The Waveshare 10.1-inch High-Resolution Capacitive Touch Display is a universal touchscreen with 1920 x 1200 resolution, compatible with most standard HDMI devices. It features a thin and lightweight design, a rigid tempered glass cover for durability, excellent display performance, and a smooth multi-touch experience. Additionally, the built-in metal backplate provides stability, making it easier for users to integrate the display into all-in-one projects.
Features
10.1-inch IPS screen with 1920 x 1200 pixels
10-point capacitive touch with tempered glass panel offering up to 6H hardness
Fully laminated panel technology for better display effect
When used with Raspberry Pi, it supports Raspberry Pi OS, Ubuntu, Kali, and RetroPie
As a computer monitor, it supports Windows 7 and higher.
OSD menu (can be used for power control, adjusting brightness/volume/picture rotation, etc.)
HDMI audio output, onboard 3.5 mm headphone jack and 4-pin high-quality speakers
Specifications
Display
10.1 inch IPS
Viewing angle
178°
Resolution
1920 x 1200 pixels
Touchscreen area
217.2 x 135.6 mm
Dimensions
239 x 147 mm
Color gamut
65% NTSC
Max brightness
300 cd/m²
Contrast
1000:1
Backlight adjustment
Button dimming
Refresh rate
60 Hz
Display interface
Standard HDMI
Power supply
5 V (USB-C)
Max power consumption
6 W
Included
1x 10.1" High-Res Capacitive Touch Display (10.1EP-CAPLCD)
1x HDMI flat cable (1 m)
1x USB-A to USB-C cable (1 m)
1x Micro HDMI Adapter
1x HDMI Adapter
1x HDMI to Micro HDMI Adapter
1x PH1.25 4-pin to Type-A cable
1x Capacitive touch pen
1x 3-pin cable
1x HDMI cable 120 mm (2pcs)
1x Cleaning cloth
1x 5 V/3A power supply (EU)
1x Screws pack
Downloads
Wiki
The T-Deck is a pocket-sized gadget featuring a 2.8-inch IPS LCD display (320 x 240), a mini keyboard, and an ESP32 dual-core processor. While it’s not quite a smartphone, it offers plenty of potential for tech enthusiasts. With some programming know-how, you can transform it into a standalone messaging device or a portable coding platform.
Specifications
Microcontroller
ESP32-S3FN16R8 Dual-core LX7 microprocessor
Wireless Connectivity
2.4 GHz Wi-Fi & Bluetooth 5 (LE)
Development
Arduino, PlatformlO, MicroPython
Flash
16 MB
PSRAM
8 MB
Battery ADC Pin
IO04
Onboard functions
Trackball, Microphone, Speaker
Display
2.8" ST7789 SPI Interface IPS
Resolution
320 x 240 (Full viewing angle)
Transmit power
+22 dBm
SX1262 LoRa Transceiver (Frequency)
868 Mhz
Dimensions
100 x 68 x 11 mm
Included
1x T-Deck ESP32-S3 LoRa
1x FPC antenna (868 MHz)
1x Male pin (6-pin)
1x Power cable
Downloads
GitHub
Kick off with the MAX1000 and VHDPlus
Ready to Master FPGA Programming? In this guide, we’re diving into the world of Field Programmable Gate Arrays (FPGAs) – a configurable integrated circuit that can be programmed after manufacturing. Imagine bringing your ideas to life, from simple projects to complete microcontroller systems!
Meet the MAX1000: a compact and budget-friendly FPGA development board packed with features like memory, user LEDs, push-buttons, and flexible I/O ports. It’s the ideal starting point for anyone wanting to learn about FPGAs and Hardware Description Languages (HDLs).
In this book, you’ll get hands-on with the VHDPlus programming language – a simpler version of VHDL. We’ll work on practical projects using the MAX1000, helping you gain the skills and confidence to unleash your creativity.
Get ready for an exciting journey! You’ll explore a variety of projects that highlight the true power of FPGAs. Let’s turn your ideas into reality and embark on your FPGA adventure – your journey starts now!
Exciting Projects You’ll Find in This Book
Arduino-Driven BCD to 7-Segment Display Decoder
Use an Arduino Uno R4 to supply BCD data to the decoder, counting from 0 to 9 with a one-second delay
Multiplexed 4-Digit Event Counter
Create an event counter that displays the total count on a 4-digit display, incrementing with each button press
PWM Waveform with Fixed Duty Cycle
Generate a PWM waveform at 1 kHz with a fixed duty cycle of 50%
Ultrasonic Distance Measurement
Measure distances using an ultrasonic sensor, displaying the results on a 4-digit 7-segment LED
Electronic Lock
Build a simple electronic lock using combinational logic gates with push buttons and an LED output
Temperature Sensor
Monitor ambient temperature with a TMP36 sensor and display the readings on a 7-segment LED
Downloads
Software
An Illustrated Handbook of Vintage ‘Scopes Repair and Preservation
Tektronix oscilloscopes are true masterpieces of electronics and have helped mankind advance in every field of science, wherever a physical phenomenon needed to be observed and studied. They helped man reach the moon, find the cause of plane crashes, and paved the way for thousands of other discoveries.
Restoring and collecting these oscilloscopes is an exciting activity; it is really worthwhile to save them from the effects of time and restore them to their original condition. Many parts are quite easy to find, and there are many Internet sites, groups, and videos that can help you. Much of the original documentation is still available, but it is not always sufficient. This book contains a lot of information, descriptions, suggestions, technical notes, photos and schematics that can be of great help to those who want to restore or simply repair these wonderful witnesses of one of the most beautiful eras in the history of technology.
Component layouts included!
This book includes a nearly complete component layout plan of the original 545 oscilloscope, with relative reference designators. Not found in the original Tektronix manuals, this layout should prove invaluable to the repair technician.
Elektor GREEN and GOLD members can download their digital edition here.
Not a member yet? Click here.
Audio DSP FX Processor BoardPart 1: Features and Design
50 Years of Elektor in English
KiCad 8Top New and Updated Features
Elektor MultiCalculator KitAn Arduino-Based Calculator Kit for Electronic Purposes
Low-Cost GNSS RTK SystemsWith Centimeter-Level Degree of Accuracy
PCB Layout and SafetyHints for a Safe, Long-Life Design of Your Boards
Opamp TesterFor Audio and Other Applications
Project Update #4: ESP32-Based Energy MeterEnergy Monitoring with MQTT
Real-Time Spectrum Analyzer with Waveguide Technology and Multi-Interface PCsAaronia Establishes New Product Segment and Presents First Prototypes at Electronica in Munich
Applications of Ynvisible’s E-paper DisplaysTransform Businesses and Shape the Future
SMT InductorsCoils and Ferrites — Selection Made Easy
Arrow Electronics to Showcase Innovative Technologies at electronica 2024
Using EMI Shielding to Achieve Electromagnetic Compatibility Compliance
The Ultimate Tool for Every Electronics EnthusiastUnlock Endless Possibilities with Red Pitaya and 1,000+ Click Boards™
V-LD1 Distance Radar Module
Siglent Presents Its New Vector Network Analyzer Platform SNA6000A
HDI in the MiddleA New Cost-Effective PCB Pooling Service for Tiny BGAs
Remote Access IoT LabOne and Only Solution for Remote Learning and Development in Embedded Industry
Challenges of DFM Analysis for Flex and Rigid-Flex Design
From Life's ExperienceMicrotechnophobia
3D Christmas TreeA 3D PCB with a Low-Cost, 32-bit Microcontroller
Starting Out in Electronics……Continues with the Opamp!
An Autonomous Sensor Node (Project Update #1)Reducing Idle Power Consumption with External RTC and Power Switch
2024: An AI OdysseyA Look Back at the Future
LED Displays with the MAX7219A Hands-On Approach to a Great Chip
Err-lectronicsCorrections, Updates, and Readers’ Letters
VibroTactile GlovesA Breakthrough for Parkinson’s Patients
The FNIRSI GC-02 nuclear radiation detector offers a sleek, portable design with high-precision Geiger-Müller counters for accurate detection of ionizing radiation (γ-rays, X-rays, etc.).
Its 1.5-inch HD LCD screen displays real-time, average, max, and cumulative values. Features include alarm settings, customizable sleep/shutdown times, timed monitoring, and history viewing with up to 10 saved records. The 850 mAh rechargeable battery provides up to 6 hours of use.
Compact and reliable, the FNIRSI GC-02 is perfect for on-the-go nuclear radiation detection.
Features
Food and Metal Detection
Marble and Ore Inspection
Nuclear Industry Radioactivity Detection
Radioactive Medical Equipment Testing
Multifunctional Real-Time Monitoring
Core Technology: Geiger-Müller Counter
High-Capacity 850 mAh Battery
Detector: Energy Compensation GM Tube (Geiger Counter Tube)
Detection Ray Types: Gamma Rays, X-Rays, Beta Rays
Specifications
Detection Radiation Type
Ionizing radiation (γ-rays, X-rays, etc.)
Detector
Energy compensation GM tube (Geiger counter tube)
Dose Current Rate
0.00-1000 μSv/h (1 mSv/h)
Cumulative Dose Equivalent
0.00 μSv-500.0 mSv
Energy Range
48 keV-15 Mev ≤±30% (for 137Cs -)
Sensitivity
80 CPM/uSv (for Co-60)
Dosage Unit
μSv/h, μGy/h, mR/h, CPS, CPM
Battery Capacity
850 mAh
Alarm Method
Light, Sound
Languages
Chinese, English, Russian, German, Japanese, Portuguese, Spanish, Korean
Dimensions
106.5 x 44.5 x 25 mm
Included
1x GC-02 Nuclear Radiation Detector
1x USB cable
1x Lanyard loop
Downloads
Manual
The FNIRSI NVS-20 is a versatile monocular night vision device, ideal for clear observation in complete darkness or low light. It offers unlimited range in weak light and up to 300 m in total darkness.
Featuring a USB port and TF card slot, it supports firmware updates and media storage. With a color screen, it performs seamlessly day or night, enabling photo capture, video recording, playback, and up to 6x electronic zoom. The NVS-20 is the ultimate tool for enhancing night vision capabilities.
Specifications
Electronic Zoom
6x
Objective Lens Diameter
25 mm
Low Light or Daytime Observation Distance
2 m~∞
Full Black Observation Distance
300 m (max)
Video Resolution
4K (3840x2160) / 2K (2560x1440) / 1080FHD (1920x1080) / 720P (1280x720) / VGA (640x480) / QVGA (320x240)
Photo Resolution
36MP / 32MP / 30MP / 24MP / 20MP / 16MP / 12MP / 10MP / 8MP / 5MP / 3MP / VGA
IR Wavelength
850 nm
Water Resistance Level
IPX6
White Balance
Automatic, Daylight, Cloudy, Tungsten Filament, Fluorescent
ISO
Auto, 100, 200, 400, 800
LCD Brightness Adjustment
High, medium, and low levels
Light Source Frequency
50 Hz / 60 Hz
Storage
32 GB TF memory card
Voltage
3.7 V
Power supply
18650 internal battery
Charging
USB-C (5 V/1 A)
Display
1.54 inch HD IPS screen
Temperature
−5~40°C
Humidity
0-80%
Languages
Chinese / Traditional / English / Japanese / Italian / French / German / Russian / Spanish / Portuguese
Dimensions
152 x 42 x 82 mm
Weight
240 g
Included
1x NVS-20 Night Vision Monocular
1x 18650 Lithium battery
1x TF memory card (32 GB)
1x USB cable
1x Manual
Downloads
Manual
Firmware FW96675
The Elektor ESP32 Energy Meter is a device designed for real-time energy monitoring and smart home integration. Powered by the ESP32-S3 microcontroller, it offers robust performance with modular and scalable features.
The device uses a 220 V-to-12 V step-down transformer for voltage sampling, ensuring galvanic isolation and safety. Its compact PCB layout includes screw-type terminal blocks for secure connections, a Qwiic connector for additional sensors, and a programming header for direct ESP32-S3 configuration. The energy meter is compatible with single-phase and three-phase systems, making it adaptable for various applications.
The energy meter is simple to set up and integrates with Home Assistant, offering real-time monitoring, historical analytics, and automation capabilities. It provides accurate measurements of voltage, current, and power, making it a valuable tool for energy management in homes and businesses.
Features
Comprehensive Energy Monitoring: Get detailed insights into your energy usage for smarter management and cost savings.
Customizable Software: Tailor functionality to your needs by programming and integrating custom sensors.
Smart Home Ready: Compatible with ESPHome, Home Assistant, and MQTT for full Smart Home integration.
Safe & Flexible Design: Operates with a 220 V-to-12 V step-down transformer and features a pre-assembled SMD board.
Quick Start: Includes one Current Transformer (CT) sensor and access to free setup resources.
Specifications
Microcontroller
ESP32-S3-WROOM-1-N8R2
Energy Metering IC
ATM90E32AS
Status Indicators
4x LEDs for power consumption indication2x Programmable LEDs for custom status notifications
User Input
2x Push buttons for user control
Display Output
I²C OLED display for real-time power consumption visualization
Input Voltage
110/220 V AC (via step-down transformer)
Input Power
12 V (via step-down transformer or DC input)
Clamp Current Sensor
YHDC SCT013-000 (100 A/50 mA) included
Smart Home Integration
ESPHome, Home Assistant, and MQTT for seamless connectivity
Connectivity
Header for programming, Qwiic for sensor expansion
Applications
Supports single-phase and three-phase energy monitoring systems
Dimensions
79.5 x 79.5 mm
Included
1x Partly assembled board (SMDs are pre-mounted)
2x Screw terminal block connerctors (not mounted)
1x YHDC SCT013-000 current transformer
Required
Power transformer not included
Downloads
Datasheet (ESP32-S3-WROOM-1)
Datasheet (ATM90E32AS)
Datasheet (SCT013-000)
Frequently Asked Questions (FAQ)
From Prototype to Finished Product
What started as an innovative project to create a reliable and user-friendly energy meter using the ESP32-S3 microcontroller has evolved into a robust product. Initially developed as an open-source project, the ESP32 Energy Meter aimed to provide precise energy monitoring, smart home integration and more. Through meticulous hardware and firmware development, the energy meter now stands as a compact, versatile solution for energy management.
The Pimoroni Explorer Starter Kit is an electronic adventure playground for physical computing based on the RP2350 chip. It includes a 2.8-inch LCD screen, a speaker, a mini breadboard and much more. It's ideal for tinkering, experiments, and building small prototypes.
Features
Mini breadboard for wiring up components
Servo headers
Analog inputs
Built-in speaker
Plenty of general purpose inputs/outputs
Connectors for attaching crocodile leads
Qw/ST connectors for attaching I²C breakouts
Specifications
Powered by RP2350B (Dual Arm Cortex-M33 running at up to 150 MHz with 520 KB of SRAM)
16 MB of QSPI flash supporting XiP
2.8" IPS LCD screen (320 x 240 pixels)
Driver IC: ST7789V
Luminance: 250 cd/m²
Active area: 43.2 x 57.5 mm
USB-C connector for programming and power
Mini breadboard
Piezo speaker
6x user-controllable switches
Reset and boot buttons
Easy access GPIO headers (6x GPIOs and 3x ADCs, plus 3.3 V power and grounds)
6x Crocodile clip terminals (3x ADCs, plus 3.3 V power and grounds)
4x 3-pin servo outputs
2x Qw/ST (Qwiic/STEMMA QT) connector
2-pin JST-PH connector for adding a battery
Lanyard slot!
Includes 2x desktop stand feet
Fully-assembled (no soldering required)
Programmable with C/C++ or MicroPython
Included
1x Pimoroni Explorer
1x Multi-Sensor Stick – a fancy new all-in-one super sensor suite for environmental, light and movement sensing
Selection of different colored LEDs to get blinky with (including red, yellow, green, blue, white and RGB)
1x Potentiometer (for analog amusements)
3x 12 mm switches with different coloured caps
2x Continuous rotation servos
2x 60 mm wheels for attaching to your servos
1x AAA battery holder (batteries not included)
1x Velcro to stick the battery holder to the back of Explorer
20x Pin to pin and 20x pin to socket jumper wires for making connections on your breadboard
1x Qw/ST cable to plug in the Multi-Sensor Stick
1x Silicon USB-C cable
Downloads
GitHub
Schematic
The Cytron Motion 2350 Pro is a robust 4-channel DC motor driver (3 A per channel, 3.6-16 V) ideal for building powerful robots, including mecanum wheel designs. It features 8-channel 5 V servo ports, 8-channel GPIO breakouts, 3 Maker Ports, and a USB host for plug-and-play joystick/gamepad support.
Powered by Raspberry Pi Pico 2, it integrates seamlessly with the Pico ecosystem, supporting Python (MicroPython, CircuitPython), C/C++, and Arduino IDE. Pre-installed with CircuitPython, it comes with a demo program and quick test buttons for immediate use. Simply connect via USB-C, and start exploring!
Included
1x Cytron Motion 2350 Pro Robotics Controller
1x STEMMA QT/Qwiic JST SH 4-pin Cable with Female Sockets (150 mm)
2x Grove to JST-SH Cable (200 mm)
1x Set of Silicone Bumper
4x Building Block Friction Pin
1x Mini Screwdriver
The Raspberry Pi Monitor is a 15.6-inch Full HD computer display. User-friendly, versatile, compact and affordable, it is the perfect desktop display companion for both Raspberry Pi computers and other devices.
With built-in audio via two front-facing speakers, and VESA and screw mounting options as well as an integrated angle-adjustable stand, the Raspberry Pi Monitor is ideal for desktop use or for integration into projects and systems. It can be powered directly from a Raspberry Pi, or by a separate power supply.
Features
15.6-inch full HD 1080p IPS display
Integrated angle-adjustable stand
Built-in audio via two front-facing speakers
Audio out via 3.5 mm jack
Full-size HDMI input
VESA and screw mounting options
Volume and brightness control buttons
USB-C power cable
Specifications
Display
Screen size: 15.6 inches, 16:9 ratio
Panel type: IPS LCD with anti-glare coating
Display resolution: 1920 x 1080
Color depth: 16.2M
Brightness (typical): 250 nits
Color gamut: 45%
Viewing angle: 80°
Power
1.5 A/5 V
Can be powered directly from a Raspberry Pi USB port (max 60% brightness, 50% volume) or by a separate power supply (max 100% brightness, 100% volume)
Connectivity
Standard HDMI port (1.4 compliant)
3.5 mm stereo headphone jack
USB-C (power in)
Audio
2x 1.2 W integrated speakers
Support for 44.1 kHz, 48 kHz, and 96 kHz sample rates
Downloads
Datasheet
The Raspberry Pi Monitor is a 15.6-inch Full HD computer display. User-friendly, versatile, compact and affordable, it is the perfect desktop display companion for both Raspberry Pi computers and other devices.
With built-in audio via two front-facing speakers, and VESA and screw mounting options as well as an integrated angle-adjustable stand, the Raspberry Pi Monitor is ideal for desktop use or for integration into projects and systems. It can be powered directly from a Raspberry Pi, or by a separate power supply.
Features
15.6-inch full HD 1080p IPS display
Integrated angle-adjustable stand
Built-in audio via two front-facing speakers
Audio out via 3.5 mm jack
Full-size HDMI input
VESA and screw mounting options
Volume and brightness control buttons
USB-C power cable
Specifications
Display
Screen size: 15.6 inches, 16:9 ratio
Panel type: IPS LCD with anti-glare coating
Display resolution: 1920 x 1080
Color depth: 16.2M
Brightness (typical): 250 nits
Color gamut: 45%
Viewing angle: 80°
Power
1.5 A/5 V
Can be powered directly from a Raspberry Pi USB port (max 60% brightness, 50% volume) or by a separate power supply (max 100% brightness, 100% volume)
Connectivity
Standard HDMI port (1.4 compliant)
3.5 mm stereo headphone jack
USB-C (power in)
Audio
2x 1.2 W integrated speakers
Support for 44.1 kHz, 48 kHz, and 96 kHz sample rates
Downloads
Datasheet
The Raspberry Pi Pico 2 W is a microcontroller board based on the RP2350 featuring 2.4 GHz 802.11n wireless LAN and Bluetooth 5.2. It gives you even more flexibility in your IoT or smart product designs and expanding the possibilities for your projects.
The RP2350 provides a comprehensive security architecture built around Arm TrustZone for Cortex-M. It incorporates signed boot, 8 KB of antifuse OTP for key storage, SHA-256 acceleration, a hardware TRNG, and fast glitch detectors.
The unique dual-core, dual-architecture capability of the RP2350 allows users to choose between a pair of industry-standard Arm Cortex-M33 cores and a pair of open-hardware Hazard3 RISC-V cores. Programmable in C/C++ and Python, and supported by detailed documentation, the Raspberry Pi Pico 2 W is the ideal microcontroller board for both enthusiasts and professional developers.
Specifications
CPU
Dual Arm Cortex-M33 or dual RISC-V Hazard3 processors @ 150 MHz
Wireless
On-board Infineon CYW43439 single-band 2.4 GHz 802.11n wireless Lan and Bluetooth 5.2
Memory
520 KB on-chip SRAM; 4 MB on-board QSPI flash
Interfaces
26 multi-purpose GPIO pins, including 4 that can be used for AD
Peripherals
2x UART
2x SPI controllers
2x I²C controllers
24x PWM channels
1x USB 1.1 controller and PHY, with host and device support
12x PIO state machines
Input power
1.8-5.5 V DC
Dimensions
21 x 51 mm
Downloads
Datasheet
Pinout
Schematic
The Raspberry Pi AI HAT+ is an expansion board designed for the Raspberry Pi 5, featuring an integrated Hailo AI accelerator. This add-on offers a cost-effective, efficient, and accessible approach to incorporating high-performance AI capabilities, with applications spanning process control, security, home automation, and robotics.
Available in models offering 13 or 26 tera-operations per second (TOPS), the AI HAT+ is based on the Hailo-8L and Hailo-8 neural network accelerators. The 13 TOPS model efficiently supports neural networks for tasks like object detection, semantic and instance segmentation, pose estimation, and more. This 26 TOPS variant accommodates larger networks, enables faster processing, and is optimized for running multiple networks simultaneously.
The AI HAT+ connects via the Raspberry Pi 5’s PCIe Gen3 interface. When the Raspberry Pi 5 is running a current version of the Raspberry Pi OS, it automatically detects the onboard Hailo accelerator, making the neural processing unit (NPU) available for AI tasks. Additionally, the rpicam-apps camera applications included in Raspberry Pi OS seamlessly support the AI module, automatically using the NPU for compatible post-processing functions.
Included
Raspberry Pi AI HAT+ (26 TOPS)
Mounting hardware kit (spacers, screws)
16 mm GPIO stacking header
Downloads
Datasheet
The Raspberry Pi AI HAT+ is an expansion board designed for the Raspberry Pi 5, featuring an integrated Hailo AI accelerator. This add-on offers a cost-effective, efficient, and accessible approach to incorporating high-performance AI capabilities, with applications spanning process control, security, home automation, and robotics.
Available in models offering 13 or 26 tera-operations per second (TOPS), the AI HAT+ is based on the Hailo-8L and Hailo-8 neural network accelerators. This 13 TOPS model efficiently supports neural networks for tasks like object detection, semantic and instance segmentation, pose estimation, and more. The 26 TOPS variant accommodates larger networks, enables faster processing, and is optimized for running multiple networks simultaneously.
The AI HAT+ connects via the Raspberry Pi 5’s PCIe Gen3 interface. When the Raspberry Pi 5 is running a current version of the Raspberry Pi OS, it automatically detects the onboard Hailo accelerator, making the neural processing unit (NPU) available for AI tasks. Additionally, the rpicam-apps camera applications included in Raspberry Pi OS seamlessly support the AI module, automatically using the NPU for compatible post-processing functions.
Included
Raspberry Pi AI HAT+ (13 TOPS)
Mounting hardware kit (spacers, screws)
16 mm GPIO stacking header
Downloads
Datasheet
This component storage box is the perfect solution for more organization on your workbench, especially when working with small electronic components. The box with 128 compartments offers enough space to store components such as resistors, capacitors, diodes and transistors clearly and safely. Each part has its own compartment, which makes it possible to access them quickly when you need them for a project. With the Niimbot label printer you can professionally label various objects.
This offer contains:
Elektor Electronic Component Storage Box (normal price: €39.95)
Niimbot D110 Label Printer (normal price: €29.95)
Elektor Electronic Component Storage Box
This Electronic Component Storage Box with 128 compartments is an essential tool for anyone handling small electronic components, particularly SMDs. It provides a practical, well-organized solution for storing a wide array of miniature parts like resistors, capacitors, diodes, and transistors. Each component can be stored in its own dedicated space, ensuring that the specific part you need for any project is always easy to locate.
Whether you're a professional electronics engineer, a maker or a DIY enthusiast, this storage box offers the perfect blend of functionality and convenience. Its design helps eliminate clutter, optimize component management and keep your work environment tidy so you can focus on what really matters: building and troubleshooting electronic circuits.
Dimensions of each compartment (L x W x H): 22 x 15 x 16 mm
Dimensions of the box (L x W x H): 280 x 215 x 45 mm
Included
1x Component Storage Box (incl. 128 compartments with lids and foam)
3x Spare lids
2x Sheets of blank labels
2x Box labels
Niimbot D110 Label Printer
Based on direct thermal technology, the Niimbot D110 label printer offers a printing experience without ink, toner or ribbons, making it a cost-effective solution compared to traditional printers. Its compact size and light weight make it easy to transport and fits easily into any pocket.
With Bluetooth connectivity and a built-in 1500 mAh battery, this wireless mini printer allows you to print from up to 10 meters away, giving you flexibility on the go, whether you're printing from your smartphone or tablet.
The "Niimbot" app (available for iOS and Android) offers a variety of free templates for customizing labels.
Specifications
Model
D110_M (Upgraded Version 2024)
Material
ABS
Resolution
203 DPI
Printing speed
30-60 mm/s
Print width
12-15 mm
Printing technology
Thermal
Operating temperature
5°C ~ 45°C (41°F ~ 113°F)
Battery capacity
1500 mAh
Charging interface
USB-C
Charging time
2 hours
Connection
Bluetooth 4.0
Wireless distance
10 m
Dimensions
98 x 76 x 30 mm
Weight
149 g
Included
1x Niimbot D110 Label Printer
1x Label tape (12 x 40 mm)
1x USB cable
1x Manual
Downloads
iOS App
Android App
The Unitree G1 is a modern humanoid robot that impresses with its remarkable flexibility and advanced technology. With an exceptionally wide range of joint movement and up to 43 joint motors, it exceeds the agility of a typical human. Powered by imitation learning and reinforcement learning, its robotic systems are continuously developed and optimized through artificial intelligence.
One of the G1's most impressive features is its ability to autonomously move into a walking position as soon as it touches the ground – no external assistance required! It can immediately start moving, demonstrating a high level of independence and adaptability. The G1 is also equipped with a force-controlled, highly dexterous hand that operates with both sensitivity and precision, thanks to its combination of force and position control. This hand closely mimics human movements, allowing for precise object manipulation.
Features
Intel RealSense D435 Depth Camera
Livox MID-360 3D LiDAR
Microphone array (noise and echo cancellation)
5 W stereo speaker
Extra large quick release battery
Single arm degrees of freedom (shoulder 2 + elbow 2)
Hollow joint wiring of the whole machine (no external cables)
Maximum torque at joints 120 N.m
Single leg degrees of freedom (hip 3, knee 1, ankle 2)
Moving speed of 2 m/s
Specifications
Height, Width and Thickness (Stand)
1320 x 450 x 200 mm
Height, Width and Thickness (Fold)
690 x 450 x 300 mm
Weight (with Battery)
approx. 35 kg
Total Degrees of Freedom(Joint Freedom
23
Single Leg Degrees of Freedom
6
Waist Degrees of Freedom
1
Single Arm Degrees of Freedom
5
Joint output bearing
Industrial grade crossed roller bearings (high precision, high load capacity)
Joint motor
Low inertia high-speed internal rotor PMSM (Permanent Magnet Synchronous Motor – better response speed and heat dissipation)
Maximum Torque of Knee Joint
90 N.m
Arm Maximum Load
approx. 2 kg
Calf + Thigh Length
0.6 m
Arm Span
approx. 0.45 m
Extra Large Joint Movement Space
• Waist joint: Z ±155°• Knee joint: 0~165°• Hip joint: P ±154°, R -30~+170°, Y ±158°
Full Joint Hollow Electrical Routing
Yes
Joint Encoder
Dual encoder
Cooling System
Local air cooling
Power Supply
13 string Lithium battery
Basic Computing Power
8-core high-performance CPU
Sensing Sensor
Depth Camera + 3D LiDAR
Microphones
4 Microphone Array
Speaker
5 W stereo speaker
Wireless
WiFi 6, Bluetooth 5.2
Smart Battery (Quick Release)
9000 mAh
Charger
54 V/5 A
Manual Controller
Yes
Battery Life
approx. 2 hours
Upgraded Intelligent OTA
Yes
The Raspberry Pi Bumper is a snap-on silicone cover that protects the bottom and edges of the Raspberry Pi 5.
Features
One-piece flexible silicone rubber bumper
Enables easy access to the power button
Mounting holes remain accessible underneath the bumper
Downloads
Datasheet
The Raspberry Pi Touch Display 2 is a 7-inch touchscreen designed for Raspberry Pi, perfect for interactive projects like tablets, entertainment systems, and information dashboards. Raspberry Pi OS includes touchscreen drivers that support five-finger touch and an on-screen keyboard, allowing complete functionality without a physical keyboard or mouse.
Connecting the 720 x 1280 display to your Raspberry Pi requires just two connections: power from the GPIO port and a ribbon cable to the DSI port, compatible with all Raspberry Pi models except the Raspberry Pi Zero line.
Specifications
Display
7 inch TFT (720 x 1280 pixels)
Active area
88 x 155 mm
Touch panel
True multi-touch capacitive touch panel, supporting five-finger touch
Surface treatment
Anti-glare
Color configuration
RGB-stripe
Backlight type
LED B/L
Included
1x Raspberry Pi Touch Display 2
1x 22-way to 15-way FFC for Raspberry Pi 5
1x 15-way to 15-way FFC for Raspberry Pi 4 and older
1x GPIO connector cable
8x M2.5 screws
Downloads
Datasheet
A Beginner's Guide to AI and Edge Computing
Artificial Intelligence (AI) is now part of our daily lives. With companies developing low-cost AI-powered hardware into their products, it is now becoming a reality to purchase AI accelerator hardware at comparatively very low costs. One such hardware accelerator is the Hailo module which is fully compatible with the Raspberry Pi 5. The Raspberry Pi AI Kit is a cleverly designed hardware as it bundles an M.2-based Hailo-8L accelerator with the Raspberry Pi M.2 HAT+ to offer high speed inferencing on the Raspberry Pi 5. Using the Raspberry Pi AI Kit, you can build complex AI-based vision applications, running in real-time, such as object detection, pose estimation, instance segmentation, home automation, security, robotics, and many more neural network-based applications.
This book is an introduction to the Raspberry Pi AI Kit, and it is aimed to provide some help to readers who are new to the kit and wanting to run some simple AI-based visual models on their Raspberry Pi 5 computers. The book is not meant to cover the detailed process of model creation and compilation, which is done on an Ubuntu computer with massive disk space and 32 GB memory. Examples of pre-trained and custom object detection are given in the book.
Two fully tested and working projects are given in the book. The first project explains how a person can be detected and how an LED can be activated after the detection, and how the detection can be acknowledged by pressing an external button. The second project illustrates how a person can be detected, and how this information can be passed to a smart phone over a Wi-Fi link, as well as how the detection can be acknowledged by sending a message from the smartphone to your Raspberry Pi 5.
The LILYGO T-Display-S3 Long is a versatile development board powered by the ESP32-S3R8 dual-core LX7 microprocessor. It features a 3.4-inch capacitive touch TFT LCD with a resolution of 180x640 pixels, providing a responsive interface for various applications.
This board is ideal for developers seeking a compact yet powerful solution for projects requiring touch input and wireless communication. Its compatibility with popular programming environments ensures a smooth development experience.
Specifications
MCU
ESP32-S3R8 Dual-core LX7 microprocessor
Wireless Connectivity
Wi-Fi 802.11, BLE 5 + BT Mesh
Programming Platform
Arduino IDE, VS Code
Flash
16 MB
PSRAM
8 MB
Bat voltage detection
IO02
Onboard functions
Boot + Reset Button, Battery Switch
Display
3.4" Capacitive Touch TFT LCD
Color depth
565, 666
Resolution
180 x 640 (RGB)
Working power supply
3.3 V
Interface
QSPI
Included
1x T-Display S3 Long
1x Power cable
2x STEMMA QT/Qwiic interface cable (P352)
1x Female pin (double row)
Downloads
GitHub
The LILYGO T-Panel S3 is a versatile development board designed for IoT applications, featuring a 4-inch IPS LCD with a 480x480 resolution.
Powered by the ESP32-S3 microcontroller, it offers 2.4 GHz Wi-Fi and Bluetooth 5 (LE) connectivity, with 16 MB of flash memory and 8 MB of PSRAM. The board supports development environments such as Arduino, PlatformIO-IDE, and MicroPython. Notably, it includes a capacitive touch interface, enhancing user interaction capabilities. Onboard functions comprise Boot (IO00), Reset, and two additional keys, providing flexibility for various applications. This combination of features makes the T-Panel S3 suitable for a wide range of IoT projects and smart device control interfaces.
Specifications
MCU1
ESP32-S3
Flash
16 MB
PSRAM
8 MB
Wireless Connectivity
2.4 GHz Wi-Fi + Bluetooth 5 (LE)
MCU2
ESP32-H2
Flash
4 MB
Wireless Connectivity
IEEE 802.15.4 + Bluetooth 5 (LE)
Developing
Arduino, PlatformIO-IDE, Micropython
Display
4.0" 480x480 IPS ST7701S LCD
Resolution
480 x 480 (RGB)
Interface
SPI + RGB
Compatibility library
Arduino_ GFX, LVGL
Onboard functions
QWiiCx2 + TF Card + AntennaESP32 4x Button= S3(Boot + RST) + H2(Boot + RST)
Transceiver Module
RS485
Using bus communication protocol
UART
Included
1x T-Panel S3
1x Female pin (2x 8x1.27)
Downloads
GitHub
The DSO1511G with advanced ARM+FPGA architecture delivers exceptional performance with a 120 MHz bandwidth and 500 MSa/s sampling rate, ensuring precision and stability for professionals and enthusiasts alike.
Its versatility makes it ideal for MCU troubleshooting, vehicle repairs, appliance diagnostics, DIY electronics, power supply testing, and inverter analysis.
The device also features an integrated signal generator, capable of outputting adjustable waveforms with a 2.5 V amplitude, a frequency range of 0-2 MHz, and an accuracy of 0.1 Hz.
Features
120 MHz bandwidth
500 MSa/s sampling rate
2 MHz signal generator
14 measurements
10 mV vertical sensitivity
Video output
FFT spectrum
PC connection
Specifications
Bandwidth
120 MHz
Sampling rate
500 MSa/s
Display
2.4" color TFT (320 x 240)
Measurements
14 types
Vertical precision
±2%
Rise time
<3ns
Storage depth
128 Kb
Impedance
1 MΩ
Time base
5ns-10s
Vertical sensitivity
10 mV/div-10 V/div
Max voltage
±40 V (x1)±400 V (x10)
Trigger mode
Auto/Normal/Single
Trigger type
Rise/Fall
Trigger level
Manual/Auto
Display mode
YT/Roll
Persistence
None/1s/∞
Waveforms
Sinus/Square/Triangle/Noise
Frequency
0-2 Mhz
Power supply
USB-C (5 V)
Battery
2500 mAh Lithium battery
Dimensions
107 x 72 x 32 mm
Weight
166 g
Included
1x DSO1511G Oscilloscope
1x P6100 probe
1x Video cable
1x USB cable
1x Ring-shaped Stand
1x Storage bag
1x Manual
Downloads
Manual
The DSO154Pro with advanced ARM+FPGA architecture is a portable oscilloscope with a bandwidth of 18 MHz and a sampling rate of 40 MSa/s.
It has an integrated signal generator that can output adjustable waveforms with an amplitude of 3 V and a frequency range of 0-500 KHz.
Features
18 MHz bandwidth
40 MSa/s sampling rate
500 KHz signal generator
2.4" display
14 measurement parameters
Auto adjustment
Probe support: X1, X10, X100
Auto shutdown
Specifications
Bandwidth
18 MHz
Sampling rate
40 MSa/s
Display
2.4" color TFT (320 x 240)
Measurements
14 types
Vertical precision
±2%
Rise time
<3ns
Storage depth
16 Kb
Impedance
1 MΩ
Time base
50ns-10s
Vertical sensitivity
20 mV/div-10 V/div
Max voltage
±40 V (x1)±400 V (x10)
Trigger mode
Auto/Normal/Single
Trigger type
Rise/Fall
Trigger level
Manual/Auto
Display mode
YT/Roll
Persistence
None/1s/∞
Waveforms
Sinus/Square/Triangle/Noise
Frequency
0-500 KHz
Power supply
USB-C (5 V)
Battery
1000 mAh Lithium battery
Dimensions
87 x 58 x 18 mm
Weight
80 g
Included
1x DSO154Pro Oscilloscope
1x P6100 probe
1x USB cable
1x Ring-shaped bracket
1x Manual