Products

1324 products

  • Kitronik Robotics Board for Raspberry Pi Pico - Elektor

    Kitronik Kitronik Robotics Board for Raspberry Pi Pico

    The Robotics Board features 2 Dual H Bridge Motor Driver ICs. These are capable of driving 2 standard motors or 1 stepper motor each, with full forward, reverse, and stop control. There are also 8 servo outputs, capable of driving standard and continuous rotation servos. They can all be controlled by the Pico using the I²C protocol, via a 16 channel driver IC. The IO break out provides connections to all the unused pins on the Pico. The 27 available I/O pins allow other devices, such as sensors or ZIP LEDs, to be added to the board. Power is provided via either a terminal block or servo style connector. The supply is then controlled by an on/off power switch to the board and there is also a green LED to indicate when the board has power. The board then produces a regulated 3.3V supply which is fed into the 3 V and GND connections to power the connected Pico. This removes the need to power the Pico separately. The 3 V and GND pins are also broken out on the header, which means external devices can also be powered. To use the robotics board, the Pico should be firmly inserted into the dual row pin socket on the board. Ensure the Pico is inserted with the USB connector at the same end as the power connectors on the robotics board. This will allow access to all of the board functions and each pin is broken out. Features A compact yet feature-packed board designed to sit at the heart of your Raspberry Pi Pico robotics projects. The board can drive 4 motors (or 2 stepper motors) and 8 servos, with full forward, reverse, and stop control. It also features 27 other I/O expansion points and Power and Ground connections. The I²C communication lines are also broken out allowing other I²C compatible devices to be controlled. This board also features an on/off switch and power status LED. Power the board via either a terminal block or servo style connector. The 3V and GND pins are also broken out on the Link header, allowing external devices to be powered. Code it with MicroPython or via an editor such as the Thonny editor. 1 x Kitronik Compact Robotics Board for Raspberry Pi Pico Dimensions: 68 x 56 x 10 mm Requires Raspberry Pi Pico board

    € 24,95

    Members € 22,46

  • Kraken Discovery Dish - Elektor

    KrakenRF Kraken Discovery Dish

    Out of stock

    A lightweight, 70 cm diameter parabolic reflector with pole/mast mounting bracket and feed guide The Kraken Discovery Dish is a 70-cm aluminum satellite dish with an active filtered feed. It is designed for receiving real-time weather data from GOES HRIT, GK-2A LRIT, FengYun LRIT, NOAA HRPT, Metop HRPT, Meteor M2 HRPT, and other weather satellites that operate around 1.69 GHz. The dish weighs less than one kilogram and splits into three petals for easy shipping. The 1.69 GHz feed contains a built-in LNA and filter right at the feed point, which means there is almost no noise figure loss from cables or connectors. The feed electronics are encased in a waterproof enclosure, meaning no external waterproofing work is required. There are also feeds for 1.42 GHz hydrogen line radio astronomy and 1.5 GHz Inmarsat STD-C and AERO. To amplify the weak signals transmitted by weather satellites, Discovery Dish incorporates the Qorvo QPL9547 high-linearity, ultra-low-noise amplifier in a small 2 x 2 mm surface-mount package. Included 1x 70 cm diameter lightweight aluminum dish (three petals) + screws 1x Dish-to-pole mount Required (at least one) 1x L-Band Weather Satellite Discovery Feed 1x Inmarsat Discovery Feed 1x Hydrogen Line Discovery Feed

    Out of stock

    € 199,95

    Members € 179,96

  •  -14% KrakenSDR - Five - channel Software Defined Radio (based on RTL - SDR) - Elektor

    KrakenRF KrakenSDR 5-ch SDR (based on RTL-SDR)

    Out of stock

    KrakenSDR is a phase-coherent software-defined radio with five RTL-SDRs KrakenSDR is a 5-channel, RX-only, software-defined radio (SDR) based on the RTL-SDR and designed for phase-coherent applications and experiments. Phase-coherent SDR opens the door to some very interesting applications, including radio direction finding, passive radar, and beam forming. You can also use KrakenSDR as five separate radios. KrakenSDR is an upgraded version of the previous product, KerberosSDR. It provides a fifth receive channel, automatic phase-coherence synchronization capabilities, bias tees, a new RF design with cleaner spectrum, USB Type-C connectors, a heavy-duty enclosure, upgraded open source DAQ and DSP software, and an upgraded Android app for direction finding. RTL-SDR KrakenSDR makes use of five custom RTL-SDR circuits consisting of R820T2 and RTL2832U chips. The RTL-SDR is a well-known, low-cost software-defined radio (SDR), but throw five units together and using them on the same PC will not make them 'phase coherent;' each one will receive signals at a slightly different phase offset from the others. This makes it difficult or impossible to achieve a high degree of precision when measuring relationships between signals that arrive at different antennas. To achieve phase coherence, KrakenSDR drives all five RTL-SDR radios with a single clock source, and contains internal calibration hardware to allow the phase relationship between channels to be measured precisely and corrected for. Additionally, the overall design of KrakenSDR works to ensure phase stability, with care taken in the areas of heat management, driver configuration, power supply, and external-interference mitigation. Features Five-channel, coherent-capable RTL-SDR, all clocked to a single local oscillator Built-in automatic coherence synchronization hardware Automatic coherence synchronization and management via provided Linux software 24 MHz to 1766 MHz tuning Range (standard R820T2 RTL-SDR range, and possibly higher with hacked drivers) 4.5 V bias tee on each port Core DAQ and DSP software is open source and designed to run on a Raspberry Pi 4 Direction-finding software for Android (free for non-commercial use) Applications Physically locating an unknown transmitter of interest (e.g. illegal or interfering broadcasts, noise transmissions, or just as a curiosity) HAM radio experiments such as radio fox hunts or monitoring repeater abuse Tracking assets, wildlife, or domestic animals outside of network coverage through the use of low power beacons Locating emergency beacons for search-and-rescue teams Locating lost ships via VHF radio Passive radar detection of aircraft, boats, and drones Traffic-density monitoring via passive radar Beamforming Interferometry for radio astronomy Specifications Bandwidth 2.56 MHz RX Channels 5 Frequency Range 24-1766 MHz Radio Tuner 5x R820T2 Radio ADC 5x RTL2832U ADC Bit Depth 8-bits Oscillator Stability 1 PPM Typical Power Consumption 5 V/2.2 A (11 W) Enclosure Type Heavy-duty CNC Aluminum Dimensions 177 x 112.3 x 25.9 mm Weight 560 g Included 1x KrakenSDR (fully assembled and installed) with Aluminum enclosure 1x Manual Required USB Type-C cable 5 V/2.4 A USB-C power supply Antennas Raspberry Pi 4 (for computing) Android phone/tablet with mobile-hotspot capabilities (with direction finding) Downloads Wiki Android App

    Out of stock

    € 699,00€ 599,00

    Members identical

  • LabNation SmartScope USB Oscilloscope - Elektor

    LabNation LabNation SmartScope USB Oscilloscope

    Out of stock

    SmartScope is a compact 2-channel USB oscilloscope with a bandwidth of 30 MHz and a sampling rate of 2x 100 MSa/s. It is compatible with all major platforms, including Windows, macOS, Linux, and Android. The operation and display of measurement signals are done via smartphone, tablet, or PC. Additionally, a logic analyzer and a signal generator are integrated. Even more, you can get mobile with it: take the SmartScope on the road, thanks to the single-cable connectivity. Everything is going to be intuitive: pointing, pinching and swiping finally replaces the clunky interfaces of old scopes. With the SmartScope you develop your digital interfaces using the 100 MS/s logic analyzer. With this tool you can design any signal you want using Excel, then upload it to the built-in Arbitrary Waveform Generator (AWG). At the end capture the voltage at any point of your design at 100 million times each second. The Software for the support of Windows / macOS / Linux / Android and Export formats (Excel .csv / Matlab .mat) are given. Features Channel sampled at 100 MHz/s each AC/DC coupling on analog inputs 100% silent 64 Mbit RAM: x10000 zoom Arbitrary Waveform Generator 8 digital inputs at 100 MS/s each 4 digital outputs at 100 MS/s each Externally power your scope in case your mobile can't supply the juice. Specifications Oscilloscope Bandwidth 30 MHz (-3 dB point) Sample rate 2x 100 MS/s Channels 2 Max pre-trigger position 16x full scale Max post-trigger position Full scale Max full voltage scale 10 V/div (±35 V input range) Min full voltage scale 20 mV/div Analog input range -35 V, +35 V Max input peak-to-peak 40 V Signal coupling AC / DC Precision 8 bit Input impedance 1 MΩ // 10 pF Waverforms 200 waveforms/s Data delay to host < 10 ms Sample depth Up to 4 million samples per channel External trigger Yes Logic Analyzer Input channels 8 Input impedance 100 kOhm // 2 pF to GND Sample rate 100 MS/s Logic level 1.8 V to 5.0 V Diode protection Bidirectional Input data buffer 4 million samples Waverforms 200 waveforms/s Data delay to host < 10 ms Protocol decoders I²C, SPI, UART, I²S integrated User extensible Wave Generator (Analog Output) Output channels 1 Data rate Up to 50 MS/s Output level 0-3.3 V (Opamp driven) Output buffer Up to 2048 samples Max slew rate 30 ns/V Step 13 mV Wave Generator (Digital Output) Channels 4 Data rate Up to 100 MS/s Output level 3.3 V or 5 V (selectable) Output buffer Up to 2048 samples Diode protected Yes Programmable Logic USB controller MicroChip PIC18F14K50 USB interface PicKit3 or USB flashable FPGA Xilinx Spartan 6 FPGA interface JTAG and USB flashable Size & Weight Dimensions (L x W x D) 110 x 64 x 24.2 mm (4.33 x 2.52 x 0.95") Weight 158 g Case Aluminium Connectivity Device/Host mini USB included Record waveforms Store Matlab (.mat) or Excel (.csv) files through Dropbox Analog BNC 2 probes included Digital 8x 0.1" pitch, probes (included) Sync USB micro B-B Power USB micro B (optional) Included 1x SmartScope USB Oscilloscope 2x Analog probes 1x Digital probe cable 1x USB cable Downloads Manual Software GitHub Wiki

    Out of stock

    € 239,00

    Members € 215,10

  • LCR - T4 Component Tester (ESR Meter) - Elektor

    Kuongshun LCR-T4 Component Tester (ESR Meter)

    Out of stock

    With this device, you'll be able to automatically to detect NPN and PNP transistors, n-channel and p-channel MOSFETs, diodes, thyristors, resistors, capacitors and many other components. It is also possible to measure certain characteristics of these devices as, for example, the current amplification factor of BJT or the gate threshold voltage of a MOSFET and much more.Features Automatic detection of NPN and PNP transistors, n-channel and p-channel MOSFETs, diodes (including double diode), thyristors, resistor and capacitor and other components Automatic testing of the pins of a component, and displaying on the LCD Detection of the transistor, MOSFET protection diode amplification coefficient and the base to determine the emitter transistor forward biased voltage Measurement of the gate threshold voltage and the gate capacitance of the MOSFET Simultaneous measurement of the of two resistors while displaying resistor symbol Measurement of a single diode reverse capacitance Measurements of capacitance, resolution 1 pF Identification of Darlington transistors via the base-emitter threshold voltage and current amplification factor Measurement of the bipolar transistor current amplification factor and the base-emitter threshold voltage 2x16 Characters LCD-Display (12864 LCD with green backlight) Test ranges Resistance: Max. 50 MΩ, resolution 0.1 Ω Capacitance: 25 pF – 100000 µF Inductance: 0.01 mH – 20 H Specifications One-button operation Automatic shutdown for improved battery life Shutdown current less than 20 nA

    Out of stock

    € 19,95

    Members € 17,96

  • Learn FPGA Programming with Verilog

    Elektor Academy Pro Learn FPGA Programming with Verilog

    Out of stock

    Master FPGA programming with the Red Pitaya Academy Pro Box. Learn Verilog and build a real-time audio processing system using Red Pitaya – with a full online course and hands-on project materials. The Academy Pro Box "Learn FPGA Programming with Verilog" is a complete learning solution for students, engineers and developers looking to gain hands-on experience with FPGA programming in Verilog. Combining theory with practice, the programme integrates a well-established Udemy course on Verilog fundamentals with nine exclusive practical modules developed by Elektor & Red Pitaya, designed specifically for the Red Pitaya STEMlab platform. Participants work with real hardware – delivered as part of the box – including the Red Pitaya STEMlab 125-14 Starter Kit and essential electronic components, enabling them to apply their knowledge immediately through real-world test setups. This combination of guided theory and structured experimentation ensures not only a strong understanding of FPGA principles, but also the ability to implement and verify designs independently. The box is aimed at professionals and advanced learners who want to go beyond simulation and gain practical skills in digital design. By the end of the programme, participants will have completed working FPGA projects, using industry-relevant tools and workflows – making this a valuable resource for academic & career development and technical innovation. What you’ll learn? Fundamentals of FPGA and Verilog Programming How to simulate, synthesize & implement digital circuits How to interface audio hardware with your FPGA Real-time Digital Signal Processing (DSP) techniques How to build, test, and customize audio filters Perfect for Professionals looking to level up their skills in Digital System Design Designers aiming to accelerate time-to-market for their applications Engineers pushing the boundaries of technological innovation Support when you need it In-depth troubleshooting in the course Community forums & Red Pitaya documentation Udemy Q&A and hardware support email What's inside the Box (Course)? Red Pitaya STEMlab 125-14 Starter Kit (valued at €550) 1x STEMlab 125-14 board 1x USB power supply (EU, UK & US) 1x microSD card (16 GB) with pre-installed OS 1x Ethernet cable Extra: 2x Oscilloscope Probes Extra: 2x SMA to BNC adapters Microphone & speaker set with cables Step-by-step project guide Downloadable code templates and schematics Lifetime access to a complete, self-paced Udemy course on Verilog Learning Material (of this Box/Course) 9 Practical Modules with Red Pitaya ▶  Click here to open Introduction Setting Up the Vivado Development Environment Project Setup & Vivado Integration Synthesis, Implementation & Bitstream Generation FPGA Image Overview First FPGA Projects – LEDs Full Audio Pass-Through Module 5 kHz Low-Pass Filter (4-Pole Cascade) Real-Time Microphone Input → Speaker Output Verilog Course with 28 Lessons on Udemy ▶  Click here to open Installing Vivado Vivado Design Flow Part 1 Vivado Design Flow Part 2 Commonly Asked Question’s from previous Module Fundamentals of Verilog Commonly Asked Question’s from previous Module Modeling Styles Assignment Operators in Verilog FAQ Behavioral Modeling Style Commonly Asked Question's from previous Module Gate Level Modeling Style Switch level Modeling Style Structural Modeling Style Schematic based Design Entry with IP integrator and Xilinx IP's Memories Commonly Asked Question's from previous Module Finite State Machines Commonly Asked Question's from previous Module Writing Testbenches Hardware Debugging with Vivado Required Hardware v File I/0 Projects RTL for Synthesis FPGA Architecture Fundamentals Commonly Asked Question's from previous Module Interview Preparations Next Step What is Elektor Academy Pro? Elektor Academy Pro delivers specialized learning solutions designed for professionals, engineering teams, and technical experts in the electronics and embedded systems industry. It enables individuals and organizations to expand their practical knowledge, enhance their skills, and stay ahead of the curve through high-quality resources and hands-on training tools. From real-world projects and expert-led courses to in-depth technical insights, Elektor empowers engineers to tackle today’s electronics and embedded systems challenges. Our educational offerings include Academy Books, Pro Boxes, Webinars, Conferences, and industry-focused B2B magazines – all created with professional development in mind. Whether you're an engineer, R&D specialist, or technical decision-maker, Elektor Academy Pro bridges the gap between theory and practice, helping you master emerging technologies and drive innovation within your organization.

    Out of stock

    € 649,00

    Members € 584,10

  • Learning Python with Raspberry Pi (E - book) - Elektor

    Elektor Digital Learning Python with Raspberry Pi (E-book)

    This book is about teaching the Python programming language using the Raspberry Pi 4 computer. The book makes an introduction to Raspberry Pi 4 and then teaches Python with the topics: variables, strings, arrays, matrices, tuples, lists, dictionaries, user functions, flow of control, printing, keyboard input, graphics, GUI, object oriented programming and many more topics. The book is aimed for beginners, students, practising engineers, hobbyists, and for anyone else who may want to learn to program in Python. The book includes many example programs and case studies. All the example programs and case studies have been tested fully by the author and are all working. The example programs aim to teach the various programming concepts of Python. The case studies cover the use of Python in the analysis and design of electronic circuits. Some of the case study topics are: Resistor colour code identification Resistive potential divider circuits Resistive attenuator design Zener diode voltage regulator design RC and RLC transient circuits Circuit frequency response Saving data on external memory stick Mesh and node circuit analysis using matrices Resonance in RLC circuits Transistor Biasing analysis Transistor amplifier design Design of active filters Interfacing hardware with GPIO, I²C and SPI Using Wi-Fi with Python and TCP/IP and UDP programs Using Bluetooth from Python Full program listings of all the programs used in the book are available at the Elektor website of the book. Readers should be able just to copy and use these programs in their Raspberry Pi projects without any modifications.

    € 32,95

    Members € 26,36

  • LED Dice Solder Kit - Elektor

    Soldered LED Dice Solder Kit

    If you are looking for an easy way to get started with soldering or simply want to make a small portable gadget, this set is a great opportunity. "LED cube" is an educational set for learning the soldering skill, with which you get a small electronic game at the end. After you turn on and shake this board, certain leds will light up randomly and symbolize the number, as if a real die had been thrown. It is based on the Attiny404 microcontroller, programmed in Arduino, and there is a battery on the back which makes this gadget portable. There is also a keychain so you can always carry your new game with you! Soldering is easy according to the markings on the board. Included 1x PCB 1x ATtiny404 microcontroller 7x LEDs 7x Resistors (330 ohm) 1x Resistor (10 kohm) 1x Battery holder 1x CR2032 battery 1x Switch 1x Vibration sensor SW-18020P 1x Keychain ring

    € 9,95

    Members € 8,96

  • LILYGO T - Beam V1.2 ESP32 LoRa Development Board with 0.96" Display (EU868) - Elektor

    LILYGO LILYGO T-Beam V1.2 ESP32 LoRa Development Board with 0.96" Display (EU868)

    Out of stock

    This LILYGO T-Beam V1.2 ESP32 LoRa Development Board comes with pre-installed Meshtastic and soldered 0.96' display. The board has a built-in Semtech SX1262 LoRa transceiver and is equipped with a NEO-6M GPS receiver. GPS NEO-6M GPS module: Support GPS protocol Onboard RTC crystal: Support interrupt/wakeup LoRa Long Range Low Power LoRa Transceiver High sensitivity: -i48 dBm Transceive rate: 300 kbps Version: SX1276 (868 MHz) Firmware: Meshtastic Display OLED: 0.96 inch Driver: SSD1306 Specifications Microcontroller ESP32 Flash 4 MB PSRAM 8 MB Serial Chip CH9102 Wireless protocol Wi-Fi + Bluetooth 4.2 PMU AXP2101 Onboard functions 3 buttons (Power + IO38 + Reset) Power supply Micro USB, 18650 battery Antenna 3D WiFi Antenna LoRa antenna GPS ceramic antenna Included 1x LILYGO T-Beam V1.2 CH9102 1x 868 MHz Antenna 1x Soldered 0.96' LCD (128x64) 2x Pin headers Downloads GitHub Schematics

    Out of stock

    € 49,95

    Members € 44,96

  •  -24% LILYGO T - Deck ESP32 - S3 LoRa Development Board - Elektor

    LILYGO LILYGO T-Deck ESP32-S3 LoRa Development Board

    Out of stock

    The T-Deck is a pocket-sized gadget featuring a 2.8-inch IPS LCD display (320 x 240), a mini keyboard, and an ESP32 dual-core processor. While it’s not quite a smartphone, it offers plenty of potential for tech enthusiasts. With some programming know-how, you can transform it into a standalone messaging device or a portable coding platform. Specifications Microcontroller ESP32-S3FN16R8 Dual-core LX7 microprocessor Wireless Connectivity 2.4 GHz Wi-Fi & Bluetooth 5 (LE) Development Arduino, PlatformlO, MicroPython Flash 16 MB PSRAM 8 MB Battery ADC Pin IO04 Onboard functions Trackball, Microphone, Speaker Display 2.8" ST7789 SPI Interface IPS Resolution 320 x 240 (Full viewing angle) Transmit power +22 dBm SX1262 LoRa Transceiver (Frequency) 868 Mhz Dimensions 100 x 68 x 11 mm Included 1x T-Deck ESP32-S3 LoRa 1x FPC antenna (868 MHz) 1x Male pin (6-pin) 1x Power cable Downloads GitHub

    Out of stock

    € 84,95€ 64,95

    Members identical

  •  -40% LILYGO T - Display ESP32 Development Board (16 MB) - Elektor

    LILYGO LILYGO T-Display ESP32 Development Board (16 MB)

    Out of stock

    LILYGO T-Display ESP32 WiFi and Bluetooth Module Development Board 1.14-inch LCD Control BoardSpecifications Chipset Espressif-ESP32 240 MHz Xtensa single-/dual-core 32-bit LX6 microprocessor Flash QSPI flash 16 MB SRAM 520 kB SRAM Button Reset USB to TTL CP2104 Modular interface UART, SPI, SDIO, I²C, LED PWM, TV PWM, I²S, IRGPIO, ADC, capacitor touch sensor, DACLNA pre-amplifier Display IPS ST7789V 1.14 Inch Working voltage 2.7-4.2 V Working current About 67 MA Sleep current About 350 uA Working temperature range -40°C ~ +85°C Size & Weight 51.52 x 25.04 x 8.54 mm (7.81 g) Power Supply USB 5 V/1 A Charging current 500 mA Battery 3.7 V lithium battery JST Connector 2-Pin 1.25 mm USB Type-C WiFi Standard FCC/CE-RED/IC/TELEC/KCC/SRRC/NCC (ESP32 chip) Protocol 802.11 b/g/n (802.11n, speed up to 150 Mbps) A-MPDU and A-MSDU polymerization, support 0.4μS Protection interval Frequency range 2.4~2.5 GHz (2400~2483.5 M) Transmit Power 22 dBm Communication distance 300 m Bluetooth Protocol Meet bluetooth v4.2BR/EDR and BLE standard Radio frequency With -97 dBm sensitivity NZIF receiver Class-1, Class-2 & Class-3 emitter AFH Audio frequency CVSD&SBC audio frequency Software Wi-Fi Mode Station/SoftAP/SoftAP+Station/P2P Security mechanism WPA/WPA2/WPA2-Enterprise/WPS Encryption Type AES/RSA/ECC/SHA Firmware upgrade UART download/OTA (Through network/host to download and write firmware) Software Development Support cloud server development /SDK for user firmware development Networking protocol IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT User Configuration AT + Instruction set, cloud server, Android/iOS app OS FreeRTOS Included 1x T-Display (16 MB) 1x Charging Cable 2x Pin

    Out of stock

    € 24,95€ 14,95

    Members identical

  • LILYGO T - Display RP2040 Development Board - Elektor

    LILYGO LILYGO T-Display RP2040 Development Board

    Out of stock

    LILYGO T-Display RP2040 Raspberry Pi Module 1.14-inch LCD Development Board This board is based on a Raspberry Pi Pico RP2040 with Dual Cortex-M0+ and 4 MB Flash memory. It is equipped with a 1.14-inch full color IPS display. The ST7789V display has a resolution of 135 x 240 pixels and is connected via the SPI interface. Specifications MCU RP2040 Dual ARM Cortex M0+ Flash 4 MB Bus interfaces 2x UART, 2x SPI, 2x I²C, 6x PWM Programming language C/C++, MicroPython Support machine learning library TensorFlow Lite Onboard functions Buttons: IO06+IO07, battery power detection TFT Display 1.14-inch ST7789V IPS LCD Resolution 135 x 240, full color Interface 4-Wire SPI interface Operating temperature -20°C ~ +70°C Working power supply 3.3 V Connector JST-GH 1.25 mm 2-pin Included LILYGO T-Display RP2040 Unsoldered headers JST cable Downloads Pinout GitHub

    Out of stock

    € 19,95

    Members € 17,96

  •  -27% LILYGO T - Display S3 Long Development Board (with Shell) - Elektor

    LILYGO LILYGO T-Display S3 Long Development Board (with Shell)

    The LILYGO T-Display-S3 Long is a versatile development board powered by the ESP32-S3R8 dual-core LX7 microprocessor. It features a 3.4-inch capacitive touch TFT LCD with a resolution of 180x640 pixels, providing a responsive interface for various applications. This board is ideal for developers seeking a compact yet powerful solution for projects requiring touch input and wireless communication. Its compatibility with popular programming environments ensures a smooth development experience. Specifications MCU ESP32-S3R8 Dual-core LX7 microprocessor Wireless Connectivity Wi-Fi 802.11, BLE 5 + BT Mesh Programming Platform Arduino IDE, VS Code Flash 16 MB PSRAM 8 MB Bat voltage detection IO02 Onboard functions Boot + Reset Button, Battery Switch Display 3.4" Capacitive Touch TFT LCD Color depth 565, 666 Resolution 180 x 640 (RGB) Working power supply 3.3 V Interface QSPI Included 1x T-Display S3 Long 1x Power cable 2x STEMMA QT/Qwiic interface cable (P352) 1x Female pin (double row) Downloads GitHub

    € 54,95€ 39,95

    Members identical

  • LILYGO T - Display - GD32 RISC - V Development Board - Elektor

    LILYGO LILYGO T-Display-GD32 RISC-V Development Board

    Out of stock

    The LILYGO TTGO T-Display-GD32 is a compact and minimalist development board featuring a powerful GD32VF103CBT6 RISC-V microcontroller. Ideal for IoT applications, wearables, and rapid prototyping, it provides versatile connectivity options like GPIO, SPI, UART, and I²C interfaces. Thanks to its efficient RISC-V architecture and clear, high-quality screen, this board is perfect for small projects requiring graphical interfaces or data visualization in a space-saving form factor. Specifications Chipset GD32VF103CBT6 FLASH 128 kB SRAM 32 kB On-board clock 108 MHz crystal oscillator Working Voltage 2.7-3.6 V Button BOOT - RESET LCD ST7789 1.14" IPS 240 x 135 USB to TTL CP2104 Modular interface TIMER, UART, SPI, I²C, PWM, ADC, DAC, CAN, USBOTG Working Temperature Range −40~85°C Peripheral Button, RGB LED, SD slot, LCD Power Supply Input USB 5 V @ 1 A Charging Current 500 mA Battery Input 3.7-4.2 V USB USB-C Dimensions 51.49 x 25.2 x 10 mm Weight 10 g Downloads GitHub

    Out of stock

    € 22,95

    Members € 20,66

  • LILYGO T - Display - S3 ESP32 - S3 Development Board (with Headers) - Elektor

    LILYGO LILYGO T-Display-S3 ESP32-S3 Development Board (with Headers)

    Out of stock

    LILYGO T-Display-S3 ESP32-S3 1.9-inch ST7789 LCD Display Development Board WiFi Bluetooth 5.0 Wireless Module 170x320 Resolution T-Display-S3 is a development board whose main control chip is ESP32-S3. It is equipped with a 1.9-inch LCD color screen and two programmable buttons. Communication using the I8080 interface Retains the same layout design as T-Display. You can directly use ESP32S3 for USB communication or programming. Specifications MCU ESP32-S3R8 Dual-core LX7 microprocessor Wireless Connectivity Wi-Fi 802.11, BLE 5 + BT Mesh Programming Platform Arduino IDE Micropython Flash 16 MB PSRAM 8 MB Bat voltage detection IO04 Onboard functions Boot + Reset + IO14 Button Display 1.9" diagonal, Full-color TFT LCD Drive Chip ST7789V Resolution 170 x 320 (RGB) 8-Bit Parallel Interface Working power supply 3.3 V Support STEMMA QT/Qwiic Connector JST-GH 1.25 mm 2-pin Downloads Pinout GitHub

    Out of stock

    € 29,95

    Members € 26,96

  •  -39% LILYGO T - Journal ESP32 Camera Module Development Board (Fish - eye Lens) - Elektor

    LILYGO LILYGO T-Journal ESP32 Camera Module Development Board (Fish-eye Lens)

    Out of stock

    The T-Journal is a cheap ESP32 Camera Development Board that features an OV2640 camera, an antenna, a 0.91 inch OLED display, some exposed GPIOs, and a micro-USB interface. It makes it easy and quick to upload code to the board. Specifications Chipset Expressif-ESP32-PCIO-D4 240 MHz Xtensa single-/dual-core 32-bit LX6 microprocessor FLASH QSPI flash/SRAM, up to 4x 16 MB SRAM 520 kB SRAM KEY reset, IO32 Display 0.91' SSD1306 Power indicator lamp red USB to TTL CP2104 Camera OV2640, 2 Megapixel Steering engine analog servo On-board clock 40 MHz crystal oscillator Working voltage 2.3-3.6 V Working current about 160 mA Working temperature range -40℃ ~ +85℃ Size 64.57 x 23.98 mm Power Supply USB 5 V/1 A Charging current 1 A Battery 3.7 V lithium battery WiFi Standard FCC/CE/TELEC/KCC/SRRC/NCC (ESP32-chip) Protocol 802.11 b/g/n/e/i (802.11n, speed up to 150 Mbps) A-MPDU and A-MSDU polymerization, support 0.4 μS Protection interval Frequency range 2.4 GHz~2.5 GHz (2400 M ~ 2483.5 M) Transmit Power 22 dBm Communication distance 300m Bluetooth Protocol meet bluetooth v4.2BR/EDR and BLE standard Radio frequency with -98 dBm sensitivity NZIF receiver Class-1, Class-2 & Class-3 emitter AFH Audio frequency CVSD & SBC audio frequency Software Wifi Mode Station/SoftAP/SoftAP+Station/P2P Security mechanism WPA/WPA2/WPA2-Enterprise/WPS Encryption Type AES/RSA/ECC/SHA Firmware upgrade UART download/OTA (Through network/host to download and write firmware) Software Development Support cloud server development /SDK for user firmware development Networking protocol IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT User Configuration AT + Instruction set, cloud server, Android/iOS app OS FreeRTOS Included 1x ESP32 Camera Module (Fish-eye Lens) 1x Wi-Fi Antenna 1x Power Line Downloads Camera library for Arduino

    Out of stock

    € 32,95€ 19,95

    Members identical

  •  -33% LILYGO T - Journal ESP32 Camera Module Development Board (Normal Lens) - Elektor

    LILYGO LILYGO T-Journal ESP32 Camera Module Development Board (Normal Lens)

    Out of stock

    The T-Journal is a cheap ESP32 Camera Development Board that features an OV2640 camera, an antenna, a 0.91-inch OLED display, some exposed GPIOs, and a micro-USB interface. It makes it easy and quick to upload code to the board. Specifications Chipset Expressif-ESP32-PCIO-D4 240 MHz Xtensa single-/dual-core 32-bit LX6 microprocessor FLASH QSPI flash/SRAM, up to 4x 16 MB SRAM 520 kB SRAM KEY reset, IO32 Display 0.91' SSD1306 Power indicator lamp red USB to TTL CP2104 Camera OV2640, 2 Megapixel Steering engine analog servo On-board clock 40 MHz crystal oscillator Working voltage 2.3-3.6 V Working current about 160 mA Working temperature range -40℃ ~ +85℃ Size 64.57 x 23.98 mm Power Supply USB 5 V/1 A Charging current 1 A Battery 3.7 V lithium battery WiFi Standard FCC/CE/TELEC/KCC/SRRC/NCC (ESP32-chip) Protocol 802.11 b/g/n/e/i (802.11n, speed up to 150 Mbps) A-MPDU and A-MSDU polymerization, support 0.4 μS Protection interval Frequency range 2.4 GHz~2.5 GHz (2400 M ~ 2483.5 M) Transmit Power 22 dBm Communication distance 300m Bluetooth Protocol meet bluetooth v4.2BR/EDR and BLE standard Radio frequency with -98 dBm sensitivity NZIF receiver Class-1, Class-2 & Class-3 emitter AFH Audio frequency CVSD & SBC audio frequency Software Wifi Mode Station/SoftAP/SoftAP+Station/P2P Security mechanism WPA/WPA2/WPA2-Enterprise/WPS Encryption Type AES/RSA/ECC/SHA Firmware upgrade UART download/OTA(Through network/host to download and write firmware) Software Development Support cloud server development /SDK for user firmware development Networking protocol IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT User Configuration AT + Instruction set, cloud server, Android/iOS app OS FreeRTOS Included 1x ESP32 Camera Module (Normal Lens) 1x Wi-Fi Antenna 1x Power Line Downloads Camera library for Arduino

    Out of stock

    € 29,95€ 19,95

    Members identical

  •  -22% LILYGO T - Panel S3 Development Board - Elektor

    LILYGO LILYGO T-Panel S3 Development Board

    Out of stock

    The LILYGO T-Panel S3 is a versatile development board designed for IoT applications, featuring a 4-inch IPS LCD with a 480x480 resolution. Powered by the ESP32-S3 microcontroller, it offers 2.4 GHz Wi-Fi and Bluetooth 5 (LE) connectivity, with 16 MB of flash memory and 8 MB of PSRAM. The board supports development environments such as Arduino, PlatformIO-IDE, and MicroPython. Notably, it includes a capacitive touch interface, enhancing user interaction capabilities. Onboard functions comprise Boot (IO00), Reset, and two additional keys, providing flexibility for various applications. This combination of features makes the T-Panel S3 suitable for a wide range of IoT projects and smart device control interfaces. Specifications MCU1 ESP32-S3 Flash 16 MB PSRAM 8 MB Wireless Connectivity 2.4 GHz Wi-Fi + Bluetooth 5 (LE) MCU2 ESP32-H2 Flash 4 MB Wireless Connectivity IEEE 802.15.4 + Bluetooth 5 (LE) Developing Arduino, PlatformIO-IDE, Micropython Display 4.0" 480x480 IPS ST7701S LCD Resolution 480 x 480 (RGB) Interface SPI + RGB Compatibility library Arduino_ GFX, LVGL Onboard functions QWiiCx2 + TF Card + AntennaESP32 4x Button= S3(Boot + RST) + H2(Boot + RST) Transceiver Module RS485 Using bus communication protocol UART Included 1x T-Panel S3 1x Female pin (2x 8x1.27) Downloads GitHub

    Out of stock

    € 89,95€ 69,95

    Members identical

  •  -17% LILYGO T - PicoC3 Development Board - Elektor

    LILYGO LILYGO T-PicoC3 Development Board

    Out of stock

    T-PicoC3 is LILYGO's first motherboard with dual MCUs – equipped with Raspberry Pi RP2040 and ESP32-C3 chip (supporting WiFi and Bluetooth).Specifications MCU RP2040 Dual ARM Cortex-M0+ Flash 4 MB Programming language C/C++, MicroPython Support machine leraning library TensorFlow Lite Onboard functions Buttons: IO06+IO07, battery power detection 1.14 inch ST7789V IPS LCD Resolution 135 x 240 Display Full-color TFT Interface 4-Wire SPI Power supply 3.3 V Operating temperature -20~70°C Dimensions 2.4 x 5.3 cm (W x H) DownloadsGitHub

    Out of stock

    € 17,95€ 14,95

    Members identical

  • Linux PC Based Measurement Electronics (E - book) - Elektor

    Elektor Digital Linux PC-based Measurement Electronics (E-book)

    This book is intended as a highly-practical guide for Hobbyists, Engineers and Scientists wishing to build measurement and control systems to be controlled by a local or remote Personal Computer running the Linux operating system. Both hardware and software aspects of designing typical embedded systems are covered in detail with schematics, code listings and full descriptions. Numerous examples have been designed to show clearly how straightforward it can be to create the interfaces between digital and analog electronics, with programming techniques for creating control software for both local and remote systems. Hardware developers will appreciate the variety of circuits, including a novel, low cost modulated wireless link and will discover how using Matlab® overcomes the need for specialist programming skills. Software developers will appreciate how a better understanding of circuits plus the freedom offered by Linux to directly control at the register level enables them to optimize related programs. There is no need to buy special equipment or expensive software tools in order to create embedded projects covered in this book. You can build such quality systems quickly using popular low-cost electronic components and free distributed or low-cost software tools. Some knowledge of basic electronics plus the very basics of C programming only is required. Many projects in this book are developed using Matlab® being a very popular worldwide computational tool for research in engineering and science. The book provides a detailed description of how to combine the power of Matlab® with practical electronics. With an emphasis on learning by doing, readers are encouraged by examples to program with ease; the book provides clear guidelines as to the appropriate programming techniques “on the fly”. Complete and well-documented source code is provided for all projects. If you want to learn how to quickly build Linux-based applications able to collect, process and display data on a PC from various analog and digital sensors, how to control circuitry attached to a computer, then even how to pass data via a network or control your embedded system wirelessly and more – then this is the book for you! Features of this Book Use the power, flexibility and control offered only by a Linux operating system on a PC. Use a free, distributed downloadable GNU C compiler Use (optional) a low-cost Student Version of Matlab®. Use low-cost electronic sub-assemblies for projects. Improve your skills in electronics, programming, networking and wireless design. A full chapter is dedicated to controlling your sound card for audio input and output purposes. Program sound using OSS and ALSA. Learn how to combine electronic circuits, software, networks and wireless technologies in the complete embedded system.

    € 29,95

    Members € 23,96

  • Lo - Fi - ESP32 based LoRa Wireless Communication Device (EU868) - Elektor

    SB Components Lo-Fi - ESP32 based LoRa Wireless Communication Device (EU868)

    Lo-Fi (ESP32 + LoRa combination) is the perfect solution for anyone looking to establish long-range wireless communication in a variety of applications with WiFi capabilities. LoRa offers exceptional range and easy connectivity, it allows you to seamlessly communicate with devices up to 5 km away. Devices provide an efficient and trustworthy choice for long-range wireless communication in addition to WiFi access to link internet clouds best suited for Internet of Things applications, enabling connectivity in remote and challenging settings. Features Device powered by powerful ESP32 S3 WROOM-1 which is having Xtensa dual-core 32-bit LX7 microprocessor, up to 240 MHz Inbuilt Wi-Fi & Bluetooth LE for wireless connectivity Type C interface for Programming/Power 1.14" TFT display for visual interactions GPIO breakouts for interfacing additional peripherals Breadboard compatible for easy DIY breadboarding projects 2 separate user programmable buttons along with Reset and Boot buttons 3.7 V Lithium Battery connector for a portable use case with an onboard charging option Use new generation LoRa spread spectrum to ensure stable communication For LoRa, faster speed and a longer data transmission range of up to 5 km Applications Internet of Things (IoT) Smart Home Automation Agricultural Automation Emergency Services Environmental Monitoring Industrial Automation Specifications Microcontroller: ESP32 S3 WROOM-1 Wireless Interface: WiFi, BLE, LoRa Protocol: 802.11b/g/n, Bluetooth 5.0 Memory Size: 16 MB Flash, 384 kB ROM, 8 MB SRAM Supply Voltage: 5 V Operating Voltage: 3.3 V Display Size: 1.14” Display Type: TFT Display resolution: 135 x 240 pixels Display driver: ST7789V Display Appearance: RGB Display color: 4k/65k/252k Display Luminance: 400 Cd/m² Operating Temperature: -20 to 70°C Storage Temperature: -30 to 80°C LoRa Module Specs: Carrier Frequency (License Free ISM): 868 MHz Chip: Based on SX1262 RF chip Range: 5Km Transmitting Power: 22 dBm Receiving Sensitivity: -147 dbm Data Rate: Up to 62.5 kbps Communication Port: UART serial Downloads Getting started guide Hardware design files Included 1x Lo-Fi Board 1x Antenna (868 MHz)

    € 49,95

    Members € 44,96

  • Logic Analyzers in Practice - Elektor

    Elektor Publishing Logic Analyzers in Practice

    PC USB Logic Analyzers with Arduino, Raspberry Pi, and Co. Step-by-step instructions guide you through the analysis of modern protocols such as I²C, SPI, UART, RS-232, NeoPixel, WS28xx, HD44780 and 1-Wire protocols. With the help of numerous experimental circuits based on the Raspberry Pi Pico, Arduino Uno and the Bus Pirate, you will learn the practical application of popular USB logic analyzers. All the experimental circuits presented in this book have been fully tested and are fully functional. The necessary program listings are included – no special programming or electronics knowledge is required for these circuits. The programming languages used are MicroPython and C along with the development environments Thonny and Arduino IDE. This book uses several models of flexible and widely available USB logic analyzers and shows the strengths and weaknesses of each price range. You will learn about the criteria that matter for your work and be able to find the right device for you. Whether Arduino, Raspberry Pi or Raspberry Pi Pico, the example circuits shown allow you to get started quickly with protocol analysis and can also serve as a basis for your own experiments. After reading this book, you will be familiar with all the important terms and contexts, conduct your own experiments, analyze protocols independently, culminating in a comprehensive knowledge set of digital signals and protocols.

    € 34,95

    Members € 31,46

  • Logic Analyzers in Practice (E - book) - Elektor

    Elektor Digital Logic Analyzers in Practice (E-book)

    PC USB Logic Analyzers with Arduino, Raspberry Pi, and Co. Step-by-step instructions guide you through the analysis of modern protocols such as I²C, SPI, UART, RS-232, NeoPixel, WS28xx, HD44780 and 1-Wire protocols. With the help of numerous experimental circuits based on the Raspberry Pi Pico, Arduino Uno and the Bus Pirate, you will learn the practical application of popular USB logic analyzers. All the experimental circuits presented in this book have been fully tested and are fully functional. The necessary program listings are included – no special programming or electronics knowledge is required for these circuits. The programming languages used are MicroPython and C along with the development environments Thonny and Arduino IDE. This book uses several models of flexible and widely available USB logic analyzers and shows the strengths and weaknesses of each price range. You will learn about the criteria that matter for your work and be able to find the right device for you. Whether Arduino, Raspberry Pi or Raspberry Pi Pico, the example circuits shown allow you to get started quickly with protocol analysis and can also serve as a basis for your own experiments. After reading this book, you will be familiar with all the important terms and contexts, conduct your own experiments, analyze protocols independently, culminating in a comprehensive knowledge set of digital signals and protocols.

    € 29,95

    Members € 23,96

  •  -27% Loomia Double Backlit User Interface - Elektor

    Loomia Loomia Double Backlit User Interface

    Double Backlit User Interface: The dual backlit button is just like the single backlit button, but twice the fun! Use this component when you need to operate something up and down, or right to left. Using cut-out vinyl, you can create icons and stickers on fabric that show your users button functionality. Features Component: 4.6 x 6.3" Individual Button Size: 1" radius circle Press Durability: Up to 10,000 presses under 5lbf LED Voltage: 5 V

    € 54,95€ 39,95

    Members identical

Login

Forgot password?

Don't have an account yet?
Create account