Products

1324 products

  •  -33% MakePython ESP32 Development Kit - Elektor

    Elektor Bundles MakePython ESP32 Development Kit

    Learn how to use the ESP32 Microcontroller and MicroPython programming in your future projects! The project book, written by well-known Elektor author Dogan Ibrahim, holds many software- and hardware-based projects especially developed for the MakePython ESP32 Development Kit. The kit comes with several LEDs, sensors, and actuators. The kit will help you acquire the basic knowledge to create IoT projects. The book’s fully evaluated projects feature all the supplied components. Each project includes a block diagram, a circuit diagram, a full program listing, and a complete program description. Included in the kit 1x MakePython ESP32 development board with color LCD 1x Ultrasonic ranging module 1x Temperature and humidity sensor 1x Buzzer module 1x DS18B20 module 1x Infrared module 1x Potentiometer 1x WS2812 module 1x Sound sensor 1x Vibration sensor 1x Photosensitive resistance module 1x Pulse sensor 1x Servo motor 1x USB cable 2x Button 2x Breadboard 45x Jumper wire 10x Resistor 330R 10x LED (Red) 10x LED (Green) 1x Project book (206 pages) 46 Projects in the Book LED Projects Blinking LED Flashing SOS Blinking LED – using a timer Alternately flashing LEDs Button control Changing the LED flashing rate using pushbutton interrupts Chasing-LEDs Binary-counting LEDs Christmas lights (random-flashing 8 LEDs) Electronic dice Lucky day of the week Pulsewidth Modulation (PWM) Projects Generate a 1000-Hz PWM waveform with 50% duty cycle LED brightness control Measuring the frequency and duty cycle of a PWM waveform Melody maker Simple electronic organ Servo motor control Servo motor DS18B20 thermometer Analog To Digital Converter (ADC) Projects Voltmeter Plotting the analog input voltage ESP32 internal temperature sensor Ohmmeter Photosensitive resistance module Digital To Analog Converter (DAC) Projects Generating fixed voltages Generating a sawtooth-wave signal Generating a triangular-wave signal Arbitrary periodic waveform Generating a sinewave signal Generating accurate sinewave signal using timer interrupts Using The OLED Display Seconds counter Event counter DS18B20 OLED based digital thermometer ON-OFF temperature controller Measuring the temperature and humidity Ultrasonic distance measurement Height of a person (stadiometer) Heart rate (pulse) measurement Other Sensors Supplied with the Kit Theft alarm Sound-activated light Infrared obstacle avoidance with buzzer WS2812 RGB LED ring Timestamping temperature and humidity readings Network Programming Wi-Fi scanner Remote control from the Internet browser (using a smartphone or PC) – Web Server Storing temperature and humidity data in the Cloud Low-Power Operation Using a timer to wake up the processor

    € 89,95€ 59,95

    Members identical

  •  -25% MakerDisk M.2 SSD with pre - installed Raspberry Pi OS (128 GB) - Elektor

    Cytron MakerDisk M.2 SSD with pre-installed Raspberry Pi OS (128 GB)

    This NVMe M.2 2242 SSD (128 GB) is already pre-installed with Raspberry Pi OS for immediate use with the Raspberry Pi 5 M.2 HAT+. Features Form factor: M.2 2242 M-Key NVMe SSD Pre-loaded with Raspberry Pi OS High level of ability to endure shock, vibration, and high temperature SMART TRIM support PCIe Interface: PCIe Gen3 x2 Compliance: NVMe 1.3, PCI Express Base 3.1 Capacity: 128 GB Speed: Read: Up to 1700 MB/s Write: Up to 600 MB/s Shock: 1500 G/0.5 ms Operation temperature: 0°C-70°C Up to 30x faster than a typical hard disk drive Boosts burst write performance, making it ideal for typical computer workloads Faster boot-up, shutdown, application load, and response for Raspberry Pi Downloads Datasheet

    € 49,95€ 37,50

    Members identical

  •  -20% Makerfabs 4G LTE Hat for Raspberry Pi - Elektor

    Makerfabs Makerfabs 4G LTE Hat for Raspberry Pi

    Use your Raspberry Pi with LTE Cat-4 4G/3G/2G Communication & GNSS Positioning, for remote data transmission/phone/SMS, suitable for remote area monitoring/alarming. This 4G hat is based on the Maduino Zero 4G LTE, but without any controller. It needs to work with Raspberry Pi (2x20 connector and USB). The Raspberry communicate with this HAT with simple AT commands (via the TX/RX Pins in the 2X20 connector) for simple controls, such as SMS/Phone/GNSS; with the USB connecting and proper Linux driver installed, the 4G hat act as a 4G network adapter, that can access to the Internet and transmit data with 4G protocol. Compares to normal USB 4G dongle, this Raspberry Pi 4G Hat has the following advantages: Onboard Audio codec, that you can have a call directly with your RPI, or auto broadcasting with a loudspeaker; Hardware UART communication, hardware controlling of Power(by 2s pulse of PI GPIO or POWERKEY button), hardware controlling of flight mode; Dual LTE 4G antenna, plus GPS antenna Features LTE Cat-4, with uplink rate 50 Mbps and downlink rate 150 Mbps GNSS Positioning Audio Driver NAU8810 Supports dial-up, phone, SMS, TCP, UDP, DTMF, HTTP, FTP, and so on Supports GPS, BeiDou, Glonass, LBS base station positioning SIM card slot, supports 1.8V/3V SIM card Onboard audio jack and audio decoder for making a telephone call 2x LED indicators, easy to monitor the working status Supports SIM application toolkit: SAT Class 3, GSM 11.14 Release 99, USAT Included 1x 4G LTE Hat For Raspberry Pi 1x GPS antenna 2x 4G LTE antenna 2x Standoff Downloads GitHub

    € 99,95€ 79,95

    Members identical

  •  -29% Makerfabs 6 DOF Robot Arm with Raspberry Pi Pico - Elektor

    Makerfabs Makerfabs 6 DOF Robot Arm with Raspberry Pi Pico

    Out of stock

    Raspberry Pi Pico is a great solution for servo control. With the hardware PIO, the Pico can control the servos by hardware, without usage of times/ interrupts, and limit the usage of the MCU. Driving the six servos on this robotic arm takes very little MCU capacity, so the MCU can deal with other tasks easily. This 6 DOF robotic arm is a handy tool for teaching and learning robotics and Pico usage. There are five MG996s (four are needed in the assembly and one for backup) and three 25-kg servos (two needed in the assembly and one for backup). Note that for the servos the angle ranges from 0° to 180°. All the servos need to be preset to 90° (with logic HIGH 1.5 ms duty) before the assembly to avoid servo damage during movement. This product includes all the necessary items needed to create a robotic arm based on Pico and Micropython. Included 1x Raspberry Pi Pico 1x Raspberry Pi Pico Servo Driver 1x Set '6 DOF Robot Arm' 1x 5 V/5 A Power Supply 2x Backup Servo Downloads GitHub Wiki Assembly Guide Assembly Video

    Out of stock

    € 139,95€ 99,95

    Members identical

  •  -20% Makerfabs Acoustic Levitator DIY Kit - Elektor

    Makerfabs Makerfabs Acoustic Levitator DIY Kit

    Out of stock

    Use acoustic waves to hold in mid-air samples such as water, ants, or tiny electric components. This technology has been previously restricted to a couple of research labs but now you can make it at your home. Included 76x 10 mm 40 kHz transducers 1x Arduino Nano 1x L298N Dual Motor Drive Board 1x Power Switch 1x DC Adaptor 9 V 1x Jumper Wires 6x Black and Red Wire Some Exposed Wire 1x 3D-Printed TinyLev Downloads Instructables Scientific Information

    Out of stock

    € 99,95€ 79,95

    Members identical

  •  -20% Makerfabs DIY ESP32 SmartClock Kit with Weather Forecasting - Elektor

    Makerfabs Makerfabs DIY ESP32 SmartClock Kit with Weather Forecasting

    Out of stock

    This is a soldering kit for the starters to learn soldering. After 1-2 hours soldering and assembly, and easy steps to set the Wifi name/password with a phone, you will get: A real-time clock, it will get the world real-time from the Network timing protocol, you can set your local time zone easily An Alarm clock, with loud noise An Online world weather forecaster, about the local temperature/weather, you can easily change/alter your address/cities without any re-programming To reduce the soldering difficulty, all the SMD parts have been soldered, you only need to solder the THT parts, and then set the Wifi network with a phone, and finally turn on the power to enjoy the success. Included ESP32 SmartClock kit mainboard Batch of capacitors & resistors/connectors Colorful LCD module Lipo battery Acrylic boards Nuts & screws Downloads User Manual Source code on GitHub

    Out of stock

    € 34,95€ 27,95

    Members identical

  •  -13% Makerfabs DIY Thermal Camera ESP32S3 Display with MLX90640 - Elektor

    Makerfabs Makerfabs DIY Thermal Camera ESP32S3 Display with MLX90640

    Out of stock

    This is a simple DIY kit using Makerfabs' ESP32-S3 3.5" Parallel TFT with Touch (320x480) and Mabee MLX90640 module to monitor the temperature and display on the screen or save to SD card. It is a nice tool for circuit testing and non-contact temperature sensing. Features Based on ESP32-S3, 3.5-inch TFT with capacitive touch Auto check the highest temperature point Temperature accuracy: <1°C Suitable for applications such as human temperature checking or electronic boards debugging All hardware & software are open, users can modify & add more functions, such WiFi/Bluetooth data transmitting Downloads Default firmware New remote monitoring firmware Blog

    Out of stock

    € 79,95€ 69,95

    Members identical

  • Makerfabs Jumper Wires Combo Pack - Elektor

    Makerfabs Makerfabs Jumper Wires Combo Pack

    Out of stock

    With these jumper wires (length: 20 cm) you can connect a Raspberry Pi or an Arduino with breadboards. Each cable consists of 40 individual wires/pins which can also be separated. Included 1x 40-pins female to female 1x 40-pins male to male 1x 40-pins male to female

    Out of stock

    € 6,95

    Members € 6,26

  •  -27% Makerfabs LoRa Soil Monitoring & Irrigation Kit (EU868) - Elektor

    Makerfabs Makerfabs LoRa Soil Monitoring & Irrigation Kit (EU868)

    Out of stock

    This kit is based on ESP32 and LoRa. The ESP32 3.5" display is the console for the system, it receives the LoRa message from LoRa moisture sensors (support up to 8 sensors in the default firmware), and send control commands to LoRa 4-channel MOSFET (2 4-channel MOSFET supported, with totally 8 channels), to control the connected valves open/close, and thus to control the irrigation for multiple points. Features Ready to use: Firmware are pre-programmed for all the modules before shipping, the user can only power them up and set the ID to the console, and start to use. Suitable for none-programmers, in 3 minutes to create filed application. With Lora wireless connection: The monitor & control range can be up to few kilometer, suitable for garden/small farm. Soil moisture sensor with good corrosion resistance, can be used at least half an year with 2 AAA battery. Easy to install: Compares to cheap solution with wires, which is hard to implement in files application, there the connection wires do not needed, the whole installation clean and easy; The valves can be connected Lora MOSFET easily. Hardware & Software Open: To study Lora & FreeRTOS. The ESP32 display console/Lora Soil Moisture Sensor/LoRa MOSFE are all programmed with Arduino. For programmers/engineers, can development further more specialized application. Based on ESP32, with WiFi connection, the console can also access to internet, the create much more applications including the moisture data updating to internet for remote monitor, and remote control with MQTT. Included 1x ESP32 3.5' Display (without camera) 1x Lora Expansion for ESP32 Display 2x Lora Moisture Sensor 1x Lora 4-channel MOSFET 1x 12 V Power Supply Water Pipe (5 m) 1x 1-input & 4-output Pipe Joint Downloads Instructable: Soil Monitoring & Irrigation with LoRa GitHub

    Out of stock

    € 149,95€ 109,95

    Members identical

  • Makerfabs NFC Stickers (6 pcs) - Elektor

    Makerfabs Makerfabs NFC Stickers (6 pcs)

    Features NFC chip material: PET + Etching antenna Chip: NTAG216 (compatible with all NFC phones) Frequency: 13.56 MHz (High Frequency) Reading time: 1 - 2 ms Storage capacity: 888 bytes Read and write times: > 100,000 times Reading distance: 0 - 5 mm Data retention: > 10 years NFC chip size: Diameter 30 mm Non-contact, no friction, the failure rate is small, low maintenance costs Read rate, verification speed, which can effectively save time and improve efficiency Waterproof, dustproof, anti-vibration No power comes with an antenna, embedded encryption control logic, and communication logic circuit Included 1x NFC Stickers (6-color kit)

    € 9,95

    Members € 8,96

  •  -31% Makerfabs PN532 NFC Module V3 - Elektor

    Makerfabs Makerfabs PN532 NFC Module V3

    Out of stock

    NFC is a popular technology in recent years. Almost all the high-end phones in the market support NFC. Near field communication (NFC) is a set of standards for smartphones and similar devices to establish radio communication with each other by touching them together or bringing them into close proximity, usually no more than a few centimeters. This module is built around NXP PN532. NXP PN532 is very popular in the NFC area. Makerfabs developed this module based on the official document. A library for this module is available. Features Small dimension and easy to embed into your project Support I²C, SPI, and HSU (High-Speed UART), easy to change between those modes Support RFID reading and writing, P2P communication with peers, NFC with Android phone Up to 5~7 cm reading distance On-board level shifter, Standard 5 V TTL for I²C and UART, 3.3 V TTL SPI Arduino compatible, plugin and play with our shield RFID reader/writer supports Mifare 1k, 4k, Ultralight, and DESFire cards ISO/IEC 14443-4 cards such as CD97BX, CD light, Desfire, P5CN072 (SMX) Innovision Jewel cards such as IRT5001 cards FeliCa cards such as RCS_860 and RCS_854 Downloads Usage NFC Library

    Out of stock

    € 12,95€ 8,95

    Members identical

  •  -34% Makerfabs RC522 RFID Reader with Cards Kit (13.56 MHz) - Elektor

    Makerfabs Makerfabs RC522 RFID Reader with Cards Kit (13.56 MHz)

    This RC522 RFID Kit includes a 13.56 MHz RF reader module that uses an RC522 IC and two S50 RFID cards to help you learn and add the 13.56 MHz RF transition to your project. The MF RC522 is a highly integrated transmission module for contactless communication at 13.56 MHz. RC522 supports ISO 14443A/MIFARE mode. The module uses SPI to communicate with microcontrollers. The open-hardware community already has a lot of projects exploiting the RC522 – RFID Communication, using Arduino. Features Operating Current: 13-26 mA/DC 3.3 V Idle Current: 10-13 mA/DC 3.3 V Sleep Current: <80 uA Peak Current: <30 mA Operating Frequency: 13.56 MHz Supported card types: mifare1 S50, mifare1 S70 MIFARE Ultralight, Mifare Pro, MIFARE DESFire Environmental Operating Temperature: -20-80 degrees Celsius Environmental Storage Temperature: -40-85 degrees Celsius Relative humidity: relative humidity 5% -95% Reader Distance: ≥50 mm/1.95' (Mifare 1) Module Size: 40×60 mm/1.57*2.34' Module interfaces SPI Parameter Data transfer rate: maximum 10 Mbit/s Included 1x RFID-RC522 Module 1x Standard S50 Blank Card 1x S50 special-shaped card (as shown by the keyring shape) 1x Straight Pin 1x Curved Pin Downloads Arduino Library MFRC522 Datasheet MFRC522_ANT Mifare S50

    € 5,95€ 3,95

    Members identical

  •  -14% Makerfabs SenseLoRa Industrial - grade Air Monitor (EU868) - Elektor

    Makerfabs Makerfabs SenseLoRa Industrial-grade Air Monitor (EU868)

    This air monitor is specifically used for monitoring greenhouses. It detects: Air temperature & Humidity CO2 concentration Light intensity Then transmit the data via LoRa P2P to the LoRa receiver (on your desk in the room) so that the user can monitor the field status or have it recorded for long-term analysis. This module monitors the greenhouse field status and sends all sensor data regularly via LoRa P2P in Jason format. This LoRa signal can be received by the Makerfabs LoRa receiver and thus displayed/recorded/analyzed on the PC. The monitoring name/data cycle can be set with a phone, so it can be easily implemented into the file. This air monitor is powered by an internal LiPo battery charged by a solar panel and can be used for at least 1 year with the default setting (cycle 1 hour). Features ESP32S3 module onboard with the WiFi and Bluetooth Ready to use: Power it on directly to use Module name/signal interval settable easily by phone IP68 water-proof Temperature: -40°C~80°C, ±0.3 Humidity: 0~100% moisture CO2: 0~1000 ppm Light intensity: 1-65535 lx Communication distance: Lora: >3 km 1000 mAh battery, charger IC onboard Solar panel 6 W, ensure system works Downloads Manual BH1750 Datasheet SGP30 Datasheet

    € 69,95€ 59,95

    Members identical

  •  -43% Makerfabs SenseLoRa LoRa Receiver (EU868) - Elektor

    Makerfabs Makerfabs SenseLoRa LoRa Receiver (EU868)

    Out of stock

    LoRaWAN is beneficial, but sometimes it is unnecessary, difficult, or expensive to implement a LoRaWAN network, especially when considering cloud integration. For example, monitoring soil moisture in your backyard or tracking conditions in your farm's greenhouse may not require a full LoRaWAN setup. This LoRa receiver is designed to work with Makerfabs SenseLora modules. It receives LoRa signals and forwards them to a computer, allowing the data to be displayed, recorded, and analyzed on the computer. Downloads Manual Software

    Out of stock

    € 34,95€ 19,95

    Members identical

  • Markers for the EggBot (Pack of 6) - Elektor

    STAEDTLER Markers for the EggBot (Pack of 6)

    Features: Universal pen for use on almost all surfaces Suitable for overhead projection Also suitable for use on CDs/DVDs Excellent smudge-proof and waterproof qualities on almost all surfaces Dries in seconds, therefore ideal for left-handed users Permanent, low-odour ink Lightfast colours: black, brown Weatherproof colour black Stand-up STAEDTLER box PP barrel and cap guarantee long service life DRY SAFE – can be left uncapped for days without drying up (Standard atmosphere according to ISO 554) Airplane-safe - automatic pressure equalization prevents pen from leaking on board aircraft Xylene and toluene-free ink Superb colour brilliancy Line width superfine approx. 0.4 mm Refillable

    € 10,95

    Members € 9,86

  •  -18% Mastering FPGA Chip Design - Elektor

    Elektor Publishing Mastering FPGA Chip Design

    For Speed, Area, Power, and Reliability This book teaches the fundamentals of FPGA operation, covering basic CMOS transistor theory to designing digital FPGA chips using LUTs, flip-flops, and embedded memories. Ideal for electrical engineers aiming to design large digital chips using FPGA technology. Discover: The inner workings of FPGA architecture and functionality. Hardware Description Languages (HDL) like Verilog and VHDL. The EDA tool flow for converting HDL source into a functional FPGA chip design. Insider tips for reliable, low power, and high performance FPGA designs. Example designs include: Computer-to-FPGA UART serial communication. An open-source Sump3 logic analyzer implementation. A fully functional graphics controller. What you need: Digilent BASYS3 or similar FPGA eval board with an AMD/Xilinx FPGA. Vivado EDA tool suite (available for download from AMD website free of charge). Project source files available from author’s GitHub site.

    € 39,95€ 32,95

    Members identical

  • Mastering FPGA Chip Design (E - book) - Elektor

    Elektor Digital Mastering FPGA Chip Design (E-book)

    For Speed, Area, Power, and Reliability This book teaches the fundamentals of FPGA operation, covering basic CMOS transistor theory to designing digital FPGA chips using LUTs, flip-flops, and embedded memories. Ideal for electrical engineers aiming to design large digital chips using FPGA technology. Discover: The inner workings of FPGA architecture and functionality. Hardware Description Languages (HDL) like Verilog and VHDL. The EDA tool flow for converting HDL source into a functional FPGA chip design. Insider tips for reliable, low power, and high performance FPGA designs. Example designs include: Computer-to-FPGA UART serial communication. An open-source Sump3 logic analyzer implementation. A fully functional graphics controller. What you need: Digilent BASYS3 or similar FPGA eval board with an AMD/Xilinx FPGA. Vivado EDA tool suite (available for download from AMD website free of charge). Project source files available from author’s GitHub site.

    € 32,95

    Members € 26,36

  • Mastering Microcontrollers Helped by Arduino (3rd Edition) - Elektor

    Elektor Publishing Mastering Microcontrollers Helped by Arduino (3rd Edition)

    Third, extended and revised edition with AVR Playground and Elektor Uno R4 Arduino boards have become hugely successful. They are simple to use and inexpensive. This book will not only familiarize you with the world of Arduino but it will also teach you how to program microcontrollers in general. In this book theory is put into practice on an Arduino board using the Arduino programming environment. Some hardware is developed too: a multi-purpose shield to build some of the experiments from the first 10 chapters on; the AVR Playground, a real Arduino-based microcontroller development board for comfortable application development, and the Elektor Uno R4, an Arduino Uno R3 on steroids. The author, an Elektor Expert, provides the reader with the basic theoretical knowledge necessary to program any microcontroller: inputs and outputs (analog and digital), interrupts, communication busses (RS-232, SPI, I²C, 1-wire, SMBus, etc.), timers, and much more. The programs and sketches presented in the book show how to use various common electronic components: matrix keyboards, displays (LED, alphanumeric and graphic color LCD), motors, sensors (temperature, pressure, humidity, sound, light, and infrared), rotary encoders, piezo buzzers, pushbuttons, relays, etc. This book will be your first book about microcontrollers with a happy ending! This book is for you if you are a beginner in microcontrollers, an Arduino user (hobbyist, tinkerer, artist, etc.) wishing to deepen your knowledge,an Electronics Graduate under Undergraduate student or a teacher looking for ideas. Thanks to Arduino the implementation of the presented concepts is simple and fun. Some of the proposed projects are very original: Money Game Misophone (a musical fork) Car GPS Scrambler Weather Station DCF77 Decoder Illegal Time Transmitter Infrared Remote Manipulator Annoying Sound Generator Italian Horn Alarm Overheating Detector PID Controller Data Logger SVG File Oscilloscope 6-Channel Voltmeter All projects and code examples in this book have been tried and tested on an Arduino Uno board. They should also work with the Arduino Mega and every other compatible board that exposes the Arduino shield extension connectors. Please note For this book, the author has designed a versatile printed circuit board that can be stacked on an Arduino board. The assembly can be used not only to try out many of the projects presented in this book but also allows for new exercises that in turn provide the opportunity to discover new techniques. Also available is a kit of parts including the PCB and all components. With this kit you can build most of the circuits described in the book and more. Datasheets Active Components Used (.PDF file): ATmega328 (Arduino Uno) ATmega2560 (Arduino Mega 2560) BC547 (bipolar transistor, chapters 7, 8, 9) BD139 (bipolar power transistor, chapter 10) BS170 (N-MOS transistor, chapter 8) DCF77 (receiver module, chapter 9) DS18B20 (temperature sensor, chapter 10) DS18S20 (temperature sensor, chapter 10) HP03S (pressure sensor, chapter 8) IRF630 (N-MOS power transistor, chapter 7) IRF9630 (P-MOS power transistor, chapter 7) LMC6464 (quad op-amp, chapter 7) MLX90614 (infrared sensor, chapter 10) SHT11 (humidity sensor, chapter 8) TS922 (dual op-amp, chapter 9) TSOP34836 (infrared receiver, chapter 9) TSOP1736 (infrared receiver, chapter 9) MPX4115 (analogue pressure sensor, chapter 11) MCCOG21605B6W-SPTLYI (I²C LCD, chapter 12) SST25VF016B (SPI EEPROM, chapter 13) About the author Clemens Valens, born in the Netherlands, lives in France since 1997. Manager at Elektor Labs and Webmaster of ElektorLabs, in love with electronics, he develops microcontroller systems for fun, and sometimes for his employer too. Polyglot—he is fluent in C, C++, PASCAL, BASIC and several assembler dialects—Clemens spends most of his time on his computer while his wife, their two children and two cats try to attract his attention (only the cats succeed). Visit the author’s website: www.polyvalens.com.Authentic testimony of Hervé M., one of the first readers of the book:'I almost cried with joy when this book made me understand things in only three sentences that seemed previously completely impenetrable.'

    € 49,95

    Members € 44,96

  • Mastering Microcontrollers Helped by Arduino (3rd Edition) | E - book - Elektor

    Elektor Digital Mastering Microcontrollers Helped by Arduino (3rd Edition) | E-book

    Third, extended and revised edition with AVR Playground and Elektor Uno R4 Arduino boards have become hugely successful. They are simple to use and inexpensive. This book will not only familiarize you with the world of Arduino but it will also teach you how to program microcontrollers in general. In this book theory is put into practice on an Arduino board using the Arduino programming environment. Some hardware is developed too: a multi-purpose shield to build some of the experiments from the first 10 chapters on; the AVR Playground, a real Arduino-based microcontroller development board for comfortable application development, and the Elektor Uno R4, an Arduino Uno R3 on steroids. The author, an Elektor Expert, provides the reader with the basic theoretical knowledge necessary to program any microcontroller: inputs and outputs (analog and digital), interrupts, communication busses (RS-232, SPI, I²C, 1-wire, SMBus, etc.), timers, and much more. The programs and sketches presented in the book show how to use various common electronic components: matrix keyboards, displays (LED, alphanumeric and graphic color LCD), motors, sensors (temperature, pressure, humidity, sound, light, and infrared), rotary encoders, piezo buzzers, pushbuttons, relays, etc. This book will be your first book about microcontrollers with a happy ending! This book is for you if you are a beginner in microcontrollers, an Arduino user (hobbyist, tinkerer, artist, etc.) wishing to deepen your knowledge,an Electronics Graduate under Undergraduate student or a teacher looking for ideas. Thanks to Arduino the implementation of the presented concepts is simple and fun. Some of the proposed projects are very original: Money Game Misophone (a musical fork) Car GPS Scrambler Weather Station DCF77 Decoder Illegal Time Transmitter Infrared Remote Manipulator Annoying Sound Generator Italian Horn Alarm Overheating Detector PID Controller Data Logger SVG File Oscilloscope 6-Channel Voltmeter All projects and code examples in this book have been tried and tested on an Arduino Uno board. They should also work with the Arduino Mega and every other compatible board that exposes the Arduino shield extension connectors. Please note For this book, the author has designed a versatile printed circuit board that can be stacked on an Arduino board. The assembly can be used not only to try out many of the projects presented in this book but also allows for new exercises that in turn provide the opportunity to discover new techniques. Also available is a kit of parts including the PCB and all components. With this kit you can build most of the circuits described in the book and more. Datasheets Active Components Used (.PDF file): ATmega328 (Arduino Uno) ATmega2560 (Arduino Mega 2560) BC547 (bipolar transistor, chapters 7, 8, 9) BD139 (bipolar power transistor, chapter 10) BS170 (N-MOS transistor, chapter 8) DCF77 (receiver module, chapter 9) DS18B20 (temperature sensor, chapter 10) DS18S20 (temperature sensor, chapter 10) HP03S (pressure sensor, chapter 8) IRF630 (N-MOS power transistor, chapter 7) IRF9630 (P-MOS power transistor, chapter 7) LMC6464 (quad op-amp, chapter 7) MLX90614 (infrared sensor, chapter 10) SHT11 (humidity sensor, chapter 8) TS922 (dual op-amp, chapter 9) TSOP34836 (infrared receiver, chapter 9) TSOP1736 (infrared receiver, chapter 9) MPX4115 (analogue pressure sensor, chapter 11) MCCOG21605B6W-SPTLYI (I²C LCD, chapter 12) SST25VF016B (SPI EEPROM, chapter 13) About the author Clemens Valens, born in the Netherlands, lives in France since 1997. Manager at Elektor Labs and Webmaster of ElektorLabs, in love with electronics, he develops microcontroller systems for fun, and sometimes for his employer too. Polyglot—he is fluent in C, C++, PASCAL, BASIC and several assembler dialects—Clemens spends most of his time on his computer while his wife, their two children and two cats try to attract his attention (only the cats succeed). Visit the author’s website: www.polyvalens.com.Authentic testimony of Hervé M., one of the first readers of the book:'I almost cried with joy when this book made me understand things in only three sentences that seemed previously completely impenetrable.'

    € 34,95

    Members € 27,96

  • Mastering Surface Mount Technology (E - book) - Elektor

    Elektor Digital Mastering Surface Mount Technology (E-book)

    Mastering Surface Mount Technology takes you on a crash course in techniques, tips and know-how to successfully introduce surface mount technology in your workflow. Even if you are on a budget you too can jumpstart your designs with advanced fine pitch parts. Besides explaining methodology and equipment, attention is given to SMT parts technologies and soldering methods. In a step by step way, several projects introduce you to handling surface mount parts and the required skills to successfully build SMT assemblies. Many practical tips and tricks are disclosed that bring surface mount technology into everyone's reach without breaking the bank.

    € 34,95

    Members € 27,96

  • Mastering the Arduino Uno R4 - Elektor

    Elektor Publishing Mastering the Arduino Uno R4

    Programming and Projects for the Minima and WiFi Based on the low-cost 8-bit ATmega328P processor, the Arduino Uno R3 board is likely to score as the most popular Arduino family member so far, and this workhorse has been with us for many years. Recently, the new Arduino Uno R4 was released, based on a 48-MHz, 32-bit Cortex-M4 processor with a huge amount of SRAM and flash memory. Additionally, a higher-precision ADC and a new DAC are added to the design. The new board also supports the CAN Bus with an interface. Two versions of the board are available: Uno R4 Minima, and Uno R4 WiFi. This book is about using these new boards to develop many different and interesting projects with just a handful of parts and external modules, which are available as a kit from Elektor. All projects described in the book have been fully tested on the Uno R4 Minima or the Uno R4 WiFi board, as appropriate. The project topics include the reading, control, and driving of many components and modules in the kit as well as on the relevant Uno R4 board, including LEDs 7-segment displays (using timer interrupts) LCDs Sensors RFID Reader 4×4 Keypad Real-time clock (RTC) Joystick 8×8 LED matrix Motors DAC (Digital-to-analog converter) LED matrix WiFi connectivity Serial UART CAN bus Infrared controller and receiver Simulators … all in creative and educational ways with the project operation and associated software explained in great detail.

    € 39,95

    Members € 35,96

  • Mastering the Arduino Uno R4 (E - book) - Elektor

    Elektor Digital Mastering the Arduino Uno R4 (E-book)

    Programming and Projects for the Minima and WiFi Based on the low-cost 8-bit ATmega328P processor, the Arduino Uno R3 board is likely to score as the most popular Arduino family member so far, and this workhorse has been with us for many years. Recently, the new Arduino Uno R4 was released, based on a 48-MHz, 32-bit Cortex-M4 processor with a huge amount of SRAM and flash memory. Additionally, a higher-precision ADC and a new DAC are added to the design. The new board also supports the CAN Bus with an interface. Two versions of the board are available: Uno R4 Minima, and Uno R4 WiFi. This book is about using these new boards to develop many different and interesting projects with just a handful of parts and external modules, which are available as a kit from Elektor. All projects described in the book have been fully tested on the Uno R4 Minima or the Uno R4 WiFi board, as appropriate. The project topics include the reading, control, and driving of many components and modules in the kit as well as on the relevant Uno R4 board, including LEDs 7-segment displays (using timer interrupts) LCDs Sensors RFID Reader 4×4 Keypad Real-time clock (RTC) Joystick 8×8 LED matrix Motors DAC (Digital-to-analog converter) LED matrix WiFi connectivity Serial UART CAN bus Infrared controller and receiver Simulators … all in creative and educational ways with the project operation and associated software explained in great detail.

    € 32,95

    Members € 26,36

  •  -17% Mastering the Arduino Uno R4 Bundle - Elektor

    Elektor Bundles Mastering the Arduino Uno R4 Bundle

    Out of stock

    Mastering the Arduino Uno R4 Based on the low-cost 8-bit ATmega328P processor, the Arduino Uno R3 board is likely to score as the most popular Arduino family member so far, and this workhorse has been with us for many years. Recently, the new Arduino Uno R4 was released, based on a 48-MHz, 32-bit Cortex-M4 processor with a huge amount of SRAM and flash memory. Additionally, a higher-precision ADC and a new DAC are added to the design. The new board also supports the CAN Bus with an interface. Two versions of the board are available: Uno R4 Minima, and Uno R4 WiFi. This book is about using these new boards to develop many different and interesting projects with just a handful of parts and external modules, which are available as a kit from Elektor. All projects described in the book have been fully tested on the Uno R4 Minima or the Uno R4 WiFi board, as appropriate. The project topics include the reading, control, and driving of many components and modules in the kit as well as on the relevant Uno R4 board, including LEDs 7-segment displays (using timer interrupts) LCDs Sensors RFID Reader 4×4 Keypad Real-time clock (RTC) Joystick 8×8 LED matrix Motors DAC (Digital-to-analog converter) LED matrix WiFi connectivity Serial UART CAN bus Infrared controller and receiver Simulators … all in creative and educational ways with the project operation and associated software explained in great detail. Arduino Uno R4 Minima The Arduino Uno R4 is powered by the Renesas RA4M1 32-bit ARM Cortex-M4 processor, providing a significant boost in processing power, memory, and functionality. The WiFi version comes with an ESP32-S3 WiFi module in addition to the RA4M1, expanding creative opportunities for makers and engineers. The Uno R4 Minima is an affordable option for those who don't need the additional features. The Arduino Uno R4 runs at 48 MHz, which provides a 3x increase over the popular Uno R3. Additionally, SRAM has been upgraded from 2 kB to 32 kB, and flash memory from 32 kB to 256 kB to support more complex projects. Responding to community feedback, the USB port is now USB-C, and the maximum power supply voltage has been raised to 24 V with an enhanced thermal design. The board includes a CAN bus and an SPI port, enabling users to reduce wiring and perform parallel tasks by connecting multiple shields. A 12-bit analog DAC is also provided on the board. Specifications Microcontroller Renesas RA4M1 (ARM Cortex-M4) USB USB-C Programming Port Pins Digital I/O Pins 14 Pins Analog input pins 6 DAC 1 PWM pins 6 Communication UART 1x I²C 1x SPI 1x CAN 1x CAN Bus Power Circuit operating voltage 5 V Input voltage (VIN) 6-24 V DC Current per I/O Pin 8 mA Clock speed Main core 48 MHz Memory RA4M1 256 kB Flash, 32 kB RAM Dimensions 68.9 x 53.4 mm Downloads Datasheet Schematics This bundle contains: Mastering the Arduino Uno R4 (normal price: €40) Arduino Uno R4 Minima (normal price: €20)

    Out of stock

    € 59,95€ 49,95

    Members identical

  • Mastering the I²C Bus (E - book) - Elektor

    Elektor Digital Mastering the I²C Bus (E-book)

    Mastering the I²C Bus takes you on an exploratory journey of the I²C Bus and its applications. Besides the Bus protocol, plenty of attention is given to the practical applications and designing a stable system. The most common I²C compatible chip classes are covered in detail. Two experimentation boards are available that allow for rapid prototype development. These boards are completed by a USB to I²C probe and a software framework to control I²C devices from your computer. All samples programs can be downloaded from the 'Attachments/Downloads' section on this page. Projects built on Board 1: USB to I²C Interface, PCA 9534 Protected Input, PCA 9534 Protected Output, PCA 9553 PWM LED Controller, 24xxx EEPROM Module, LM75 Temperature Sensor, PCA8563 Real-time Clock with Battery Backup, LCD and Keyboard Module, Bus Power Supply. Projects built on Board 2: Protected Input, Protected Output, LM75 Temperature Sensor, PCF8574 I/O Board, SAA1064 LED Display, PCA9544 Bus Expander, MCP40D17 Potentiometer, PCF8591 AD/DA, ADC121 A/D Converter, MCP4725 D/A Converter, 24xxx EEPROM Module.

    € 34,95

    Members € 27,96

Login

Forgot password?

Don't have an account yet?
Create account