Like the mini pressure sensor, but bigger! Our 3x3 mega pressure matrix has 6 leads, allowing you to map which point you are at in the 3x3 matrix and get a pressure mapping over a surface. Each area has an analog readout that varies depending on the weight of the item on the pressure sensor. Generally, sensor values will read from 500 Kohms to 100 ohms depending on the force put onto the sensor.
Features
Component: 5 x 6.5"
Sensing Area 3.0" Square
Thickness: Approx 20 mils
The single backlit button is a simple mechanical switch that comes with an LED inside. When you press the button, the circuit is completed, driving your pin high or low. Use the embedded LED to make a glowing power icon, logo , or whatever suits your fancy.
Features
Press durability: Up to 10,000 times pressing under 5lbf (22.24 N)
LED Voltage: 5 V
Component: 2" x 3" Individual (5,08 x 7,62 cm)
Button Size: 1" radius circle (2,54 cm)
The mini single pressure sensor gives you an analog read that maps to force on the sensor. The more you press, the lower the resistance goes, perfect for on-body pressure related sensing like ribcage expansion for breathing. This little one is small, but mighty, making it convenient for small surface area applications.
Features
Component: 2 x 1"
Sensing area: .75 x .75"
Thickness: Approx 20mils
This LR1302 module is a new generation LoRaWAN gateway module. It adopts a mini-PCIe form factor design and features low power consumption and high performance. Based on Semtech Network's SX1302 LoRaWA baseband chip, the LR1302 gateway module provides gateway products with potential capacity for long-distance wireless transmission. Compared to the previous SX1301 and SX1308 LoRa chips, the SX1302 chip has higher sensitivity, lower power consumption and lower operating temperature. It supports 8-channel data transmission, improves communication efficiency and capacity, and supports the connection and data transmission of more devices. It reserves two antenna interfaces, one for transmitting and receiving LoRa signals and one U.FL (IPEX) interface for independent transmission. It also has a metal shield to protect against external interference and provide a reliable communications environment. Designed specifically for the IoT space, the LR1302 is suitable for a variety of IoT applications. Whether used in smart cities, agriculture, industrial automation or other fields, the LR1302 module can provide reliable connections and efficient data transmission. Features Uses Semtech SX1302 baseband LoRa chip with extremely low power consumptionand excellent performance Mini-PCIe form factor and compact design make it easier to integrate into various gateway devices, suitable for space-constrained application scenarios, and provide flexible deployment options Support 8-channeldata transmission, provide more efficient communication efficiency and capacity Ultra-low operating temperatureeliminates the need for additional cooling and reduces the size of the LoRaWAN gateway Uses SX1250 TX/RX front end with sensitivity down to -139 dBm@SF12; TX power up to 26 dBm @3.3 V Specifications Frequency 863-870 MHz (EU868) Chipset Semtech SX1302 Chip Sensitivity -125 dBm @125K/SF7-139 dBm @125K/SF12 TX Power 26 dBm (with 3.3 V power supply) Bandwidth 125/250/500 kHz Channel 8 channel LEDs Power: GreenConfig: RedTX: GreenRX: Blue Form Factor Mini PCIe, 52-pin Golden Finger Power Consumption (SPI version) Standby: 7.5 mATX maximum power: 415 mARX: 40 mA Power Consumption (USB version) Standby: 20 mATX maximum power: 425 mARX: 53 mA LBT(Listen Before Talk) Support Antenna Connector U.FL Operating Temperature -40 to 85°C Dimensions (W x L) 30 x 50.95 mm Note LR1302 LoRaWAN HAT for Raspberry Pi is not included. Downloads Wiki SX1302 Datasheet Schematic Diagram
This LR1302 module is a new generation LoRaWAN gateway module. It adopts a mini-PCIe form factor design and features low power consumption and high performance. Based on Semtech Network's SX1302 LoRaWA baseband chip, the LR1302 gateway module provides gateway products with potential capacity for long-distance wireless transmission. Compared to the previous SX1301 and SX1308 LoRa chips, the SX1302 chip has higher sensitivity, lower power consumption and lower operating temperature. It supports 8-channel data transmission, improves communication efficiency and capacity, and supports the connection and data transmission of more devices. It reserves two antenna interfaces, one for transmitting and receiving LoRa signals and one U.FL (IPEX) interface for independent transmission. It also has a metal shield to protect against external interference and provide a reliable communications environment. Designed specifically for the IoT space, the LR1302 is suitable for a variety of IoT applications. Whether used in smart cities, agriculture, industrial automation or other fields, the LR1302 module can provide reliable connections and efficient data transmission. Features Uses Semtech SX1302 baseband LoRa chip with extremely low power consumptionand excellent performance Mini-PCIe form factor and compact design make it easier to integrate into various gateway devices, suitable for space-constrained application scenarios, and provide flexible deployment options Support 8-channeldata transmission, provide more efficient communication efficiency and capacity Ultra-low operating temperatureeliminates the need for additional cooling and reduces the size of the LoRaWAN gateway Uses SX1250 TX/RX front end with sensitivity down to -139 dBm@SF12; TX power up to 26 dBm @3.3 V Specifications Frequency 863-870 MHz (EU868) Chipset Semtech SX1302 Chip Sensitivity -125 dBm @125K/SF7-139 dBm @125K/SF12 TX Power 26 dBm (with 3.3 V power supply) Bandwidth 125/250/500 kHz Channel 8 channel LEDs Power: GreenConfig: RedTX: GreenRX: Blue Form Factor Mini PCIe, 52-pin Golden Finger Power Consumption (SPI version) Standby: 7.5 mATX maximum power: 415 mARX: 40 mA Power Consumption (USB version) Standby: 20 mATX maximum power: 425 mARX: 53 mA LBT(Listen Before Talk) Support Antenna Connector U.FL Operating Temperature -40 to 85°C Dimensions (W x L) 30 x 50.95 mm Note LR1302 LoRaWAN Gateway Module is not included. Downloads Wiki SX1302 Datasheet Schematic Diagram
An Introduction to Circuit Simulation
LTspice, developed by Analog Devices, is a powerful, fast, and free SPICE simulator, schematic capture, and waveform viewer with a large database of components supported by SPICE models from all over the world. Drawing a schematic in LTspice is easy and fast. Thanks to its powerful graphing features, you can visualize the voltages and currents in a circuit, and also the power consumption of its components and much more.
This book is about learning to design and simulate electronic circuits using LTspice. Among others, the following topics are treated:
DC and AC circuits
Signal diodes and Zener diodes
Transistor circuits including oscillators
Thyristor/SCR, diac, and triac circuits
Operational amplifier circuits including oscillators
The 555 timer IC
Filters
Voltage regulators
Optocouplers
Waveform generation
Digital logic simulation including the 74HC family
SPICE modeling LTspice is a powerful electronic circuit simulation tool with many features and possibilities. Covering them all in detail is not possible in a book of this size. Therefore, this book presents the most common topics like DC and AC circuit analysis, parameter sweeping, transfer functions, oscillators, graphing, etc. Although this book is an introduction to LTspice, it covers most topics of interest to people engaged in electronic circuit simulation.
The book is aimed at electronic/electrical engineers, students, teachers, and hobbyists. Many tested simulation examples are given in the book. Readers do not need to have any computer programming skills, but it will help if they are familiar with basic electronic circuit design and operation principles. Readers who want to dive deeper can find many detailed tutorials, articles, videos, design files, and SPICE circuit models on the Internet.
All the simulation examples used in the book are available as files at the webpage of this book. Readers can use these example circuits for learning or modify them for their own applications.
An Introduction to Circuit Simulation
LTspice, developed by Analog Devices, is a powerful, fast, and free SPICE simulator, schematic capture, and waveform viewer with a large database of components supported by SPICE models from all over the world. Drawing a schematic in LTspice is easy and fast. Thanks to its powerful graphing features, you can visualize the voltages and currents in a circuit, and also the power consumption of its components and much more.
This book is about learning to design and simulate electronic circuits using LTspice. Among others, the following topics are treated:
DC and AC circuits
Signal diodes and Zener diodes
Transistor circuits including oscillators
Thyristor/SCR, diac, and triac circuits
Operational amplifier circuits including oscillators
The 555 timer IC
Filters
Voltage regulators
Optocouplers
Waveform generation
Digital logic simulation including the 74HC family
SPICE modeling LTspice is a powerful electronic circuit simulation tool with many features and possibilities. Covering them all in detail is not possible in a book of this size. Therefore, this book presents the most common topics like DC and AC circuit analysis, parameter sweeping, transfer functions, oscillators, graphing, etc. Although this book is an introduction to LTspice, it covers most topics of interest to people engaged in electronic circuit simulation.
The book is aimed at electronic/electrical engineers, students, teachers, and hobbyists. Many tested simulation examples are given in the book. Readers do not need to have any computer programming skills, but it will help if they are familiar with basic electronic circuit design and operation principles. Readers who want to dive deeper can find many detailed tutorials, articles, videos, design files, and SPICE circuit models on the Internet.
All the simulation examples used in the book are available as files at the webpage of this book. Readers can use these example circuits for learning or modify them for their own applications.
LuckFox Pico Mini is a compact Linux micro development board based on the Rockchip RV1103 chip, providing a simple and efficient development platform for developers. It supports a variety of interfaces, including MIPI CSI, GPIO, UART, SPI, I²C, USB, etc., which is convenient for quick development and debugging.
Features
Single-core ARM Cortex-A7 32-bit core with integrated NEON and FPU
Built-in Rockchip self-developed 4th generation NPU, features high computing precision and supports int, int8, and int16 hybrid quantization. The computing power of int8 is 0.5 TOPS, and up to 1.0 TOPS with int4
Built-in self-developed third-generation ISP3.2, supports 4-Megapixel, with multiple image enhancement and correction algorithms such as HDR, WDR, multi-level noise reduction, etc.
Features powerful encoding performance, supports intelligent encoding mode and adaptive stream saving according to the scene, saves more than 50% bit rate of the conventional CBR mode so that the images from camera are high-definition with smaller size, double the storage space
Built-in RISC-V MCU supports low power consumption and fast start-up, supports 250 ms fast picture capture and loading Al model library at the same time to realize face recognition "in one second"
Built-in 16-bit DRAM DDR2, which is capable of sustaining demanding memory bandwidths
Integrated with built-in POR, audio codec and MAC PHY
Specifications
Processor
ARM Cortex-A7, single-core 32-bit CPU, 1.2 GHz, with NEON and FPU
NPU
Rockchip 4th-gen NPU, supports int4, int8, int16; up to 1.0 TOPS (int4)
ISP
Third-gen ISP3.2, up to 4 MP input at 30fps, HDR, WDR, noise reduction
RAM
64 MB DDR2
Storage
128 MB SPI NAND Flash
USB
USB 2.0 Host/Device via Type-C
Camera Interface
MIPI CSI 2-lane
GPIO Pins
17 GPIO pins
Power Consumption
Low power, RISC-V MCU for fast startup
Dimensions
28 x 21 mm
Downloads
Wiki
The LuckFox Pico Ultra is a compact single-board computer (SBC) powered by the Rockchip RV1106G3 chipset, designed for AI processing, multimedia, and low-power embedded applications.
It comes equipped with a built-in 1 TOPS NPU, making it ideal for edge AI workloads. With 256 MB RAM, 8 GB onboard eMMC storage, integrated WiFi, and support for the LuckFox PoE module, the board delivers both performance and versatility across a wide range of use cases.
Running Linux, the LuckFox Pico Ultra supports a variety of interfaces – including MIPI CSI, RGB LCD, GPIO, UART, SPI, I²C, and USB – providing a simple and efficient development platform for applications in smart home, industrial control, and IoT.
Specifications
Chip
Rockchip RV1106G3
Processor
Cortex-A7 1.2 GHz
Neural Network Processor (NPU)
1 TOPS, supports int4, int8, int16
Image Processor (ISP)
Max input 5M @30fps
Memory
256 MB DDR3L
WiFi + Bluetooth
2.4GHz WiFi-6 Bluetooth 5.2/BLE
Camera Interface
MIPI CSI 2-lane
DPI Interface
RGB666
PoE Interface
IEEE 802.3af PoE
Speaker interface
MX1.25 mm
USB
USB 2.0 Host/Device
GPIO
30 GPIO pins
Ethernet
10/100M Ethernet controller and embedded PHY
Default Storage Medium
eMMC (8 GB)
Included
1x LuckFox Pico Ultra W
1x LuckFox PoE module
1x IPX 2.4G 2 db antenna
1x USB-A to USB-C cable
1x Screws pack
Downloads
Wiki
The M12 Mount Lens (12 MP, 8 mm) is ideal for use with the Raspberry Pi HQ Camera Module, offering sharp and detailed imaging for a wide range of applications.
The M12 Mount Lens (5 MP, 25 mm) is ideal for use with the Raspberry Pi HQ Camera Module, offering sharp and detailed imaging for a wide range of applications.
M5Atom Joystick is a versatile programmable dual-joystick remote controller featuring the AtomS3 as the main controller, with an STM32 handling co-processing functions.
It is equipped with two 5-way joysticks with hall sensors, two function buttons, and built-in RGB LEDs for human-machine interaction and status indication.
The device includes two high-voltage battery charging circuits. It comes pre-loaded with the Stamp Fly control firmware and communicates with Stamp Fly via the ESP-NOW protocol. The firmware source code is open-source. This product is suitable for drone control, robot control, smart cars, and various DIY projects.
Applications
Drone control
Robot control
Smart cars
DIY projects
Features
STM32F030F4P6
Equipped with M5AtomS3
Compatible with Atom Lite, Atom Matrix, AtomS3 Lite, AtomS3
Dual joysticks, dual buttons, toggle switch
WS2812 RGB LEDs
Dual high-voltage lithium battery charging circuits
Battery detection
Specifications
MCU
STM32F030F4P6
RGB
WS2812C
Charging IC
TP4067 @ 4.35 V
Battery
300 mAh
Charging Current
500 mA
Button
Left/Right Button
Buzzer
Built-in Passive Buzzer @ 5020
Operating temperature
0-40°C
Dimensions
84 x 60 x 31.5 mm
Weight
63.5 g
Included
1x Atom JoyStick
1x 300 mAh high-voltage Lithium battery
Downloads
Documentation
ATOM U is a compact low-power consumption speech recognition IoT development kit. It adopts an ESP32 chipset, equipped with 2 low-power Xtensa 32-bit LX6 microprocessors with the main frequency of up to 240 MHz. Built-in USB-A interface, IR emitter, programmable RGB LED. Plug-and-play, easy to upload and download programs. Integrated Wi-Fi and digital microphone SPM1423 (I2S) for the clear sound record. suitable for HMI, Speech-to-Text (STT). Low-code development ATOM U supports UIFlow graphical programming platform, scripting-free, cloud push; Fully compatible with Arduino, MicroPython, ESP32-IDF, and other mainstream development platforms, to quickly build various applications. High integration ATOM U contains a USB-A port for programming/power supply, IR emitter, programmable RGB LED x1, button x1; Finely tuned RF circuit, providing stable and reliable wireless communication. Strong expandability ATOM U is easy access to M5Stack's hardware and software system. Features ESP32-PICO-D4 (2.4GHz Wi-Fi dual mode) Integrated programmable RGB LED and button Compact design Built-in IR emitter Expandable pinout and GROVE port Development platform: UIFlow MicroPython Arduino Specifications ESP32-PICO-D4 240MHz dual core, 600 DMIPS, 520KB SRAM, 2.4G Wi-Fi Microphone SPM1423 Microphone sensitivity 94 dB SPL@1 KHz Typical value: -22 dBFS Microphone signal-to-noise ratio 94 dB SPL@1 KHz, A-weighted Typical value: 61.4 dB Standby working current 40.4 mA Support input sound frequency 100 Hz ~ 10 KHz Support PDM clock frequency 1.0 ~ 3.25 MHz Weight 8.4 g Product size 52 x 20 x 10 mm Downloads Documentation
The M5Stack Core Ink Development Kit is a new E-Ink display that uses an ESP32-Pico-D4 to take advantage of the benefits of the E-Ink technology.
E-Ink displays are easier on the eyes, have extremely low power consumption and can retain an image even after they have run out of power.
Features
ESP32 Standard wireless functions WiFi, Bluetooth
Internal 4M Flash
Low Power Display
180-degree viewing angle
Expansion ports
Built-in Magnet
Internal Battery
Multi-function button
Status LED
Buzzer
Deep Sleep functionality
Applications
IoT Terminal
E-Book
Industrial Control Panel
Electronic Tag
Included
1x CoreInk
1x LiPo 390 mAh
1x Type-C USB(20cm)
Please note: avoid long-time high-frequency refresh when using it. The recommended refresh interval is (15s/time). Do not expose to ultraviolet rays for a long time, otherwise, it may cause irreversible damage to the ink screen.
OV7740 is a AI Camera powered by Kendryte K210, an edge computing system-on-chip(SoC) with a dual-core 64bit RISC-V CPU and state-of-art neural network processor.
Features
Dual-Core 64-bit RISC-V RV64IMAFDC (RV64GC) CPU / 400Mhz(Normal)
Dual Independent Double Precision FPU
8MiB 64bit width On-Chip SRAM
Neural Network Processor(KPU) / 0.8Tops
Field-Programmable IO Array (FPIOA)
AES, SHA256 Accelerator
Direct Memory Access Controller (DMAC)
Micropython Support
Firmware encryption support
On-board Hardware:
Flash: 16M Camera :OV7740
2x Buttons
Status Indicator LED
External storage: TF card/Micro SD
Interface: HY2.0/compatible GROVE
Applications
Face recognition/detection
Object detection/classification
Obtain the size and coordinates of the target in real-time
Obtain the type of detected target in real-time
Shape recognition Video recorder
Included
1x UNIT-V(include 20cm 4P cable and USB-C cable)
The M5Stack Watering Unit integrates water pump and measuring plates for soil moisture detection and pump water control. It can be used for intelligent plant breeding scenarios and can easily achieve humidity detection and Irrigation control. The measurement electrode plate uses the capacitive design, which can effectively avoid the corrosion problem of the electrode plate in actual use compared with the resistive electrode plate.
Features
Capacitive measuring plate (corrosion resistant)
Integrated 5 W power water pump
LEGO compatible holes
Applications
Plant cultivation
Soil moisture detection
Smart irrigation
Included
1x Watering Unit
2x Suction pipe
1x HY2.0-4P cable
Pump power
5 W
Weight
78 g
Dimensions
192.5 x 24 x 33 mm
M5Stamp Fly is a programmable open-source quadcopter, featuring the StampS3 as the main controller. It integrates a BMI270 6-axis gyroscope and a BMM150 3-axis magnetometer for attitude and direction detection. The BMP280 barometric pressure sensor and two VL53L3 distance sensors enable precise altitude hold and obstacle avoidance. The PMW3901MB-TXQT optical flow sensor provides displacement detection.
The kit includes a buzzer, a reset button, and WS2812 RGB LEDs for interaction and status indication. It is equipped with a 300 mAh high-voltage battery and four high-speed coreless motors. The PCB features an INA3221AIRGVR for real-time current/voltage monitoring and has two Grove connectors for additional sensors and peripherals.
Preloaded with debugging firmware, the Stamp Fly can be controlled using an Atom Joystick via the ESP-NOW protocol. Users can choose between automatic and manual modes, allowing for easy implementation of functions like precise hovering and flips. The firmware source code is open-source, making the product suitable for education, research, and various drone development projects.
Applications
Education
Research
Drone development
DIY projects
Features
M5StampS3 as the main controller
BMP280 for barometric pressure detection
VL53L3 distance sensors for altitude hold and obstacle avoidance
6-axis attitude sensor
3-axis magnetometer for direction detection
Optical flow detection for hovering and displacement detection
Buzzer
300 mAh high-voltage battery
Current and voltage detection
Grove connector expansion
Specifications
M5StampS3
ESP32-S3@Xtensa LX7, 8 MB Flash, WiFi, OTG\CDC support
Motor
716-17600kv
Distance Sensor
VL53L3CXV0DH/1 (0x52) @ max 3 m
Optical Flow Sensor
PMW3901MB-TXQT
Barometric Sensor
BMP280 (0x76) @ 300-1100hPa
3-axis Magnetometer
BMM150 (0x10)
6-axis IMU Sensor
BMI270
Grove
I²C+UART
Battery
300mAh 1S high-voltage lithium battery
Current/Voltage Detection
INA3221AIRGVR (0x40)
Buzzer
Built-in Passive Buzzer @ 5020
Operating temperature
0-40°C
Dimensions
81.5 x 81.5 x 31 mm
Weight
36.8 g
Included
1x Stamp Fly
1x 300 mAh high-voltage Lithium battery
Downloads
Documentation
Most people are increasingly confronted with the applications of Artificial Intelligence (AI). Music or video ratings, navigation systems, shopping advice, etc. are based on methods that can be attributed to this field.
The term Artificial Intelligence was coined in 1956 at an international conference known as the Dartmouth Summer Research Project. One basic approach was to model the functioning of the human brain and to construct advanced computer systems based on this. Soon it should be clear how the human mind works. Transferring it to a machine was considered only a small step. This notion proved to be a bit too optimistic. Nevertheless, the progress of modern AI, or rather its subspecialty called Machine Learning (ML), can no longer be denied.
In this book, several different systems will be used to get to know the methods of machine learning in more detail. In addition to the PC, both the Raspberry Pi and the Maixduino will demonstrate their capabilities in the individual projects. In addition to applications such as object and facial recognition, practical systems such as bottle detectors, person counters, or a “talking eye” will also be created.
The latter is capable of acoustically describing objects or faces that are detected automatically. For example, if a vehicle is in the field of view of the connected camera, the information 'I see a car!' is output via electronically generated speech. Such devices are highly interesting examples of how, for example, blind or severely visually impaired people can also benefit from AI systems.
The Letter/A4 size Magnetic Easel is a sturdy work-holding tool that provides an alternative method of positioning paper or other workpieces for use with the AxiDraw. A heavy-duty alternative to the regular clip easel, it can be used with binder clips or the (included) positioning rulers and magnets. The base of the easel is a heavy-gauge sheet of magnetic steel. It has a powder-coat finish, lightly textured to help hold paper in place and light gray in color for visible contrast against most types of paper. Rubber bumpers on the bottom side (along with the weight of the steel) ensure a no-slip grip on your work table. To help index your paper in a consistent and reproducible position, the easel includes two six-inch (15 cm) rulers that you can rest your paper up against. The rulers are easy to remove and reversible, with inch and centimeter markings on the two sides. They can also be removed completely if you like, leaving just a flat sheet of steel (with a few ruler-mounting holes in it). This easel also includes six cylindrical magnets, 4 mm in diameter and 10 mm tall, that you can use to hold your paper down firmly. Their size and shape make them particularly easy to grasp and position (unlike, for example, disc magnets). Perhaps more importantly, they tend to yield and tip over if hit by an errant pen tip, rather than holding so fast as to damage your pen or move your paper. An optional set of paper holding clips can be added as well if you so choose. Overall dimensions: 12.875 × 9.580' (32.7 × 24.3 cm) Suitable for use with A4 and US letter paper sizes, envelopes, and smaller sizes of paper.
The Tabloid/A3 size Magnetic Easel is a sturdy work-holding tool that provides an alternative method of positioning paper or other workpieces for use with the AxiDraw V3/A3 and AxiDraw SE/A3. A heavy-duty alternative to the regular A3 clip easel, it can be used with binder clips or the (included) positioning rulers, magnets, and magnetic spring clips. The base of the easel is a heavy-gauge sheet of magnetic steel. It has a powder-coat finish, lightly textured to help hold paper in place and light gray in color for visible contrast against most types of paper. Rubber bumpers on the bottom side (along with the substantial weight of the steel) ensure a no-slip grip on your work table. To help index your paper in a consistent and reproducible position, the easel includes two six-inch (15 cm) rulers that you can rest your paper up against. The rulers are easy to remove and reversible, with inch and centimeter markings on the two sides. They can also be removed completely if you like, leaving just a flat sheet of steel (with a few ruler-mounting holes in it). This A3 easel also includes a special set of paper holding clips and magnets: Two special spring clips with magnetic bases, plus six skinny magnets for holding down paper. The two special spring clips each have two curved tines that apply gentle pressure to your paper. They allow you to slide paper directly in and out, quickly and easily, without touching any magnets, clips, or tape. They have a long reach to be positioned behind the rulers, or elsewhere if you prefer. Magnetic bases allow you to position them where needed. Two of these spring clips provide just enough pressure to keep a sheet of paper steady while you write or draw on it. This set also includes six cylindrical magnets, 4 mm in diameter and 10 mm tall, which are easy to position and firmly hold paper. The tall aspect ratio makes them particularly easy to grasp (unlike disc magnets). Perhaps more importantly, they tend to yield and tip over if hit by an errant pen tip, rather than holding so fast as to damage your pen or move your paper. Overall dimensions: 18.12 x 12.72' (46.0 x 32.3 cm) Suitable for use with A3 and US Tabloid/Ledger paper sizes, envelopes, two sheets of Letter or A4 paper, or smaller sizes of paper.
This is a set of five magnetic, telescopic whip antennas – with 100 MHz to 1 GHz tuning range – that can be used with KrakenSDR for direction finding. The magnets are strong and will be secure on the roof of a moving car. It includes a set of five two-meter, LMR100-equivalent coax cables that have been length matched for better performance.
If you’re looking for a simple way to start soldering or just want to make your own Dasduino, this soldering set is a great opportunity. "Make your own Dasduino CORE" is an educational set for learning the skill of soldering, with which you end up with a functional microcontroller board. As with the other SMD versions of the Dasduino CORE boards we offer, the possibilities are endless.
It is based on the ATmega328P microcontroller, and all SMD components are already soldered on the board. The set also includes a THT socket for the microcontroller, which simplifies the replacement of the microcontroller should it ever become necessary.
Included
1x PCB
7x Capacitors (100nF)
4x Capacitors (2.2uF)
2x Capacitors (22pF)
5x Resistors (2.2 kOhm)
5x Resistors (10 kOhm)
3x Resistors (1 kOhm)
1x Resistor (100 kOhm)
1x Resistor (100 ohm)
1x JST battery connector
1x LED (purple)
1x LED (white)
1x LED (blue)
1x LED (red)
1x LED (orange)
1x Socket for ATmega328P
1x ATmega328P microcontroller