The Mendocino Motor AR O-8 is a magnetically levitated, solar powered electric motor as a kit.
Light Becomes Movement
The solar-powered Mendocino motor seems to float in the air. At first glance, you can't see why the rotor is turning at all. This is the magic of the motor.
The Lorentz force is a very small electrical force. In a classroom setting, it is detected by a current swing in the magnetic field. With the Mendocino motor, we have succeeded in developing a beautiful application that uses this weak force for propulsion. Due to its concealed base magnet, the motor will fascinate technically inclined observers.
In bright sunlight, the motor can reach a speed of up to 1,000 rpm. More impressive, however, is that even the faint glow of an ample tea light (D = 6 cm with a flame height of about 2 cm) is sufficient to drive the motor. The motor is not yet an alternative source of energy, even though it looks tempting. Presumably, it will remain an attractive model until a resourceful mind disproves this assumption.
Dimensions
All solar cells 65 x 20 mm
Mirror diameter: 25 mm
Rotor weight: approx. 150 g
Model length: 160 mm
Model width: 85 mm
Frame height: approx. 85 mm
Frame material: black acrylic
Tube made of highly polished aluminum
Mirror color: silver
The Mendocino motor’s easy-to-follow instruction manual includes more than 70 illustrations. It describes a safe and practical approach to construction but also gives you the freedom to try your solutions.
Partly Pre-Assembled Kit
A portion of the kit comes pre-assembled. Bonding the borosilicate glass pane to the acrylic surface requires specialized knowledge and aids. We do not want to impose this on the hobbyist. For instance, the base magnet is attached to the aluminum tube.
As a hobbyist, you will need some know-how and appropriate tools: carpet knife, soldering iron and tin, hot glue, pliers, and a clamp or ferrule to fix the supplied assembly aid. A lot of fun is guaranteed!
The EggBot is a friendly art robot that can draw on spherical or egg-shaped objects from the size of a ping pong ball to that of a small Grapefruit – roughly 1.25 to 4.25 inches in diameter (3-10 cm).
You can use EggBot on all kinds of spherical objects. Use it to create the most impressive Easter eggs, personalize Christmas ornaments or even golf balls or light bulbs. The EggBot is not just a cool gadget; it’s also a great introduction to CNC (computer numerical control) and do-it-yourself robotics. All of the electronics and software are designed to be hackable and repurposable, so you could easily computer control an Etch-a-Sketch or create something totally new.
The EggBot software allows you to control the ‘bot from within Inkscape – a superb freeware illustration program – on Mac, Windows, or Linux computers. You can draw an image directly, trace a photograph, or import designs from other programs. You can also control the EggBot directly from many other programs that have the ability to send serial commands over a USB port.
Universal power supply included! (with US-EU adapter).
This LR1302 module is a new generation LoRaWAN gateway module. It adopts a mini-PCIe form factor design and features low power consumption and high performance. Based on Semtech Network's SX1302 LoRaWA baseband chip, the LR1302 gateway module provides gateway products with potential capacity for long-distance wireless transmission. Compared to the previous SX1301 and SX1308 LoRa chips, the SX1302 chip has higher sensitivity, lower power consumption and lower operating temperature. It supports 8-channel data transmission, improves communication efficiency and capacity, and supports the connection and data transmission of more devices. It reserves two antenna interfaces, one for transmitting and receiving LoRa signals and one U.FL (IPEX) interface for independent transmission. It also has a metal shield to protect against external interference and provide a reliable communications environment. Designed specifically for the IoT space, the LR1302 is suitable for a variety of IoT applications. Whether used in smart cities, agriculture, industrial automation or other fields, the LR1302 module can provide reliable connections and efficient data transmission. Features Uses Semtech SX1302 baseband LoRa chip with extremely low power consumptionand excellent performance Mini-PCIe form factor and compact design make it easier to integrate into various gateway devices, suitable for space-constrained application scenarios, and provide flexible deployment options Support 8-channeldata transmission, provide more efficient communication efficiency and capacity Ultra-low operating temperatureeliminates the need for additional cooling and reduces the size of the LoRaWAN gateway Uses SX1250 TX/RX front end with sensitivity down to -139 dBm@SF12; TX power up to 26 dBm @3.3 V Specifications Frequency 863-870 MHz (EU868) Chipset Semtech SX1302 Chip Sensitivity -125 dBm @125K/SF7-139 dBm @125K/SF12 TX Power 26 dBm (with 3.3 V power supply) Bandwidth 125/250/500 kHz Channel 8 channel LEDs Power: GreenConfig: RedTX: GreenRX: Blue Form Factor Mini PCIe, 52-pin Golden Finger Power Consumption (SPI version) Standby: 7.5 mATX maximum power: 415 mARX: 40 mA Power Consumption (USB version) Standby: 20 mATX maximum power: 425 mARX: 53 mA LBT(Listen Before Talk) Support Antenna Connector U.FL Operating Temperature -40 to 85°C Dimensions (W x L) 30 x 50.95 mm Note LR1302 LoRaWAN HAT for Raspberry Pi is not included. Downloads Wiki SX1302 Datasheet Schematic Diagram
The ESP-01 Adapter 3.3-5 V is the ideal solution for connecting an ESP-01 ESP8266 module to a 5 V system such as Arduino Uno.
Features
Adapter module for ESP-01 Wi-Fi module
3.3 V voltage regulator circuit & onboard level conversion for easy use of 5 V microcontroller with ESP-01 Wi-Fi module
Compatible with Uno R3
4.5~5.5 V (on-board 3.3 V LDO Regulator)
Interface logic voltage: 3.3-5 V compatible (on-board level shift)
Current: 0-240 mA
Features 2.13' capacitive touch e-Paper display, 5-point touch, 250×122 pixels Supports waken up by user-defined gesture No backlight, keeps displaying last content for a long time even when power down Ultra low power consumption, basically power is only required for refreshing Standard Raspberry Pi 40PIN GPIO extension header, supports Raspberry Pi Zero / Zero W Comes with development resources and manual (examples for Raspberry Pi) Included 1x 2.13inch Touch e-Paper HAT 1x ABS case 1x Screwdriver 1x Thermal tape 1x Rubber feet 4pcs 2x Screws Downloads Documentation
SPIDriver shows you what’s happening on the SPI bus in real time, so no more guessing about the bus state. Its purpose is to make understanding the functioning of SPI hardware more intuitive. It's useful if you're into debugging hardware or simply introduce a class to SPI for the first time.
You can directly control LEDs and LCD displays just by having SPIDriver and you won't have to deal with microcontrollers. It's also a useful tool for examining, backing up and cloning an SPI flash as well as reading and writing SPI flash in circuit.
SPIDriver is also applicable if you want to drive, test and evaluate different displays.
With the help of current and voltage monitoring you'll be able to detect electrical problems at early stages. Thanks to the included color coded wires you can hook SPIDriver up without much effort; no pinout diagram required. It includes 3.3 V and 5 V supplies for your device, plus a high-side current meter.
SPIDriver comes with software to control it from:
a GUI
the command-line
C and C++ using a single source file
Python 2 and 3, using a module
Technical features
Live display shows you exactly what it’s doing all the time
Sustained SPI transfers at 500 Kbps
USB line voltage monitor to detect supply problems, to 0.01 V
Target device high-side current measurement, to 5 mA
Two auxiliary output signals, A and B
Two dedicated power outlines: of 3.3 V and 5 V
All signals color coded to match jumper colors
All signals are 3.3 V, and are 5 V tolerant
Uses an FTDI USB serial adapter, and Silicon Labs automotive-grade EFM8 controller
Also reports uptime, temperature, and running CRC of all traffic
All sensors and signals controlled using a simple serial protocol
GUI, command-line, C/C++, and Python 2/3 host software provided for Windows, Mac, and Linux
Details
Maximum power out current: up to 470 mA
Signal current: up to 10 mA
Device current: up to 25 mA
Dimensions: 61 mm x 49 mm x 6 mm
Interface: USB 2.0, micro USB connector
Contents (SPIDriver Core)
1x SPIDriver
1x Set of hookup jumpers
The Qwiic pHAT connects the I²C bus (GND, 3.3V, SDA, and SCL) on your Raspberry Pi to an array of Qwiic connectors on the HAT. Since the Qwiic system allows for daisy-chaining boards with different addresses, you can stack as many sensors as you’d like to create a tower of sensing power! The Qwiic pHAT V2.0 has four Qwiic connect ports (two on its side and two vertical), all on the same I²C bus. We've also made sure to add a simple 5V screw terminal to power boards that may need more than 3.3V and a general-purpose button (with the option to shut down the Pi with a script). Also updated, the mounting holes found on the board are now spaced to accommodate the typical Qwiic board dimension of 1.0' x 1.0'. This HAT is compatible with any Raspberry Pi that utilizes the standard 2x20 GPIO header and the NVIDIA Jetson Nano and Google Coral. Features 4 x Qwiic Connection Ports 1 x 5V Tolerant Screw Terminal 1 x General Purpose Button HAT-compatible 40-pin Female Header
The slim, hackable and attractive case for Raspberry Pi 5.
Pibow 5 lets you access all the ports and connectors on your Raspberry Pi and even has a clever little tab that will let you push the Pi 5's brand new power button whilst it's safely ensconced in its case. The case is designed to fit neatly around Raspberry Pi's Active Cooler.
Features
Compatible with Raspberry Pi 5 Official Active Cooler
Super-slimline profile
Fully HAT/pHAT compatible
Protects your Raspberry Pi 5
Clear top leaves Raspberry Pi 5 visible (so you can gaze upon its wonder).
GPIO cut-out
Leaves all ports and connectors accessible
External Power Button Nubbin via compliant mechanism magic
Mounting holes on the base that will accommodate M2.5 screws/bolts and the studs on popular Danish ABS construction blocks
Made from lightweight high-quality cast acrylic
Great for hacking and tinkering
Crafted out of five unique layers including a transparent top that leaves your Raspberry Pi visible inside. Each layer is laser-cut from colourful high-quality cast acrylic and once stacked they securely contain a Raspberry Pi 5 while leaving the primary ports and GPIO accessible.
This case is lightweight and ideal for mounting to any surface. No tools are required for assembly or disassembly!
This filter rejects signals between 88-108 MHz with around 50 dB or more attenuation. A broadcast FM band-stop filter is very useful for use with SDRs as in some areas broadcast FM signals can be so strong that they overload the SDR, causing very poor performance in other bands. You can tell if this is the case for you if you see images of BCFM stations or interference that looks like a WFM signal at other frequencies when you turn up the gain.
The filter is based on a simple 7th order Chebyshev design. The 3 dB roll off is at 76 MHz and 122 MHz. 88 MHz is attenuated by almost 60 dB, and 108 MHz is attenuated by 45-50 dB. Outside of the pass band the insertion loss is practically zero below 500 MHz, less than 0.5 dB from 500 MHz – 1 GHz, and below 1.5 dB between 1-2 GHz. Between 2-3 GHz performance degrades slightly, but insertion loss remains below 1.5 dB for most frequencies. The filter can also pass up to 80 mA of DC current (probably can do more) and has negligible DC resistance.
The filter comes in a 28 x 28 x 13 mm aluminum enclosure and uses female SMA connectors on each end. Included in the package is also a SMA male to SMA male straight barrel adapter.
Discover the perfect case for your Raspberry Pi 5. FLIRC has made the power button accessible and improved it with LED support. Enjoy the familiar aluminium core heatsink you've come to love, nestled between two matte black soft-touch panels. Customised to fit into your entertainment system. Built-in Heat Sink This is the first affordable Raspberry Pi case made from aluminium. FLIRC wanted to ensure that form didn't take precedence over function, so they used the aluminium body of the case as a built-in heat sink. Included with the case is a thermal pad and 4 screws for easy assembly. Stability and Access FLIRC has built in rubber feet to elevate the case so that it simply floats under your TV. In addition to the built-in heatsink, small ventilation slots on the bottom ensure that the Raspberry Pi stays cool. The GPIO pins are accessible via the slot at the bottom of the case, and the SD card does not need to be disassembled to reach them. Power Button and LED Support The power button of the Raspberry Pi 5 is natively supported by the FLIRC housing. The activity LEDs are also clearly visible.
2x16 Character LCD Module (blue/white)
Pin No. Pin Name Descriptions 1 VSS Ground 2 VDD Supply voltage for logic 3 V0 Input voltage for LCD 4 RS Data / Instruction Regster Select (H : Data signal, L : Instruction signal) 5 R/W Read / Write (H : Read mode, L : Write mode) 6 E Enable signal 7 DB0 Data bit 0 8 DB1 Data bit 1 9 DB2 Data bit 2 10 DB3 Data bit 3 11 DB4 Data bit 4 12 DB5 Data bit 5 13 DB6 Data bit 6 14 DB7 Data bit 7 15 LED_A Backlight Anode 16 LED_K Backlight Cathode
Specifications Material: Conductive fastener tape: nylon Interior surface: conductive carbon Grounding cord: PU coil cord with resistor of 1 Mohm Band size: 2 x 23 cm Band resistivity: < 50 Ohm Color: blue
The TOPDON TC004 SE is a reliable thermal camera designed for locating and tackling industrial, electrical, building, HVAC, and automotive problems with confidence. With an impressive battery life of up to 21 hours (at low brightness), it ensures all-day use. Its video recording capability allows you to monitor maintenance history and reassure customers that systems are functioning safely.
The TC004 SE enhances your diagnostic capabilities, excelling in pinpointing and resolving issues across multiple industries, including industrial, electrical, building, HVAC, and automotive.
Features
21-hour runtime for reliable all-day use (at low brightness)
Supports video recording for later review
Store up to 160,000 images with built-in 32 GB storage
Professional PC software for expanded display and thermal data analysis
Switch between 1x, 2x, and 4x digital zoom to capture every detail
Detailed & smooth images with 256 x 192 IR resolution and 25 Hz refresh rate
Mount on a tripod for steady monitoring
Two built-in LED lights for inspecting hard-to-reach areas
Specifications
TC004
TC004 SE
TC004 Lite
Display
2.8" Color TFT (320 x 240 Pixels)
2.8" Color TFT (320 x 240 Pixels)
2.8" Color TFT (320 x 240 Pixels)
IR light resolution
256 x 192 Pixels
256 x 192 Pixels
160 x 120 Pixels
Spectral range
8~14 μm
8~14 μm
8~14 μm
FOV
52.5° x 39.5°
56° x 42°
40° x 30°
Storage
2 GB RAM + 16 GB TF card
32 GB Built-in
512 MB Built-in
Measuring range
−20~350°C (−4~662°F)
−20~550°C (−4~1022°F)
−20~550°C (−4~1022°F)
Temperature resolution
0.1°C (0.18°F)
0.1°C (0.18°F)
0.1°C (0.18°F)
Measuring modes
Center spot/hot spot/cold spot
Center spot/hot spot/cold spot
Center spot/hot spot/cold spot
Measuring accuracy
±2°C or ±2%
±2°C or ±2%
±2°C or ±2%
Frame rate
25 Hz
25 Hz
25 Hz
Focal length
3.2 mm (0.12")
3.2 mm (0.12")
2.6 mm (0.1")
NETD
<40 mK
<40 mK
<40 mK
Magnification
1x/2x/4x (digital zoom)
1x/2x/4x (digital zoom)
1x/2x/4x (digital zoom)
Tripod screw hole
Yes
Yes
Yes
High/Low temperature alarm
Yes
Yes
Yes
LED flashlight
Yes
Yes
No
Video recording
Yes
Yes
No
Auto shutdown
5 min, 10 min, 20 min, OFF
5 min, 10 min, 20 min, OFF
5 min, 10 min, 20 min, OFF
Battery
Built-in 5000 mAh battery
Built-in 5300 mAh battery
Built-in 2900 mAh battery
Charging time
4 h
4 h
4 h
Standby time
12 h
16 h (High Brightness)21 h (Low Brightness)
15 h
Operating system
Standalone use/Windows devices
Standalone use/Windows devices
Standalone use
PC-based analysis
Supports image analysis with PC
Yes
No
Dimensions
240 x 70 x 90 mm
240 x 70 x 90 mm
240 x 70 x 90 mm
Weight
520 g
520 g
520 g
Included
1x TOPDON TC004 SE Thermal Imaging Camera
1x USB Power Supply
4x Plugs (EU, UK, US, and AU)
1x USB Cable
1x Storage Bag
1x Manual
Downloads
Manual
PC Software (Windows)
ESP32-S3-GEEK is a geek development board with built-in USB-A port, 1.14-inch LCD screen, TF card slot and other peripherals. It supports 2.4 GHz WiFi and BLE 5, with built-in 16 MB Flash & 2 MB PSRAM, provides I²C port, UART port and GPIO header for more possibilities for your project.
Features
Adopts ESP32-S3R2 chip with Xtensa 32-bit LX7 dual-core processor, capable of running at 240 MHz
Built in 512 KB SRAM, 384 KB ROM, 2 MB of on-chip PSRAM, and onboard 16 MB Flash memory
Onboard 1.14-inch 240x135 pixels 65K color IPS LCD display
Integrated 2.4 GHz WiFi and Bluetooth LE wireless communication
WiFi supports Infrastructure BSS in Station, SoftAP, and Station + SoftAP modes
WiFi supports 1T1R mode with data rate up to 150 Mbps
Bluetooth supports high power mode (20 dBm)
Internal co-existence mechanism between Wi-Fi and Bluetooth to share the same antenna
Onboard 3-pin UART port, 3-pin GPIO header and 4-pin I²C port
Equipped with plastic case and cables
Provides online open-source demo and resources, more convenient for learning and development
Dimensions: 61.0 x 24.5 x 9.0 mm
Downloads
Wiki
The TC001 is a portable camera that transforms your Android smartphone/tablet or Windows laptop into a powerful thermal imager. Simply download the accompanying app, connect the TC001 to your device’s USB-C port, and access thermal technology once exclusive to specialists.
Ideal for home inspectors, HVAC technicians, electricians, automotive technicians, and even farmers seeking to protect crops and livestock, the TC001 is perfect for professionals across various fields.
Specifications
Resolution
256 x 192 pixels
Pixel Size
12 μm
Spectral Range
8~14 μm
Focal Length
3.2 mm
Temperature Range
−20°C to 550°C (−4°F to 1022°F)
Temperature Accuracy
±2°C or ±2%
Temperature Resolution
0.1°C
Frame Rate
25 Hz
NETD
<40 mK
Field of View
56° x 42°
Color Palettes
10 Colors
High/Low Temperature Alarm
Yes
Compatible Systems
Android/Windows Devices with USB-C
Dimensions
71 x 42 x 14 mm
Weight
30 g
Included
TC001 Thermal Imaging Camera
Multifunctional Adapter Cable (50 cm)
Carrying Bag
Cleaning Cloth
Manual
Downloads
Manual
Datasheet
Android App
Windows App
Raspberry Pi 5 provides two four-lane MIPI connectors, each of which can support either a camera or a display. These connectors use the same 22-way, 0.5 mm-pitch “mini” FPC format as the Compute Module Development Kit, and require adapter cables to connect to the 15-way, 1 mm-pitch “standard” format connectors on current Raspbery Pi camera and display products.These mini-to-standard adapter cables for cameras and displays (note that a camera cable should not be used with a display, and vice versa) are available in 200 mm, 300 mm and 500 mm lengths.
The ESP32-S3 Parallel TFT not only offers more SRAM and ROM (compared to the S2 version), but with Bluetooth 5.0 it is also suitable for applications such as local monitoring and controlling.
The built-in LCD driver ILI9488 uses 16-bit parallel lines to communicate with ESP32-S3, the main clock can be up to 20 MHz, which makes the display smooth enough for video displays. With this display, you can create more IoT display projects.
Features
Controller: ESP32-S3-WROOM-1, PCB Antenna, 16 MB Flash, 2 MB PSRAM, ESP32-S3-WROOM-1-N16R2
Wireless: Wifi & Bluetooth 5.0
LCD: 3.5-inch TFT LCD
Resolution: 480x320
Color: RGB
LCD Interface: 16-bit parallel
LCD Driver: ILI9488
Touch Panel: Capacitive
Touch Panel Driver: FT6236
USB: Dual USB Type-C (one for USB-to-UART and one for native USB)
UART to UART Chip: CP2104
Power Supply: USB Type-C 5.0 V (4.0 V~5.25 V)
Button: Flash button and reset button
Mabee Interface: 1x I²C, 1x GPIO
Backlight Controller: Yes
MicroSD: Yes
Arduino support: Yes
Type-C Power Delivery: Not supported
Operation temperature: -40℃ to +85℃
Dimension: 66 x 84.3 x 12 mm
Weight: 52 g
Downloads
ESP32-S3 Datasheet
GitHub
Wiki
LVGL Demo Code
This kit is the perfect solution for you to communicate with your vehicle's OBD-II interface without visiting a mechanic. It includes a Serial CAN Bus module, an OBD-II Connector, and other accessories to help you do all the diagnostics and data logging with ease. There is also a tutorial which is based on Arduino and you can easily obtain data from your vehicle by following this tutorial.
Features
Fast serial communication with CAN Bus rate up to 1 MB/s
Easy Setup with all components included
Easily get started with the provided Arduino-based tutorials
Multi-platform support (Arduino, Raspberry Pi, Beaglebone Board, etc.)
Included
1x Serial CAN Bus Module
1x OBD-II Connector
1x Screwdriver
1x Cable for CAN Bus
1x Grove Cable
Downloads
Wiki
Arduino Library
Schematics
Raspberry Pi Pico is a great solution for servo control. With the hardware PIO, the Pico can control the servos by hardware, without usage of times/ interrupts, and limit the usage of the MCU. Driving the six servos on this robotic arm takes very little MCU capacity, so the MCU can deal with other tasks easily. This 6 DOF robotic arm is a handy tool for teaching and learning robotics and Pico usage. There are five MG996s (four are needed in the assembly and one for backup) and three 25-kg servos (two needed in the assembly and one for backup). Note that for the servos the angle ranges from 0° to 180°. All the servos need to be preset to 90° (with logic HIGH 1.5 ms duty) before the assembly to avoid servo damage during movement. This product includes all the necessary items needed to create a robotic arm based on Pico and Micropython. Included 1x Raspberry Pi Pico 1x Raspberry Pi Pico Servo Driver 1x Set '6 DOF Robot Arm' 1x 5 V/5 A Power Supply 2x Backup Servo Downloads GitHub Wiki Assembly Guide Assembly Video
Lora technology and Lora devices have been widely used in the field of the Internet of Things (IoT), and more and more people are joining and learning Lora development, making it an indispensable part of the IoT world. To help beginners learn and develop Lora technology better, a Lora development board has been designed specifically for beginners, which uses RP2040 as the main control and is equipped with the RA-08H module that supports Lora and LoRaWAN protocols to help users realize development. RP2040 is a dual-core, high-performance, and low-power ARM Cortex-M0+ architecture chip, suitable for IoT, robots, control, embedded systems, and other application fields. RA-08H is made from the Semtech-authorized ASR6601 RF chip, which supports the 868 MHz frequency band, has a 32 MHz MCU built-in, which has more powerful functions than ordinary RF modules, and also supports AT command control. This board retains various functional interfaces for development, such as the Crowtail interface, the common PIN to PIN header that leads out GPIO ports, and provides 3.3 V and 5 V outputs, suitable for the development and use of commonly used sensors and electronic modules on the market. In addition, the board also reserves RS485 interface, SPI, I²C, and UART interfaces, which can be compatible with more sensors/modules. In addition to the basic development interfaces, the board also integrates some commonly used functions, such as a buzzer, a custom button, red-yellow-green three-color indicator lights, and a 1.8-inch SPI interface LCD screen with a resolution of 128x160. Features Uses RP2040 as the main controller, with two 32-bit ARM Cortex M0+ processor cores (dual-core), and provides more powerful performance Integrates the RA-08H module with 32 MHz MCU, supports the 868 MHz frequency band and AT command control Abundant external interface resources, compatible with Crowtail series modules and other common interface modules on the market Integrates commonly used functions like buzzer, LED light, LCD display and custom button, making it more concise and convenient when creating projects Onboard 1.8-inch 128x160 SPI-TFT-LCD, ST7735S driver chip Compatible with Arduino/Micropython, easy to carry out different projects Specifications Main Chip Raspberry Pi RP2040, built-in 264 KB SRAM, onboard 4 MB Flash Processor Dual Core Arm Cortex-M0+ @ 133 MHz RA-08H Frequency band 803-930 MHz RA-08H Interface External antenna, SMA interface or IPEX first-generation interface LCD Display Onboard 1.8-inch 128x160SPI-TFT-LCD LCD Resolution 128x160 LCD Driver ST7735S (4-wire SPI) Development environment Arduino/MicroPython Interfaces 1x passive buzzer 4x user-defined buttons 6x programmable LEDs 1x RS485 communication interface 8x 5 V Crowtail interfaces (2x analog interfaces, 2x digital interfaces, 2x UART, 2x I²C) 12x 5 V universal pin header IO 14x 3.3 V universal pin header IO 1x 3.3 V/5 V switchable SPI 1x 3.3 V/5 V switchable UART 3x 3.3 V/5 V switchable I²C Working input voltage USB 5 V/1 A Operating temperature -10°C ~ 65°C Dimensions 102 x 76.5 mm (L x W) Included 1x Lora RA-08H Development Board 1x Lora Spring Antenna (868 MHz) 1x Lora Rubber Antenna (868 Mhz) Downloads Wiki
Technical Specifications Dual ARM Cortex-M0+ @ 133 MHz 264 kB on-chip SRAM in six independent banks Support for up to 16 MB of off-chip Flash memory via dedicated QSPI bus DMA controller Fully-connected AHB crossbar Interpolator and integer divider peripherals On-chip programmable LDO to generate core voltage 2x on-chip PLLs to generate USB and core clocks 30x GPIO pins, 4 of which can be used as analogue inputs Peripherals 2x UARTs 2x SPI controllers 2x I²C controllers 16x PWM channels USB 1.1 controller and PHY, with host and device support 8x PIO state machines What you'll get 10x bare RP2040 chips
An easy way to hold parts to the bottom of a PCB while soldering
PartLift holds thru hole parts in place to free up your hands while you solder the legs. A simple but useful tool to go along with your Stickvise. The base pad is non-slip silicone foam, the body of the tool is ABS which provides very light spring tension to hold your part in place. The tip of the tool is made from high temperature silicone that withstands soldering temperatures without being damaged.
Features
PartLift holds thru hole parts in place during soldering
Use with a Stickvise or any low profile PCB holder
The tip is silicone that withstands soldering temperatures
The base pad is non-slip silicone foam
Specifications
Material
Silicone
Dimensions
109 x 40 x 40 mm
Weight
59 g
This ESP32 S3 7-inch IPS 5-point capacitive touch display with an ultra-high resolution of 1024 x 600 pixels is ideal for IoT applications. It is ideal for applications such as home automation. An integrated SD card enables recording/playback of stored data. There are also two Mabee/Grove connectors to connect various sensors to this board to create personal prototype projects in no time.
Specifications
Controller: ESP32-S3-WROOM-1, PCB antenna, 16 MB Flash, 8 MB PSRAM, ESP32-S3-WROOM-1-N16R8
Wireless: Wifi & Bluetooth 5.0
LCD: 7-inch High Lightness IPS
FPS: >30
Resolution: 1024 x 600
LCD interface: RGB 565
Touch panel: Capacitive 5-point touch
Touch panel driver: GT911
USB: Dual USB-C (one for USB-to-UART and one for native USB)
UART to UART chip: CP2104
Power supply: USB-C 5.0 V (4.0 V~5.25 V)
Button: Flash button and reset button
Mabee interface: 1x I²C, 1x GPIO
MicroSD: Yes
Arduino support: Yes
Type-C Power Delivery: Not supported
Operation temperature: −40 to +85°C
Downloads
Wiki
GitHub
ESP32-S3 Datasheet
Screen touch coordinates calibration