This is a 170 mm long 868 MHz 50 hm antenna kit targeted for use with iLabs Challenger LoRa products. The antenna can tilt and swivel making it easy to install it in various applications. The kit also comes with a RF cable assembly containing an SMA (Female) and JK-IPEX/MHF/U.FL for connection to the PCB. The coax is a 1-13 mm 50 Ohm cable and is 100 mm’s long.
LoRaWAN is beneficial, but sometimes it is unnecessary, difficult, or expensive to implement a LoRaWAN network, especially when considering cloud integration. For example, monitoring soil moisture in your backyard or tracking conditions in your farm's greenhouse may not require a full LoRaWAN setup.
This LoRa receiver is designed to work with Makerfabs SenseLora modules. It receives LoRa signals and forwards them to a computer, allowing the data to be displayed, recorded, and analyzed on the computer.
Downloads
Manual
Software
This is a kit for a pan-tilt mechanism explicitly designed for Pixy2. After assembling the kit and connecting it to Pixy2, you'll be able to follow colored objects using the Pan/Tilt demo.
It includes two laser-cut plastic pieces for the base, two different servos for the pan and tilt axes, and all the mounting hardware and cable ties you will need to assemble.
Features
The pan-tilt mechanism for Pixy2 is redesigned, making it smaller and faster than the pan-tilt for the original Pixy.
All necessary hardware is included.
The pan-tilt base is attached directly to an Arduino with Arduino-compatible hole-pattern and includes stand-offs and fasteners.
Several pan-tilt demos are provided that can run using either Arduino, Raspberry Pi or stand-alone (no controller).
Downloads
Manual
Spencer is a DIY voice assistant that will teach you about AI, voice recognition, IoT, and speech synthesis.
Features
Ask about the weather forecast for your area
Hear a joke
Ask him to sing you a song
Set a stopwatch
Make Spencer display custom animations
Laugh at his corny popular culture references
Included
Spencer’s circuit board that includes a pre-soldered 144-pixel LED grid
The brain board – does smart stuff and includes a dual-core processor, a 16 MB flash memory chip, and power-management circuitry
Acrylic casing – this protects Spencer’s innards from the outside world
A big red button
Various smaller components such as resistors and pushbuttons
Micro USB cable for powering your Spencer
5W Speaker
Instruction booklet – ready for your offline knowledge consumption
Here you can find the assembly guide!
Monitor soil moisture, temperature and relative humidity measurement with the Plant Monitor. This board is compatible with the BBC micro:bit, Raspberry Pi and most microcontroller boards. Alligator / croc clip rings Ready soldered header pins for your choice of microcontroller. Easy to use UART serial interface Additional analog output for moisture only Built-in RGB LED Downloads Datasheet Instructions
The Elektor Arduino Nano MCCAB Training Board contains all the components (incl. Arduino Nano) required for the exercises in the "Microcontrollers Hands-on Course for Arduino Starters", such as light-emitting diodes, switches, pushbuttons, acoustic signal transmitters, etc. External sensors, motors or assemblies can also be queried or controlled with this microcontroller training system.
Specifications (Arduino Nano MCCAB Training Board)
Power Supply
Via the USB connection of the connected PC or an external power supply unit (not included)
Operating Voltage
+5 Vcc
Input Voltage
All inputs
0 V to +5 V
VX1 and VX2
+8 V to +12 V (only when using an external power supply)
Hardware periphery
LCD
2x16 characters
Potentiometer P1 & P2
JP3: selection of operating voltage of P1 & P2
Distributor
SV4: Distributor for the operating voltagesSV5, SV6: Distributor for the inputs/outputs of the microcontroller
Switches and buttons
RESET button on the Arduino Nano module 6x pushbutton switches K1 ... K6 6x slide switches S1 ... S6 JP2: Connection of the switches with the inputs of the microcontroller
Buzzer
Piezo buzzer Buzzer1 with jumper on JP6
Indicator lights
11 x LED: Status indicator for the inputs/outputs LED L on the Arduino Nano module, connected to GPIO D13 JP6: Connection of LEDs LD10 ... LD20 with GPIOs D2 ... D12
Serial interfacesSPI & I²C
JP4: Selection of the signal at pin X of the SPI connector SV12 SV9 to SV12: SPI interface (3.3 V/5 V) or I²C interface
Switching output for external devices
SV1, SV7: Switching output (maximum +24 V/160 mA, externally supplied) SV2: 2x13 pins for connection of external modules
3x3 LED matrix(9 red LEDs)
SV3: Columns of the 3x3 LED matrix (outputs D6 ... D8) JP1: Connection of the rows with the GPIOs D3 ... D5
Software
Library MCCABLib
Control of hardware components (switches, buttons, LEDs, 3x3 LED matrix, buzzer) on the MCCAB Training Board
Operating Temperature
Up to +40 °C
Dimensions
100 x 100 x 20 mm
Specifications (Arduino Nano)
Microcontroller
ATmega328P
Architecture
AVR
Operating Voltage
5 V
Flash Memory
32 KB, of which 2 KB used by bootloader
SRAM
2 KB
Clock Speed
16 MHz
Analog IN Pins
8
EEPROM
1 KB
DC Current per I/O Pins
40 mA on one I/O pin, total maximum 200 mA on all pins together
Input Voltage
7-12 V
Digital I/O Pins
22 (6 of which are PWM)
PWM Output
6
Power Consumption
19 mA
Dimensions
18 x 45 mm
Weight
7 g
Included
1x Elektor Arduino Nano Training Board MCCAB
1x Arduino Nano
Easy to solder real time watch kit with a unique laser cut acrylic casing. Four individual acrylic parts cut to fit the internal PCB, battery and switch perfectly. Included is a velcro wrist band. After soldering the Solder:Time, the watch is built by stacking the acrylic parts with the PCB and holding it together with the included screws.
The Solder:Time was designed to be a wrist watch. It doesn't have to be limited to living on your wrist, you could also use it as a badge or desk clock.
Features
Great looking laser cut acrylic case
Unique watch
Easy to solder
Stand alone project – no computer or other programmer required. Just solder it and it's ready!
On board Dallas DS1337+ Real Time Clock (RTC) for super accurate time keeping
Jumper (on bottom) for always on use.
Hackable: Programming and I²C pads labeled on bottom
Clear front and back casing to show the internal electronics
Adjustable wrist band
Can be also be worn as a badge with optional badge clip.
Long lasting battery, with special LED lighting method and very low power processor sleeping.
Included
Solder:Time PCB with all of the electronics
Laser cut acrylic casing with four screws
Easy to use Velcro type wrist band (long enough for huge wrists, trim-able for smaller ones.
CR2032 Battery
Downloads
Documentation
Required
Soldering Iron, solder and wire snips.
OV7740 is a AI Camera powered by Kendryte K210, an edge computing system-on-chip(SoC) with a dual-core 64bit RISC-V CPU and state-of-art neural network processor.
Features
Dual-Core 64-bit RISC-V RV64IMAFDC (RV64GC) CPU / 400Mhz(Normal)
Dual Independent Double Precision FPU
8MiB 64bit width On-Chip SRAM
Neural Network Processor(KPU) / 0.8Tops
Field-Programmable IO Array (FPIOA)
AES, SHA256 Accelerator
Direct Memory Access Controller (DMAC)
Micropython Support
Firmware encryption support
On-board Hardware:
Flash: 16M Camera :OV7740
2x Buttons
Status Indicator LED
External storage: TF card/Micro SD
Interface: HY2.0/compatible GROVE
Applications
Face recognition/detection
Object detection/classification
Obtain the size and coordinates of the target in real-time
Obtain the type of detected target in real-time
Shape recognition Video recorder
Included
1x UNIT-V(include 20cm 4P cable and USB-C cable)
The AVR-IoT WA development board combines a powerful ATmega4808 AVR MCU, an ATECC608A CryptoAuthentication secure element IC and the fully certified ATWINC1510 Wi-Fi network controller – which provides the most simple and effective way to connect your embedded application to Amazon Web Services (AWS). The board also includes an on-board debugger, and requires no external hardware to program and debug the MCU.
Out of the box, the MCU comes preloaded with a firmware image that enables you to quickly connect and send data to the AWS platform using the on-board temperature and light sensors. Once you are ready to build your own custom design, you can easily generate code using the free software libraries in Atmel START or MPLAB Code Configurator (MCC).
The AVR-IoT WA board is supported by two award-winning Integrated Development Environments (IDEs) – Atmel Studio and Microchip MPLAB X IDE – giving you the freedom to innovate with your environment of choice.
Features
ATmega4808 microcontroller
Four user LED’s
Two mechanical buttons
mikroBUS header footprint
TEMT6000 Light sensor
MCP9808 Temperature sensor
ATECC608A CryptoAuthentication™ device
WINC1510 WiFi Module
On-board Debugger
Auto-ID for board identification in Atmel Studio and Microchip MPLAB X
One green board power and status LED
Programming and debugging
Virtual COM port (CDC)
Two DGI GPIO lines
USB and battery powered
Integrated Li-Ion/LiPo battery charger
Program your REKA:BIT with Microsoft MakeCode Editor. Just add REKA:BIT MakeCode Extension and you’re good to go. If you’re a beginner, you can start with the block programming mode; simply drag, drop and snap the coding blocks together. For more advanced users, you can easily switch into JavaScript or Python mode on MakeCode Editor for text-based programming.
REKA:BIT possesses a lot of indicator LEDs to assist your coding and troubleshooting. It covers the IO pins connected to all six Grove ports and DC motor outputs from the co-processor. One is able to check his/her program and circuit connection easily by monitoring these LEDs.
Besides, REKA:BIT also has a power on/off indicator, undervoltage, and overvoltage LEDs built-in to give appropriate warnings should there be any problem with the power input.
REKA:BIT features a co-processor to handle multitasking more efficiently. Playing music while controlling up to 4x servo motors and 2x DC motors, animating micro:bit LED matrix, and even lighting up RGB LEDs in different colors, all at the same time, is not a problem for REKA:BIT.
Features
2x DC motor terminals
Built-in motor quick test buttons (no coding needed)
4x Servo motor ports
2x Neopixel RGB LEDs
6x Grove port (3.3 V)
3x Analog Input / Digital IO ports
2x Digital IO ports
1x I²C Interface
DC jack for power input (3.6-6 V DC)
ON/OFF switch
Power on indicator
Undervoltage (LOW) indicator & protection
Over-voltage (HIGH) indicator & protection
Dimensions: 10.4 x 72 x 15 mm
Included
1x REKA:BIT expansion board
1x USB power and data cable
1x 4xAA battery holder
1x Mini screwdriver
3x Grove to female header cable
2x Building block 1x9 lift arm
4x Building block friction pin
Please note: micro:bit board not included
The SunFounder GalaxyRVR Mars Rover Kit was designed to mimic the functionality of real Mars rovers, it offers a hands-on experience that’s both educational and exciting. Compatible with Uno R3, the GalaxyRVR is equipped to navigate diverse terrains with ease. Whether you’re traversing sand, rocks, grass, or mud, this sturdy aluminum-alloy rover, modeled with a rocker-bogie suspension system, ensures smooth and seamless exploration.
What sets the GalaxyRVR apart is its innovative solar-powered design. With a built-in solar panel and rechargeable battery, the rover offers extended operation while embracing eco-friendly energy solutions. Coupled with an ESP32-CAM and an intuitive app, it delivers a real-time First-Person View (FPV) experience, immersing you in the rover’s journey as you control it remotely from virtually anywhere.
Smart navigation is at the heart of the GalaxyRVR. Its ultrasonic and infrared sensors enable precise obstacle detection and avoidance, ensuring uninterrupted exploration. To add to its versatility, vibrant RGB light strips and ESP32-controlled LED lighting make it possible to confidently navigate in low-light conditions, illuminating the rover’s path and adding a touch of brilliance to its adventures.
The kit includes detailed online tutorials (available in English, German, French, Spanish, Italian and Japanese), step-by-step video lessons, and access to a supportive community forum.
Features
Built with a durable aluminum alloy frame and a unique rocker-bogie system, this rover effortlessly tackles diverse terrains.
Solar-powered and equipped with an ESP32-CAM for real-time FPV visuals.
Intelligent sensors ensure smooth navigation around obstacles.
Specifications
Mainboard
SunFounder Uno R3
Wifi
ESP32-CAM
Programming language
C++
Control method
App controller
Input modules
Ultrasonic sensor, obstacle avoidance sensor
Output modules
WS2812 RGB board
Battery life
130 minutes
Charging methods
Solar charging, USB-C
Functions
Climb over, FPV, obstacle avoidance, illumination, voice control
Material
Aluminum alloy
Downloads
Online Tutorial
Ulanzi TC001 is an LED pixel clock consisting of 256 individual addressable RGB LEDs (8x32) with built-in battery, buzzer, light, temperature and humidity sensor. The integrated rechargeable battery offers a runtime of up to 5 hours. The WiFi connection to the clock is made via an ESP32 chip. Ulanzi TC001 uses an ESP32-WROOM-32D module.
Features
Pixelated message display
Simultaneous Display of the Number of Followers: Fan growth is immediately visible, suitable for YouTube, Bilibili, and Weibo.
Pomodoro Clock Design: Manage your own time more scientifically.
Explore unlimited possibilities: Multiple programs need to be installed through the control server to achieve more functions.
Awtrix Makes it Better: Awtrix simulator in TC001’s firmware simulates an Awtrix matrix and allows you to control the clock using a standard Awtrix host.
Hi-tech and stunning appearance: Modeling simple atmosphere, LED full-color pixel screen with better imaging.
Built-in 4400 mAh battery with up to 5 hours of battery life.
Specifications
Number of LEDs: 256 (8x32)
Operating voltage: 3.7 V
Power: 3 W
Battery capacity: 4400 mAh
Interface: USB-C
Dimensions: 200.6 x 70.3 x 31.9 mm
Weight: 283 g
Inbegrepen
Ulanzi TC001 Smart Pixel Clock
USB cable
Manual
Downloads
Firmware
The HuskyLens AI Camera intuitive design allows the user to control different aspects of the camera just by pressing buttons. You can start and stop learning new objects and even switch between algorithms from the device.
To further reduce the need to be connected to a PC the HuskyLens AI Camera comes with a 2-inch display so you can see what's going on in real time.
Specifications
Processor: Kendryte K210
Image Sensor: OV2640 (2.0 Megapixel Camera)
Supply Voltage: 3.3~5.0 V
Current Consumption (TYP): 320 mA @ 3.3 V, 230 mA @ 5.0 V (face recognition mode; 80% backlight brightness; fill light off)
Connection Interface: UART, I²C
Display: 2.0-inch IPS screen with 320x240 resolution
Built-in Algorithms: Face Recognition, Object Tracking, Object Recognition, Line Tracking, Color Recognition, Tag Recognition
Dimension: 52 x 44.5 mm (2.05 x 1.75')
Included
1x HuskyLens Mainboard
6x M3 Screws
6x M3 Nuts
1x Small Mounting Bracket
1x Heightening Bracket
1x Gravity 4-Pin Sensor Cable
M5Stamp Fly is a programmable open-source quadcopter, featuring the StampS3 as the main controller. It integrates a BMI270 6-axis gyroscope and a BMM150 3-axis magnetometer for attitude and direction detection. The BMP280 barometric pressure sensor and two VL53L3 distance sensors enable precise altitude hold and obstacle avoidance. The PMW3901MB-TXQT optical flow sensor provides displacement detection.
The kit includes a buzzer, a reset button, and WS2812 RGB LEDs for interaction and status indication. It is equipped with a 300 mAh high-voltage battery and four high-speed coreless motors. The PCB features an INA3221AIRGVR for real-time current/voltage monitoring and has two Grove connectors for additional sensors and peripherals.
Preloaded with debugging firmware, the Stamp Fly can be controlled using an Atom Joystick via the ESP-NOW protocol. Users can choose between automatic and manual modes, allowing for easy implementation of functions like precise hovering and flips. The firmware source code is open-source, making the product suitable for education, research, and various drone development projects.
Applications
Education
Research
Drone development
DIY projects
Features
M5StampS3 as the main controller
BMP280 for barometric pressure detection
VL53L3 distance sensors for altitude hold and obstacle avoidance
6-axis attitude sensor
3-axis magnetometer for direction detection
Optical flow detection for hovering and displacement detection
Buzzer
300 mAh high-voltage battery
Current and voltage detection
Grove connector expansion
Specifications
M5StampS3
ESP32-S3@Xtensa LX7, 8 MB Flash, WiFi, OTG\CDC support
Motor
716-17600kv
Distance Sensor
VL53L3CXV0DH/1 (0x52) @ max 3 m
Optical Flow Sensor
PMW3901MB-TXQT
Barometric Sensor
BMP280 (0x76) @ 300-1100hPa
3-axis Magnetometer
BMM150 (0x10)
6-axis IMU Sensor
BMI270
Grove
I²C+UART
Battery
300mAh 1S high-voltage lithium battery
Current/Voltage Detection
INA3221AIRGVR (0x40)
Buzzer
Built-in Passive Buzzer @ 5020
Operating temperature
0-40°C
Dimensions
81.5 x 81.5 x 31 mm
Weight
36.8 g
Included
1x Stamp Fly
1x 300 mAh high-voltage Lithium battery
Downloads
Documentation
The Raspberry Pi AI HAT+ is an expansion board designed for the Raspberry Pi 5, featuring an integrated Hailo AI accelerator. This add-on offers a cost-effective, efficient, and accessible approach to incorporating high-performance AI capabilities, with applications spanning process control, security, home automation, and robotics.
Available in models offering 13 or 26 tera-operations per second (TOPS), the AI HAT+ is based on the Hailo-8L and Hailo-8 neural network accelerators. This 13 TOPS model efficiently supports neural networks for tasks like object detection, semantic and instance segmentation, pose estimation, and more. The 26 TOPS variant accommodates larger networks, enables faster processing, and is optimized for running multiple networks simultaneously.
The AI HAT+ connects via the Raspberry Pi 5’s PCIe Gen3 interface. When the Raspberry Pi 5 is running a current version of the Raspberry Pi OS, it automatically detects the onboard Hailo accelerator, making the neural processing unit (NPU) available for AI tasks. Additionally, the rpicam-apps camera applications included in Raspberry Pi OS seamlessly support the AI module, automatically using the NPU for compatible post-processing functions.
Included
Raspberry Pi AI HAT+ (13 TOPS)
Mounting hardware kit (spacers, screws)
16 mm GPIO stacking header
Downloads
Datasheet
YDLIDAR SDM18 is a high-performance single-point LiDAR. Based on the principle of ToF, it is equipped with related optics, electricity, and algorithm design to achieve high-precision laser distance measurement and outputting high frame rate point cloud data of the scanning environment. It can be used for UAV alt-hold, robot obstacle avoidance and navigation, etc.
Specifications
High Ranging frequency: 50-250 Hz
Range Distance: 0.2-18 m
FDA Class I eye safety standard
Support UART and I²C interfaces
Dimensions: 21 x 15 x 7.87 mm
Weight: 1.35 g
Applications
UAV alt-hold and obstacle avoidance
Robot obstacle avoidance
Intelligent equipment obstacle avoidance
Navigation and obstacle avoidance of home service robots / robot vacuum cleaners
Downloads
Datasheet
User Manual
Development Manual
SDK
Tool
ROS
The AxiDraw MiniKit 2 The AxiDraw MiniKit 2 is a special compact addition to the AxiDraw lineup. Designed for lighter-duty applications, It takes up less desk space and less storage space. It's considerably more portable, too. The AxiDraw MiniKit is also the only DIY kit model of AxiDraw that you get to assemble yourself. All other AxiDraw models ship fully assembled, tested, and ready to use.) A Mini Plotter The AxiDraw MiniKit 2 has a working area of about 6 × 4 inches (150 × 100 mm): Big enough to be useful for a wide range of applications including short notes, postcards, and addressing envelopes. It's also ideally suited for use as a signature machine, for signing checks, letters, books, or artwork. Applications The AxiDraw is an extremely versatile machine, designed to serve a wide variety of everyday and specialized drawing and writing needs. You can use it for almost any task that might normally be carried out with a handheld pen. It allows you to use your computer to produce writing that appears to be handmade, complete with the unmistakable appearance of using a real pen (as opposed to an inkjet or laser printer) to address an envelope or sign one's name. And it does so with precision approaching that of a skilled artist, and – just as importantly – using an arm that never gets tired. Specifications Performance Usable pen travel (inches): 6.3 × 4 inches Usable pen travel (millimeters): 160 × 101 mm Vertical pen travel: 0.7 inch (17 mm) Maximum XY travel speed: 10 inches (25 cm) per second Native XY resolution: 2032 steps per inch (80 steps per mm) Reproducibility (XY): Typically better than 0.005 inches (0.1 mm) at low speeds Physical Major structural components are machined, extruded, or folded aluminum, manufactured and anodized in the USA. Holds pens and other drawing instruments up to 5/8' (16 mm) diameter and 25 g weight. Overall dimensions: Approximately 14.25 × 9.25 × 4.25 inches (36 × 23.5 × 11 cm) Maximum height with cable guides: Approximately 9 inches (23 cm) Footprint: Approximately 13.5 × 1.7 inches (35 x 4.5 cm) Weight: 3.2 Lb (1.5 kg) Software Compatible with Mac, Windows, and Linux Drive directly from within Inkscape, using the AxiDraw extension Comprehensive user guide available for download
Driver software software free to download and open source Internet access is required to download software Additionally, AxiDraw Merge software available at no cost to AxiDraw owners. Programming interfaces Note: Programming is not required to use the AxiDraw Stand-alone command line interface (CLI) Available AxiDraw Python API
RESTful API available for full machine control, stand-alone or accessible by running RoboPaint in the background. Simplified 'GET-only' API available as well, for use in programming environments (such as Scratch, Snap) that permit only retrieval of URLs. Direct EiBotBoard (EBB) command protocol available for use in any programming environment that supports communication with USB-based serial ports. Code that generates SVG files can also be used to (indirectly) control the machine. Included All parts and materials necessary to build the AxiDraw MiniKit 2 writing and drawing machine. Multi-plug power supply with EU adapter USB cable Small Easel (Board and clips) for paper holding Tools needed Scissors or diagonal cutters Small Phillips-head screwdrivers: #0 and #1 sizes Small flat-head screwdriver: 2 mm or 5/64' blade width recommended Miniature pliers (Recommended but not required) Small hobby knife (Recommended but not required) Downloads User Guide
The Analog Thing V1.2 (in short THAT) is a high-quality, low-cost, open-source, and not-for-profit cutting-edge analog computer designed for desktop use to solve (sets of) differential equations. With its patch panel instead of keyboard, mouse, and monitor, its user interface differs noticeably from those of its digital stored-program cousins. The patch panel is divided into groups of analog computing elements such as integrators, summers, and multipliers.
THAT allows modeling dynamic systems with great speed, parallelism, and energy efficiency. Its use is intuitively interactive, experimental, and visual. It bridges the gap between hands-on practice and mathematical theory, integrating naturally with design and engineering practices such as speculative trial-and-error exploration and the use of scale models.
Dynamic system modeling on THAT can serve a variety of valuable purposes. It may help understand what is (models of), or it may help bring about what should be (models for). It may be used to explain in educational settings, to imitate in gaming, to predict in the natural sciences, to control in engineering, or it may be pursued for the pure joy of it!
THAT can be used with various kinds of oscilloscopes, such as conventional cathode ray tube oscilloscopes, digital oscilloscopes, and USB oscilloscopes in conjunction with PCs.
Features
5 Integrators – Circuits that perform integration over time.
4 Summers – Circuits that add inputs continously.
2 Comparators – Circuits that compare inputs to support conditional functions.
Master/Minion Ports – Interfaces that allow daisy-chaining multiple THATs to create arbitrarily large programs.
8 Coefficient Potentiometers – Rotary knobs to provide user-defined inputs.
2 Multipliers – Circuits that multiply inputs continously.
Panel Meter – A digital panel meter for precision measurements of values and timing.
Hybrid Port – An interface for controlling THAT digitally to develop analog-digital hybrid programs.
Included
1x RCA-RCA cable
30x Patch cables
6x Adhesive feet
1x Master to minion ribbon cable
1x USB-A to USB-C cable
1x Quick-start manual
Required
USB power supply
BNC adapters/cables to connect an oscilloscope
Downloads
First Steps
Documentation
Programmable Robot Kit with 344 Parts
variAnt runs and acts almost like its natural role model. Its patented walking mechanism was especially developed for the fine-boned anatomy of an insect and is driven by compact micro-geared motors.
The autonomous robot ant explores its entire environment with the help of 12 analogue sensors. This allows it to detect obstacles, markings, movements or light sources based on the slightest differences in brightness.
The control unit in the rear, which is equipped with a nano-board, offers a wide range of flexible connection options in combination with the breadboard in the head. After the exciting setup, ready-made and expandable code modules ensure an easy and quick introduction to Arduino programming up to the first experiments with artificial intelligence.
The kit already comes with a USB rechargeable 9 V Li-Ion battery, which supplies the robot ant with power for at least 5 hours.
Robot ant as a programmable kit
Compatible with Arduino IDE
Patented mechanics and sensors
Features of variAnt
24 high-quality acrylic parts
12 variable environmental sensors
2 reed sensors for step counting
2 freely programmable buttons
8 freely usable digital I/Os
15 pluggable status LEDs
Specifications
Content: 344 parts
Construction time: about 4-8 hours (no soldering required)
Dimensions: 25 x 22.5 x 9 cm (L x W x H)
Weight: 210/232 g (without/with battery)
Necessary tools
PC or tablet, micro-USB and USB-C cable, flat pliers, diagonal pliers, carpet knife, permanent marker
Downloads
Manual
Arduino library
The Challenger RP2040 LoRa is an Arduino/CircuitPython compatible Adafruit Feather format microcontroller board based on the Raspberry Pi Pico (RP2040) chip.The transceiver features a LoRa long range modem that provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.LoRaThe integrated module LoRa module (RFM95W) can achieve a sensitivity of over -148 dBm utilizing a low cost crystal and bill of materials. The high sensitivity combined with the integrated +20 dBm power amplifier yields industry leading link budget making it optimal for any application requiring range or robustness. LoRa also provides significant advantages in both blocking and selectivity over conventional modulation techniques, solving the traditional design compromise between range, interference immunity and energy consumption.The RFM95W is connected to the RP2040 via SPI channel 1 and a few GPIO’s that is required for signaling. A U.FL connector is used to attach your LoRa antenna to the board.
168 dB maximum link budget
+20 dBm – 100 mW constant RF output vs. V supply
+14 dBm high efficiency PA
Programmable bit rate up to 300 kbps
High sensitivity: down to -148 dBm
Bullet-proof front end: IIP3 = -12.5 dBm
Excellent blocking immunity
Low RX current of 10.3 mA, 200 nA register retention
Fully integrated synthesizer with a resolution of 61 Hz
FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation
Built-in bit synchronizer for clock recovery
Preamble detection
127 dB Dynamic Range RSSI
Automatic RF Sense and CAD with ultra-fast AFC
Packet engine up to 256 bytes with CRC
Specifications
Microcontroller
RP2040 from Raspberry Pi (133 MHz dual-core Cortex-M0)
SPI
Two SPI channels configured (second SPI connected to RFM95W)
I²C
One I²C channel configured
UART
One UART channel configured
Analog inputs
4 analog input channels
Radio module
RFM95W from Hope RF
Flash memory
8 MB, 133 MHz
SRAM memory
264 KB (divided into 6 banks)
USB 2.0 controller
Up to 12 MBit/s full speed (integrated USB 1.1 PHY)
JST Battery connector
2.0 mm pitch
On board LiPo charger
450 mA standard charge current
Dimensions
51 x 23 x 3,2 mm
Weight
9 g
Downloads
Datasheet
Design files
Pico Cube is a 4x4x4 LED cube HAT for Raspberry Pi Pico with 5 VDC operating voltage. Pico cube, a monochromatic Green with 64 LEDs, is a fun way to learn programming. It is designed to perform incandescent operations with low energy consumptions, robust outlook, and easy installation that make people/kids/users learn the effects of LED lights with a different pattern of colors via the combination of software and hardware i.e. Raspberry Pi Pico.
Features
Standard 40 Pins Raspberry Pi Pico Header
GPIO Based Communication
64 High-Intensity Monochromatic LEDs
Individual LED access
Each Layer Access
Specifications
Operating Voltage: 5 V
Color: Green
Communication: GPIO
LEDs: 64
Included
1x Pico Cube Base PCB
4x Layer PCB
8x Pillar PCB
2x Male Berg (1 x 20)
2x Female Berg (1 x 20)
70 LEDs
Note: Raspberry Pi Pico is not included.
Downloads
GitHub
Wiki
M5Atom Joystick is a versatile programmable dual-joystick remote controller featuring the AtomS3 as the main controller, with an STM32 handling co-processing functions.
It is equipped with two 5-way joysticks with hall sensors, two function buttons, and built-in RGB LEDs for human-machine interaction and status indication.
The device includes two high-voltage battery charging circuits. It comes pre-loaded with the Stamp Fly control firmware and communicates with Stamp Fly via the ESP-NOW protocol. The firmware source code is open-source. This product is suitable for drone control, robot control, smart cars, and various DIY projects.
Applications
Drone control
Robot control
Smart cars
DIY projects
Features
STM32F030F4P6
Equipped with M5AtomS3
Compatible with Atom Lite, Atom Matrix, AtomS3 Lite, AtomS3
Dual joysticks, dual buttons, toggle switch
WS2812 RGB LEDs
Dual high-voltage lithium battery charging circuits
Battery detection
Specifications
MCU
STM32F030F4P6
RGB
WS2812C
Charging IC
TP4067 @ 4.35 V
Battery
300 mAh
Charging Current
500 mA
Button
Left/Right Button
Buzzer
Built-in Passive Buzzer @ 5020
Operating temperature
0-40°C
Dimensions
84 x 60 x 31.5 mm
Weight
63.5 g
Included
1x Atom JoyStick
1x 300 mAh high-voltage Lithium battery
Downloads
Documentation
This air monitor is specifically used for monitoring greenhouses. It detects:
Air temperature & Humidity
CO2 concentration
Light intensity
Then transmit the data via LoRa P2P to the LoRa receiver (on your desk in the room) so that the user can monitor the field status or have it recorded for long-term analysis.
This module monitors the greenhouse field status and sends all sensor data regularly via LoRa P2P in Jason format. This LoRa signal can be received by the Makerfabs LoRa receiver and thus displayed/recorded/analyzed on the PC. The monitoring name/data cycle can be set with a phone, so it can be easily implemented into the file.
This air monitor is powered by an internal LiPo battery charged by a solar panel and can be used for at least 1 year with the default setting (cycle 1 hour).
Features
ESP32S3 module onboard with the WiFi and Bluetooth
Ready to use: Power it on directly to use
Module name/signal interval settable easily by phone
IP68 water-proof
Temperature: -40°C~80°C, ±0.3
Humidity: 0~100% moisture
CO2: 0~1000 ppm
Light intensity: 1-65535 lx
Communication distance: Lora: >3 km
1000 mAh battery, charger IC onboard
Solar panel 6 W, ensure system works
Downloads
Manual
BH1750 Datasheet
SGP30 Datasheet
If you are looking for a simple way to learn soldering, or just want to make a small gadget that you can carry, this set is a great opportunity. Reaction game is an educational kit which teaches you how to solder, and in the end, you get to have your own small game. The goal of the game is to press the button next to the LED as soon as it turns on. With every correct answer, the game gets a bit harder – the time you have to press the button shortens. How many correct answers can you get?
It’s based on ATtiny404 microcontroller, programmed in Arduino. At its back, you’ll find CR2032 battery which makes the kit portable. There’s keychain holder as well. Soldering process is easy enough based on the mark on the PCB.
Included
1x PCB
1x ATtiny404 microcontroller
4x LEDs
4x Pushbuttons
1x Switch
4x Resistors (330 ohm)
1x CR2032 battery holder
1x Battery CR2032
1x Keychain holder
This category offers a wide spectrum of platforms to choose from. They all have different features and you can choose the platform that best suits your needs or project.