The Zero Delay Encoder Encoder makes it simple to attach your own arcade joysticks and buttons, and to connect to the Raspberry, PC or other devices. Create your own controller and enjoy your games without any compromises or control your robot project according to your ideas. Features Compatible with Linux, Windows, MAME and other common emulators and systems. Complete controller base with all cables included Supports up to 12 buttons Auto, Fire and Turbo modes Additional connection: Sanwa/Seimitsu 5-Pin LEDs: 1 × Power-LED, 1 × Mode-LED The scope of delivery includes Zero Delay Encoder, USB Cable, 13 × 4.8 mm cable.
YDLIDAR TG15 is a 360-degree two-dimensional rangefinder. Based on the principle of TOF, it is equipped with related optics, electricity, and algorithm design to achieve high-frequency and high-precision distance measurement. The mechanical structure rotates 360 degrees to continuously output the angle information as well as the point cloud data of the scanning environment while ranging.
Features
360 degree omnidirectional scanning ranging distance measurement
Small distance error, stable performance and high accuracy
IP65 protection level
Strong resistance to ambient light interference
Industrial grade brush-less motor drive for stable performance
Laser power meets Class I laser safety standards
5-12 Hz adaptive scanning frequency (support customization)
Photomagnetic fusion technology to achieve wireless communication, wireless power supply
Ranging frequency up to 20 kHz (support customization)
Applications
Robot navigation and obstacle avoidance
Industrial automation
Robot ROS teaching and research
Regional security
Smart transportation
Environmental scanning and 3D reconstruction
Commercial robot /Robot vacuum cleaner
Downloads
Datasheet
User Manual
Development Manual
SDK
Tool
ROS
Your gateway to IoT and microcontroller programming
With 450+ components and 117 online projects, this comprehensive kit ignites your creativity. The tutorials by Paul McWhorter make learning enjoyable for beginners and advanced users. This kit supports MicroPython, C/C++, and Piper Make, offering diverse programming options.
Explore sensors, actuators, LEDs, and LCDs for endless project possibilities. From home automation to robotics, this kit empowers your tech journey.
Features
IoT Starter Kit for Beginners: This kit offers a rich IoT learning experience for beginners. With 450+ components, 117 projects, and expert-led video lessons, this kit makes learning microcontroller programming and IoT engaging and accessible.
Expert-Guided Video Lessons: The kit includes 27 video tutorials by the renowned educator, Paul McWhorter. His engaging style simplifies complex concepts, ensuring an effective learning experience in microcontroller programming.
Wide Range of Hardware: The kit includes a diverse array of components like sensors, actuators, LEDs, LCDs, and more, enabling you to experiment and create a variety of projects with the Raspberry Pi Pico W.
Supports Multiple Languages: The kit offers versatility with support for three programming languages - MicroPython, C/C++, and Piper Make, providing a diverse programming learning experience.
Dedicated Support: Benefit from our ongoing assistance, including a community forum and timely technical help for a seamless learning experience.
Included
Raspberry Pi Pico W
Breadboard
Jumper Wires
Resistor
Transistor
Capacitor
Diode
Li-po Charger Module
74HC595
TA6586 – Motor Driver Chip
LED
RGB LED
LED Bar Graph
7-segment Display
4-Digit 7-Segment Display
LED Dot Matrix
I²C LCD1602
WS2812 RGB 8 LEDs Strip
Buzzer
DC Motor
Servo
DC Water Pump
Relay
Button
Micro Switch
Slide Switch
Potentiometer
Infrared Receiver
Joystick Module
4x4 Keypad
MPR121 Module
MFRC522 Module
Photoresistor
Thermistor
Tilt Switch
Reed Switch
PIR Motion Sensor Module
Water Level Sensor Module
Ultrasonic Module
DHT11 Humiture Sensor
MPU6050 Module
Documentation
Online Tutorials in 3 languages (EN, DE and JP)
An assortment of coloured wires: you know it's a beautiful thing. Six different colours of stranded wire in a cardboard dispenser box. Sit this on your workbench, and stop worrying about having a piece of wire around!
Included
22 AWG
25 ft / Spool
6 Spools in Six Different Colors
Colours are Red, Blue, Yellow, Green, Black, and White
Dispenser Box
The antenna allows for reception of L-band satellites that transmit between 1525-1660 MHz, such as Inmarsat, Iridium and GPS. Please note it is NOT for receiving weaker signals like HRPT and GOES which require a dish antenna. The patch comes with useful mounting accessories including a window suction cup, bendable tripod and 3M RG174 coax cable. The patch and active circuitry is enclosed in a weather proof enclosure. Links Inmarsat STD-C EGC AERO Satellite ACARS AERO C-Channel Voice Iridium Decoding GPS and GNSS Experiments
The Raspberry Pi PoE+ HAT is an add-on board designed for Raspberry Pi 3 B+ and Raspberry Pi 4 equipped with PoE pins. It powers the Raspberry Pi through an Ethernet cable, provided that compatible Power-Sourcing Equipment (PSE) is present on the Ethernet network. Additionally, the HAT includes an integrated fan to cool the Raspberry Pi processor.
Specifications
Standard
IEEE 802.3at-2003 PoE
Input voltage
37-57 V DC, Class 4 device
Output voltage
5 V DC/4 A
Cooling
25 x 25 mm brushless fan delivering 2.2 CFM for processor cooling
Operating temperature
0°C to +50°C
Downloads
Datasheet
We've incorporated tinkering essentials like a mini breadboard, motor drivers, ADC inputs, a built in speaker, general purpose inputs/outputs, switches, and two Breakout Garden slots so you can add on a couple of breakouts.
We've also managed to fit in a vibrant 240x240 IPS LCD screen with four tactile buttons so you can easily monitor and control what your project is doing. It's all wrapped up in a nice, sturdy baseboard with a pleasingly compact footprint which won't involve nearly as many trailing wires as if you were experimenting with a traditional breadboard setup.
Our comprehensive MicroPython and C++ libraries will let you control every aspect of the board like a digital maestro. It's great for beginners and advanced users.
Features
Pico Explorer Base
Piezo speaker
1.54' IPS LCD screen (240x240)
Four user-controllable switches
Two Half-Bridge motor drivers (with over current indicator LED)
Easy access GPIO and ADC pin Headers
Two Breakout Garden I²C sockets
Mini breadboard
Rubber feet
Compatible with Raspberry Pi Pico
No soldering required (as long as your Pico has header pins attached).
Dimensions: approx 117 x 63 x 20 mm (L x W x H, assembled)
C/C++ and MicroPython libraries
Schematic
Cleaning nozzle drill kit small box containing 10 carbide PCB drills from 0.1 mm to 1 mm all with 4 mm shaft.
Ideal for drilling small precision holes in pcb's, plastic or soft metal.
Bring your projects to life with this multifunctional precision drill, engineered for a wide range of applications including cutting, drilling, engraving, polishing, and more. Powered by a robust 135 W motor, it offers variable speed control with an impressive range of 10,000 to 32,000 rpm – ensuring precise and consistent performance across various materials and tasks.
The drill comes in a convenient carry case with a comprehensive 162-piece accessory set, providing the right tool for every job and enabling seamless transitions between different applications. Whether you're a hobbyist or a professional, this versatile tool delivers the power, control, and reliability you need for high-quality craftsmanship.
Multifunctional Versatility
This all-in-one precision drill comes with 162 accessories, making it perfect for a wide range of applications – from cutting and drilling to engraving and polishing. Effortlessly switch between projects and stay prepared for any task.
Powerful Performance
Featuring a 135 W motor and a variable speed range from 10,000 to 32,000 rpm, this drill delivers consistent, high-performance output. It ensures accuracy and efficiency, even for the most demanding jobs.
Comprehensive Accessory Set
Whether you're a dedicated hobbyist or a professional, the included accessories provide everything you need to get the job done right. Enjoy maximum flexibility and convenience in one complete package.
Ergonomic, User-Friendly Design
Designed for comfort and ease of use, the drill features intuitive controls and an ergonomic grip. It fits comfortably in your hand, allowing for precise work—even during extended use.
Built to Last
Crafted from high-quality materials, this precision drill is built for durability and long-term reliability. Whether you're just starting out or are an experienced maker, this tool is made to deliver outstanding results again and again. Let me know if you'd like a more technical, casual, or sales-focused version too!
Included
1x Electric drill (10000-32000 rpm with on/off switch)
1x Flexible shaft (ideal attachment for precise, detailed work or hard to reach places)
1x Collet nut
4x Collets
10x Diamond wheel points
5x Fiberglass cutting disc
62x Cut-off wheels
1x Rubber polishing disc
2x Sanding drums
22x Sanding bands
1x Sanding flap wheel
12x Polishing stones
9x Wire brushes
7x Polishing felts
1x Silicon carbide grindstone
10x Grinding discs
4x Mandrels
2x Polishing compound
6x Drills (2x 1.5 mm, 2x 2.3 mm, 2x 3.1 mm)
1x Tool
Downloads
Manual
A meteorologically minded Raspberry Pi HAT designed to make hooking up weather sensors a breeze (or a squall, or a gale). Weather HAT is an all-in-one solution for hooking up climate and environmental sensors to a Raspberry Pi. It has a bright 1.54' LCD screen and four buttons for inputs. The onboard sensors can measure temperature, humidity, pressure and light. The sturdy RJ11 connectors will let you easily attach wind and rain sensors. It will work with any Raspberry Pi with a 40-pin header. You could install it outside in a suitable weatherproof enclosure and connect to it wirelessly – logging the data locally or piping it into Weather Underground, a MQTT broker or a cloud service like Adafruit IO. Alternatively, you could house your weather Pi inside and run wires to your weather sensors outside - making use of the nice screen to display readouts. Features 1.54' IPS LCD screen (240 x 240) Four user-controllable switches BME280 temperature, pressure, humidity sensor (datasheet) LTR-559 light and proximity sensor (datasheet)
Nuvoton MS51 microcontroller with inbuilt 12-bit ADC (datasheet) RJ11 connectors for connecting wind and rain sensors (optional) HAT-format board Fully-assembled Compatible with all 40-pin header Raspberry Pi models Downloads Python library Schematic Included Weather HAT 2 x 10 mm standoffs
HyperPixel 4.0 Square has all the great features of our standard HyperPixel 4.0 – a crisp, brilliant IPS display with touchscreen, and high-speed DPI interface – it's just more square!
This square version of HyperPixel 4.0 is great for custom interfaces and control panels, and works really well for Pico-8 games. Everything is pre-soldered and ready to go, just pop it onto your RPi, run our installer, and away you go!
Features
High-speed DPI interface
4.0" IPS (wide viewing angle, 160°) display (72x72 mm)
720x720 pixels (~254 PPI)
18-bit colour (262,144 colors)
60 FPS frame rate
Optional capacitive touchscreen
40-pin female header included to boost height for Raspberry Pi B+, 2, 3, 3B+ and 4
Standoffs included to securely attach to your RPi
Compatible with all 40-pin header Raspberry Pi models
One-line installer
HyperPixel 4.0 Square uses a high-speed DPI interface, allowing it to shift 5x more pixel data than the usual SPI interface that these small RPi displays normally use. It has a 60 FPS frame rate and a resolution of approximately 254 pixels per inch (720x720px) on its 4.0' display. The display can show 18-bits of colour (262,144 colors).
This Touch version has a capacitive touch display that's more sensitive and responsive to touch than a resistive touch display, and it's capable of multi-touch!
Please note: when installing HyperPixel 4.0 Square onto your RPi make sure not to press down on the screen surface! Hold the board by its edges and wiggle it to mate with the extended header (or GPIO header). Also take care not to pull on the edges of the glass display when removing your HyperPixel.
It'll work with any 40-pin version of the RPi, including RPi Zero and RPi Zero W. If you're using it with a larger RPi then use the extra 40-pin header that's included to boost it up to the required height. If you're using a Zero or Zero W then just pop it straight onto the GPIO.
The included standoff kit allows you to mount your HyperPixel 4.0 Square safely and securely to your RPi. Just screw them into the posts on the underside of the HyperPixel 4.0 Square PCB and then secure with screws through the mounting holes on your RPi.
Downloads
GitHub
Specifications Size: 0.96 inch Resolution: 128 x 64 Visual Angle: >160 ° Input Voltage: 3.3 V ~ 6 V Wide voltage support: 3.3 V, 5 V Viewing angle: >160 Only Need 2 I/O Port to Control Drive IC: SSD1306 Operating temperature: -30 °C to 80 °C OLED Advantages Smaller volume Ultra-low power consumption High contrast Display dot self-luminous Broad voltage support Independent communication method via SPI or IIC 128x64 Dot matrix Broad visual angle: maximum visual angle 160° Industrial-grade operating temperature: -30 ~ 70 °C Warning: The display’s glass is very thin, please be careful while using it. If The glass is broken, display will not work well.
NRF24L01 is a universal ISM band monolithic transceiver chip works in the 2.4-2.5 GHz. Features Wireless transceiver including: Frequency generator, enhanced type, SchockBurstTM, mode controller, power amplifier, crystal amplifier, modulator, demodulator The output power channel selection and protocol settings can be set extremely low current consumption, through the SPI interface As the transmit mode, the transmit power is 6 dBm, the current is 9.0 mA, the accepted mode current is 12.3 mA, the current consumption of the power-down mode and standby mode are lower Built-in 2.4 GHz antenna, supports up to six channels of data reception Size: 15 x 29 mm (including antenna)
This NVMe M.2 2242 SSD (128 GB) is already pre-installed with Raspberry Pi OS for immediate use with the Raspberry Pi 5 M.2 HAT+.
Features
Form factor: M.2 2242 M-Key NVMe SSD
Pre-loaded with Raspberry Pi OS
High level of ability to endure shock, vibration, and high temperature
SMART TRIM support
PCIe Interface: PCIe Gen3 x2
Compliance: NVMe 1.3, PCI Express Base 3.1
Capacity: 128 GB
Speed:
Read: Up to 1700 MB/s
Write: Up to 600 MB/s
Shock: 1500 G/0.5 ms
Operation temperature: 0°C-70°C
Up to 30x faster than a typical hard disk drive
Boosts burst write performance, making it ideal for typical computer workloads
Faster boot-up, shutdown, application load, and response for Raspberry Pi
Downloads
Datasheet
This PiCAN2 Duo board provides two independent CAN-Bus channels for the Raspberry Pi 4. It uses the Microchip MCP2515 CAN controller with MCP2551 CAN transceiver. Connections are made via 4-way screw terminal. This board has a 5 V/3 A SMPS that can power the Raspberry Pi is well via the screw terminal.p
Easy to install SocketCAN driver. Programming can be done in C or Python.
Features
CAN v2.0B at 1 Mb/s
High speed SPI Interface (10 MHz)
Standard and extended data and remote frames
CAN connection screw terminal
120 Ω terminator ready
Serial LCD ready
LED indicator
Four fixing holes, comply with Pi Hat standard
SocketCAN driver, appears as can0 and can1 to application
Interrupt RX on GPIO25 and GPIO24
5 V/3 A SMPS to power Raspberry Pi and accessories from screw terminal
Reverse polarity protection
High efficiency switch mode design
7-24 V input range
Downloads
User guide
Schematic Rev D
Writing your own program in Python
Python3 examples in Github
The Raspberry Pi SSD Kit bundles a Raspberry Pi M.2 HAT+ with a Raspberry Pi NVMe SSD. It unlocks outstanding performance for I/O intensive applications on Raspberry Pi 5, including super-fast startup when booting from SSD.
The Raspberry Pi SSD Kit is also available with 512 GB capacity.
Features
40k IOPS (4 kB random reads)
70k IOPS (4 kB random writes)
Conforms to the Raspberry Pi HAT+ specification
Included
256 GB NVMe SSD
M.2 HAT+ for Raspberry Pi 5
16 mm GPIO stacking header
Mounting hardware kit (spacers, screws)
Downloads
Datasheet
This endoscope camera features an 8 mm micro lens with a 170° viewing angle and 6 adjustable LED lights for clear, high-definition visuals. Its ergonomic handheld design allows one-handed operation, and the 2 m semi-flexible cable easily navigates narrow spaces.
With IP67 waterproofing, the camera is ideal for wet environments, while the non-slip matte body ensures comfort and ease of use. It operates without the need for WiFi, phones, or apps, making it a practical tool for industrial tasks like plumbing, auto repair, and home maintenance.
Specifications
Display
2.4 inch LCD
Resolution
1920 x 1080
Lens size
8 mm
Focal length
3-10 cm
Horizontal viewing angle
170°
Image format
JPEG
Lights
6 LEDs (adjustable)
Interface
USB-C
Battery
Built-in 2600 mAh Lithium battery
Battery runtime
4-5 hours
Cable length
2 m
Included
Endoscope Camera with 2.4" LCD
USB cable
Manual
Build your textbook weather station or conduct environmental research together with the whole world. With many practical projects for Arduino, Raspberry Pi, NodeMCU, ESP32, and other development boards.
Weather stations have enjoyed great popularity for decades. Every current and even every long discontinued electronics magazine has regularly featured articles on building your own weather station. Over the years, they have become increasingly sophisticated and can now be fully integrated into an automated home — although this often requires loyalty to an (expensive) brand manufacturer across all components.
With your own weather and environmental data, you can keep up and measure things that no commercial station can. It’s also fun: expand your knowledge of electronics, current microcontroller development boards and programming languages in a fun and meaningful way. For less than 10 euros you can get started and record your first environmental data — with time and growing interest, you will continue to expand your system.
In this Edition
Which Microcontroller Fits My Project?
The Right Development Environment
Tracking Wind and Weather
Weather Display with OpenWeatherMap and Vacuum Fluorescent Display
Volatile Organic Compounds in the Air We Breathe
Working with MQ Sensors: Measuring Carbon Monoxide — Odorless but Toxic
CO2 Traffic Light with ThingSpeak IoT Connection
An Automatic Plant Watering System
Good Indoor Climate: Temperature and Humidity are Important criteria
Classy Thermometer with Vintage Tube Technology
Nostalgic Weather House for the Whole Family
Measuring Air Pressure and Temperature Accurately
Sunburn Warning Device
DIY Sensor for Sunshine Duration
Simple Smartphone Says: Fog or Clear View?
Identifying Earthquakes
Liquid Level Measurement for Vessels and Reservoirs
Water pH Value Measurement
Detecting Radioactive Radiation
GPS: Sensor Location Service Across the Globe
Saving and Timestamping Log Files on SD Cards
LoRaWAN, The Things Network, and ThingSpeak
Operating a LoRaWAN Gateway for TTN
Defying "Wind and Weather"
Mega Display with Weather Forecasz
This bundle includes the Raspberry Pi Zero W and the Elektor Raspberry Pi Buffer Board.
Raspberry Pi Zero W
The Raspberry Pi Zero W is the newest member of the Raspberry Pi Zero family. The Raspberry Pi Zero W has all the functionality of the original Raspberry Pi Zero, but comes with added connectivity consisting of:
802.11 b/g/n WLAN
Bluetooth 4.1
Bluetooth Low Energy (BLE)
Other features
1 GHz, single-core CPU
512 MB RAM
Mini HDMI and USB On-The-Go ports
Micro-USB power supply
HAT-compatible 40-pin header
Composite video and reset headers
CSI camera connector
Downloads
Mechanische tekening
Schema's
Elektor Raspberry Pi Buffer Board
When you experiment with the Raspberry Pi on a regular basis and you connect a variety of external hardware to the GPIO port via the header you may well have caused some damage in the past. The Raspberry Pi Buffer Board is there to prevent this! The board is compatible with Raspberry Pi Zero, 3, 4, 5 and 400.
All 26 GPIOs are buffered with bi-directional voltage translators to protect the Raspberry Pi when experimenting with new circuits. The PCB is intended to be inserted in the back of Raspberry Pi< 400. The connector to connect to the Raspberry Pi is a right angled 40-way receptacle (2x20). The PCB is only a fraction wider. A 40-way flat cable with appropriate 2x20 headers can be connected to the buffer output header to experiment for instance with a circuit on a breadboard or PCB.
The circuit uses four TXS0108E ICs by Texas Instruments. The PCB can also be put upright on a Raspberry Pi 3 or newer.
Downloads
Schematics
Layout
This LR1302 module is a new generation LoRaWAN gateway module. It adopts a mini-PCIe form factor design and features low power consumption and high performance. Based on Semtech Network's SX1302 LoRaWA baseband chip, the LR1302 gateway module provides gateway products with potential capacity for long-distance wireless transmission. Compared to the previous SX1301 and SX1308 LoRa chips, the SX1302 chip has higher sensitivity, lower power consumption and lower operating temperature. It supports 8-channel data transmission, improves communication efficiency and capacity, and supports the connection and data transmission of more devices. It reserves two antenna interfaces, one for transmitting and receiving LoRa signals and one U.FL (IPEX) interface for independent transmission. It also has a metal shield to protect against external interference and provide a reliable communications environment. Designed specifically for the IoT space, the LR1302 is suitable for a variety of IoT applications. Whether used in smart cities, agriculture, industrial automation or other fields, the LR1302 module can provide reliable connections and efficient data transmission. Features Uses Semtech SX1302 baseband LoRa chip with extremely low power consumptionand excellent performance Mini-PCIe form factor and compact design make it easier to integrate into various gateway devices, suitable for space-constrained application scenarios, and provide flexible deployment options Support 8-channeldata transmission, provide more efficient communication efficiency and capacity Ultra-low operating temperatureeliminates the need for additional cooling and reduces the size of the LoRaWAN gateway Uses SX1250 TX/RX front end with sensitivity down to -139 dBm@SF12; TX power up to 26 dBm @3.3 V Specifications Frequency 863-870 MHz (EU868) Chipset Semtech SX1302 Chip Sensitivity -125 dBm @125K/SF7-139 dBm @125K/SF12 TX Power 26 dBm (with 3.3 V power supply) Bandwidth 125/250/500 kHz Channel 8 channel LEDs Power: GreenConfig: RedTX: GreenRX: Blue Form Factor Mini PCIe, 52-pin Golden Finger Power Consumption (SPI version) Standby: 7.5 mATX maximum power: 415 mARX: 40 mA Power Consumption (USB version) Standby: 20 mATX maximum power: 425 mARX: 53 mA LBT(Listen Before Talk) Support Antenna Connector U.FL Operating Temperature -40 to 85°C Dimensions (W x L) 30 x 50.95 mm Note LR1302 LoRaWAN Gateway Module is not included. Downloads Wiki SX1302 Datasheet Schematic Diagram
This versatile microscope covers a wide magnification range (60-240x, 18-720x, 1560-2040x) with 3 lenses. With this digital microscope, you can examine plants, insects, gems and coins, or do electronic work such as repairing or making circuit boards.
Specifications
AD246S-M
AD249S-M
Magnification
Lens A
18-720
18-720
Focus range
12-320 mm
12-320 mm
Lens D
1800-2040
1800-2040
Focus range
4-5 mm
4-5 mm
Lens L
60-240
60-240
Focus range
90-300 mm
90-300 mm
Screen size
7 inch (17.8 cm)
10 inch (25.7 cm)
Video resolution (max.)
UHD 2880x2160 (24fps)
UHD 2880x2160 (24fps)
Video format
MP4
MP4
Photo format
JPG
JPG
Photo resolution
5600x2400 (with interpolation)
5600x2400 (with interpolation)
Frame rate
Max. 120fps
Max. 120fps
HDMI output
Yes (support dual-screen display)
Yes (only HDMI monitor displays)
PC output
Yes
Yes
Stand size
20 x 18 x 30 cm
20 x 18 x 30 cm
Included
1x Andonstar AD246S-M Digital Microscope
3x Lenses (A, D & L)
1x Slide holder
1x 32 GB microSD card
1x USB cable
1x Switch cable
1x HDMI cable
1x Remote control
5x Prepared Slides
1x Observation box
1x Tweezers
1x Manual
Downloads
Manual
Software
The Raspberry Pi Pico 2 WH (with headers) is a microcontroller board based on the RP2350 featuring 2.4 GHz 802.11n wireless LAN and Bluetooth 5.2. It gives you even more flexibility in your IoT or smart product designs and expanding the possibilities for your projects.
The RP2350 provides a comprehensive security architecture built around Arm TrustZone for Cortex-M. It incorporates signed boot, 8 KB of antifuse OTP for key storage, SHA-256 acceleration, a hardware TRNG, and fast glitch detectors.
The unique dual-core, dual-architecture capability of the RP2350 allows users to choose between a pair of industry-standard Arm Cortex-M33 cores and a pair of open-hardware Hazard3 RISC-V cores. Programmable in C/C++ and Python, and supported by detailed documentation, the Raspberry Pi Pico 2 WH is the ideal microcontroller board for both enthusiasts and professional developers.
Specifications
CPU
Dual Arm Cortex-M33 or dual RISC-V Hazard3 processors @ 150 MHz
Wireless
On-board Infineon CYW43439 single-band 2.4 GHz 802.11n wireless Lan and Bluetooth 5.2
Memory
520 KB on-chip SRAM; 4 MB on-board QSPI flash
Interfaces
26 multi-purpose GPIO pins, including 4 that can be used for AD
Peripherals
2x UART
2x SPI controllers
2x I²C controllers
24x PWM channels
1x USB 1.1 controller and PHY, with host and device support
12x PIO state machines
Input power
1.8-5.5 V DC
Dimensions
21 x 51 mm
Downloads
Datasheet
Pinout
Schematic
I²C is ubiquitous, you can find it in your phone, in embedded electronics, in all microcontrollers, Raspberry Pi and computer motherboards. It's applicable in a wide variety of cases, but the only downside is that it might be difficult to learn using it properly and to avoid painful debugging.This device makes it easier for you to understand what's going on inside, as I²CDriver has a clear logic-analyzer display of the signal lines plus a graphical decoding of the I²C traffic.In addition, it continuously displays an address map of all attached I²C devices, so as you connect a device, it lights up on the map.The current and voltage monitoring let you catch electrical problems early. The included color-coded wires make hookup quite easy; no pinout diagram is required. It includes a separate 3.3 V supply for your devices, a high-side current meter, and programmable pullup resistors for both I²C lines.Thanks to 3 I²C ports you can hook up multiple devices simultaneously without any effort. I²CDriver comes with software to control it from:
a GUI
the command-line
C and C++ using a single source file
Python 2 and 3, using a module
You can control I²C hardware using the PC tools you’re familiar with and reduce the development time needed to get the device doing what you want it to.Calibrating devices like accelerometers, magnetometers, and gyroscopes is much simpler and faster when done directly on the PC through I²CDriver.Moreover, the built in display shows a heatmap of all active network nodes. So in an I²C network with multiple devices, you can see at a glance which ones are the most active.I²CDriver can dump all I²C traffic back to the PC. I²CDriver’s capture mode reliably records every bit to an exhaustive time-stamped log. This is really helpful for debug, analysis, and reverse-engineering. Supported formats include text, CSV, and VCD.Features
Open hardware: the design, firmware and all tools are under BSD license
Live display: shows you exactly what it’s doing all the time
Fast transfer: sustained I²C transfers at 400 and 100 kHz
USB power monitoring: USB line voltage monitor to detect supply problems, to 0.01 V
Target power monitoring: target device high-side current measurement, to 5 mA
I²C pullups: programmable I²C pullup resistors, with automatic tuning
Three I²C ports: three identical I²C ports, each with power and I²C signals
Jumpers: color coded jumpers included in each pledge level
3.3 output: output levels are 3.3 V, all are 5 V tolerant
Supports all I²C features: 7- and 10-bit I²C addressing, clock stretching, bus arbitration
Sturdy componentry: uses an FTDI USB serial adapter, and Silicon Labs automotive-grade EFM8 controller
Usage reporting: reports uptime, temperature, and running CRC of all traffic
Flexible control: GUI, command-line, C/C++, and Python 2/3 host software provided for Windows, Mac, and Linux
Details
Maximum power out current: up to 470 mA
Device current: up to 25 mA
Dimensions: 61 mm x 49 mm x 6 mm
Computer interface: USB 2.0, micro USB connector
Contents (I²CDriver Core)
1x I²CDriver
3x Set of hookup jumpers