high-precision benchtop multimeter. The meter has a True RMS function to measure the AC voltage and current and it has a reading speed of up to 65 values per second. Also, the XDM2041 is equipped with functions such as measuring 2-wire and 4-wire resistance.
The XDM2041 is able to store data internally in the memory of the meter and display it on the 3.7" high-resolution LCD display. Up to 1000 points can be stored and the time interval can be varied from 15ms to 9999s. By means of the RS232 port on the back of the device, the meter can be programmed and controlled via SCPI.
Specifications
Measurement Range
Resolution
Accuracy ±(% of reading + LSB)
DC Voltage
50.000mV
0.001mV
0.1%+10
500.00mV
0.01mV
0.025%+5
5.0000V
0.0001V
0.025%+5
50.000V
0.001V
0.03%+5
500.00V
0.01V
0.1%+5
1000.0V
0.1V
0.1%+5
AC Voltage
500mv-750v
20Hz~45Hz
1%+30
45Hz~65Hz
0.5%+30
65Hz~1KHz
0.7%+30
DC Current
500uA
0.01uA
0.15%+20
5000uA
0.1uA
0.15%+10
50mA
0.001mA
0.15%+20
500mA
0.01mA
0.15%+10
5A
0.0001A
0.5%+10
10A
0.001A
0.5%+10
AC Current
500uA-500mA
20 Hz-1 kHz
0.5%+20
5A-10A
1.5%+20
Resistance
500Ω
0.01Ω
0.1%+10
5KΩ
0.0001KΩ
0.1%+5
50KΩ
0.001KΩ
0.1%+5
500KΩ
0.01KΩ
0.1%+5
5MΩ
0.0001MΩ
0.25%+5
50MΩ
0.001MΩ
0.1%+10
Four-wire resistance
500Ω
0.01Ω
0.1%+10
5KΩ
0.0001KΩ
0.1%+5
50KΩ
0.001KΩ
0.1%+5
Measurement Range
Resolution
Accuracy ±(% of reading + % of range)
Frequency
10.000Hz-60MHz
/
±(0.2%+8)
Capacitance
50nF-500uF
/
2.5%+5
5mF-50mF
5%+8
Diode
3.0000 V
0.0001V
/
Continuity
1000 Ω
0.1Ω
/
Temperature
K type,PT100
Display
55,000
Data-logging Function
Logging Duration
15ms-9999s
Logging Length
1,000 points
Included
1x OWON XDM2041 Multimeter
2x Multimeter leads
2x Alligator clips
1x Fuse
1x Manual
Downloads
User manual
Programming manual
PC software