Development Boards

70 products

  •  -29% QuecPython EC200U - EU C4 - P01 Development Board - Elektor

    Waveshare QuecPython EC200U-EU C4-P01 Development Board

    The EC200U-EU C4-P01 development board features the EC200U-EU LTE Cat 1 wireless communication module, offering a maximum data rate of up to 10 Mbps for downlink and 5 Mbps for uplink. It supports multi-mode and multi-band communication, making it a cost-effective solution. The board is designed in a compact and unified form factor, compatible with the Quectel multi-mode LTE Standard EC20-CE. It includes an onboard USB-C port, allowing for easy development with just a USB-C cable. Additionally, the board is equipped with a 40-pin GPIO header that is compatible with most Raspberry Pi HATs. Features Equipped with EC200U-EU LTE Cat 1 wireless communication module, multi-mode & multi-band support Onboard 40-Pin GPIO header, compatible with most Raspberry Pi HATs 5 LEDs for indicating module operating status Supports TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS protocols, etc. Supports GNSS positioning (GPS, GLONASS, BDS, Galileo, QZSS) Onboard Nano SIM card slot and eSIM card slot, dual card single standby Onboard MIPI connector for connecting MIPI screen and is fully compatible with Raspberry Pi peripherals Onboard camera connector, supports customized SPI cameras with a maximum of 300,000 pixels Provides tools such as QPYcom, Thonny IDE plugin, and VSCode plugin, etc. for easy learning and development Comes with online development resources and manual (example in QuecPython) Specifications Applicable Regions Europe, Middle East, Africa, Australia, New Zealand, Brazil LTE-FDD B1, B3, B5, B7, B8, B20, B28 LTE-TDD B38, B40, B41 GSM / GPRS / EDGE GSM: B2, B3, B5, B8 GNSS GPS, GLONASS, BDS, Galileo, QZSS Bluetooth Bluetooth 4.2 (BR/EDR) Wi-Fi Scan 2.4 GHz 11b (Rx) CAT 1 LTE-FDD: DL 10 Mbps; UL 5 Mbps LTE-TDD: DL 8.96 Mbps; UL 3.1 Mbps GSM / GPRS / EDGE GSM: DL 85.6 Kbps; UL 85.6 Kbps USB-C Port Supports AT commands testing, GNSS positioning, firmware upgrading, etc. Communication Protocol TCP, UDP, PPP, NITZ, PING, FILE, MQTT, NTP, HTTP, HTTPS, SSL, FTP, FTPS, CMUX, MMS SIM Card Nano SIM and eSIM, dual card single standby Indicator P01: Module Pin 1, default as EC200A-XX PWM0 P05: Module Pin 5, NET_MODE indicator SCK1: SIM1 detection indicator, lights up when SIM1 card is inserted SCK2: SIM2 detection indicator, lights up when SIM2 card is inserted PWR: Power indicator Buttons PWK: Power ON/OFF RST: Reset BOOT: Forcing into firmware burning mode USB ON/OFF: USB power consumption detection switch Antenna Connectors LTE main antenna + DIV / WiFi (scanning only) / Bluetooth antenna + GNSS antenna Operating Temperature −30~+75°C Storage Temperature −45~+90°C Downloads Wiki Quectel Resources

    € 69,95€ 49,95

    Members identical

  •  -24% LILYGO T - Deck ESP32 - S3 LoRa Development Board - Elektor

    LILYGO LILYGO T-Deck ESP32-S3 LoRa Development Board

    The T-Deck is a pocket-sized gadget featuring a 2.8-inch IPS LCD display (320 x 240), a mini keyboard, and an ESP32 dual-core processor. While it’s not quite a smartphone, it offers plenty of potential for tech enthusiasts. With some programming know-how, you can transform it into a standalone messaging device or a portable coding platform. Specifications Microcontroller ESP32-S3FN16R8 Dual-core LX7 microprocessor Wireless Connectivity 2.4 GHz Wi-Fi & Bluetooth 5 (LE) Development Arduino, PlatformlO, MicroPython Flash 16 MB PSRAM 8 MB Battery ADC Pin IO04 Onboard functions Trackball, Microphone, Speaker Display 2.8" ST7789 SPI Interface IPS Resolution 320 x 240 (Full viewing angle) Transmit power +22 dBm SX1262 LoRa Transceiver (Frequency) 868 Mhz Dimensions 100 x 68 x 11 mm Included 1x T-Deck ESP32-S3 LoRa 1x FPC antenna (868 MHz) 1x Male pin (6-pin) 1x Power cable Downloads GitHub

    € 84,95€ 64,95

    Members identical

  •  -31%Last Stock! ThingPulse Pendrive S3 - Elektor

    ThingPulse ThingPulse Pendrive S3

    1 in stock

    The ThingPulse Pendrive S3 is an ESP32-S3 device with USB-C plug, WS2812B RGB LED and 128 MB of flash. With the help of TinyUSB the ESP32-S3 can pretend to be many USB devices, such as: USB Memory Stick USB Keyboard USB Mouse Audio device Video device Networking device Applications As BadUSB Device with SuperWiFiDuck it can do KeyStroke injections As WiFiDisk it can be mounted by any regular computer like a memory stick and synchronize the files on the disk to the cloud As WiFiDongle it can add an additional WiFi networking device to any computer/phone Included ESP32-S3 PCB with WS2812B RGB Led Capacitive Touch Button (Spring) USB Drive Plastic Enclosure Downloads CircuitPython

    1 in stock

    € 47,95€ 32,95

    Members identical

  • Waveshare ESP32 - S3 1.47" Display Development Board (172×320) - Elektor

    Waveshare Waveshare ESP32-S3 1.47" Display Development Board (172×320)

    Out of stock

    The Waveshare ESP32-S3 1.47" Display Development Board is a microcontroller platform featuring 2.4 GHz WiFi, Bluetooth BLE 5, high-capacity Flash, and PSRAM. Its 1.47-inch LCD screen supports smooth GUI development with LVGL, while multiple peripheral interfaces make it ideal for rapid prototyping of HMI and other ESP32-S3-based applications. Features Processor: Equipped with a high-performance Xtensa 32-bit LX7 dual-core processor, running at up to 240 MHz. Connectivity: Supports 2.4 GHz Wi-Fi (802.11 b/g/n) and Bluetooth 5 (LE) with an onboard antenna. Memory: Built-in 512 KB SRAM, 384 KB ROM, 16 MB Flash, and 8 MB PSRAM for ample storage and performance. Display: Features a 1.47-inch LCD screen with a resolution of 172 x 320 and 262K colors, ideal for GUI applications. Interfaces: Adapts multiple IO interfaces and integrates a full-speed USB port for versatile connectivity. Storage: Includes a TF card slot for external storage of pictures and files. Power Efficiency: Supports precise control with flexible clock settings and multiple power modes, enabling low power consumption across scenarios. Lighting: Built-in RGB LED with a clear acrylic sandwich panel for customizable and stylish lighting effects. Included 1x ESP32-S3 1.47" Display Development Board (ESP32-S3-LCD-1.47) 1x Header (black) Downloads Wiki

    Out of stock

    € 19,95

    Members € 17,96

  • Waveshare ESP32 - S3 4" Capacitive Touch Display Development Board (480×480) - Elektor

    Waveshare Waveshare ESP32-S3 4" Capacitive Touch Display Development Board (480×480)

    Out of stock

    The Waveshare ESP32-S3 4" Capacitive Touch Display is a microcontroller development board featuring 2.4 GHz WiFi and BLE 5 support. It integrates 16 MB of Flash and 8 MB of PSRAM. The onboard 4-inch 480 x 480 capacitive touch screen is capable of running GUI programs smoothly, such as those developed with LVGL. With its versatile peripheral interfaces, the board enables quick development of HMI (Human-Machine Interface) applications based on the ESP32-S3. It is suitable for a variety of scenarios, including: Smart control panels, Home gateways, Intelligent interactive panels, Industrial control systems, Smart lighting control. Specifications Processor High performance Xtensa 32-bit LX7 dual-core processor, with a main frequency of up to 240 MHz Wi-Fi/Bluetooth Supports 2.4 GHz Wi-Fi (802.11 b/g/n) and Bluetooth 5 (LE), with an onboard antenna Flash/PSRAM 16 MB Flash + 8 MB PSRAM Power Supply USB-C (5 V) + DC (7-36 V) Resolution 480 x 480 Display Interface RGB Display Panel IPS Viewing Angle 160° Touch Type Capacitive Touch Panel Toughened Glass Communication Interfaces CAN, RS485, I²C, USB Dimensions 84.2 x 84.2 mm Included 1x ESP32-S3 4-inch Capacitive Touch Display Dev Board (ESP32-S3-Touch-LCD-4) 1x Back wiring 3.5 mm pitch 10P pluggable terminal block 1x Bottom wiring 3.5 mm pitch 10P pluggable terminal block Downloads Wiki

    Out of stock

    € 44,95

    Members € 40,46

  • SparkFun RP2040 mikroBUS Development Board - Elektor

    SparkFun SparkFun RP2040 mikroBUS Development Board

    The SparkFun RP2040 mikroBUS Development Board is a low-cost, high performance platform with flexible digital interfaces featuring the Raspberry Pi Foundation's RP2040 microcontroller. Besides the Thing Plus or Feather PTH pin layout, the board also includes a microSD card slot, 16 MB (128 Mbit) flash memory, a JST single cell battery connector (with a charging circuit and fuel gauge sensor), an addressable WS2812 RGB LED, JTAG PTH pins, four (4-40 screw) mounting holes, our signature Qwiic connectors, and a mikroBUS socket. The mikroBUS standard was developed by MikroElektronika. Similar to Qwiic and MicroMod interfaces, the mikroBUS socket provides a standardized connection for add-on Click boards to be attached to a development board and is comprised of a pair of 8-pin female headers with a standardized pin configuration. The pins consist of three groups of communications pins (SPI, UART and I²C), six additional pins (PWM, Interrupt, Analog input, Reset and Chip select), and two power groups (3.3 V and 5 V). The RP2040 is supported with both C/C++ and MicroPython cross-platform development environments, including easy access to runtime debugging. It has UF2 boot and floating-point routines baked into the chip. While the chip has a large amount of internal RAM, the board includes an additional 16 MB of external QSPI flash memory to store program code. The RP2040 contains two ARM Cortex-M0+ processors (up to 133 MHz) and features: 264 kB of embedded SRAM in six banks 6 dedicated IO for SPI Flash (supporting XIP) 30 multifunction GPIO: Dedicated hardware for commonly used peripherals Programmable IO for extended peripheral support Four 12-bit ADC channels with internal temperature sensor (up to 0.5 MSa/s) USB 1.1 Host/Device functionality Features (SparkFun RP2040 mikroBUS Dev. Board) Raspberry Pi Foundation's RP2040 microcontroller 18 Multifunctional GPIO Pins Four available 12-bit ADC channels with internal temperature sensor (500kSa/s) Up to eight 2-channel PWM Up to two UARTs Up to two I²C buses Up to two SPI buses Thing Plus (or Feather) Pin Layout: 28 PTH Pins USB-C Connector: USB 1.1 Host/Device functionality 2-pin JST Connector for a LiPo Battery (not included): 500mA charging circuit 4-pin JST Qwiic Connector LEDs: PWR - Red 3.3V power indicator CHG - Yellow battery charging indicator 25 - Blue status/test LED (GPIO 25) WS2812 - Addressable RGB LED (GPIO 08) Buttons: Boot Reset JTAG PTH Pins 16MB QSPI Flash Memory µSD Card Slot mikroBUS Socket Dimensions: 3.7' x 1.2' Four Mounting Holes: 4-40 screw compatible Downloads Schematic Eagle Files Board Dimensions Hookup Guide Qwiic Info Page GitHub Hardware Repository

    € 19,95

    Members € 17,96

  •  -27% LILYGO T - Display S3 Long Development Board (with Shell) - Elektor

    LILYGO LILYGO T-Display S3 Long Development Board (with Shell)

    The LILYGO T-Display-S3 Long is a versatile development board powered by the ESP32-S3R8 dual-core LX7 microprocessor. It features a 3.4-inch capacitive touch TFT LCD with a resolution of 180x640 pixels, providing a responsive interface for various applications. This board is ideal for developers seeking a compact yet powerful solution for projects requiring touch input and wireless communication. Its compatibility with popular programming environments ensures a smooth development experience. Specifications MCU ESP32-S3R8 Dual-core LX7 microprocessor Wireless Connectivity Wi-Fi 802.11, BLE 5 + BT Mesh Programming Platform Arduino IDE, VS Code Flash 16 MB PSRAM 8 MB Bat voltage detection IO02 Onboard functions Boot + Reset Button, Battery Switch Display 3.4" Capacitive Touch TFT LCD Color depth 565, 666 Resolution 180 x 640 (RGB) Working power supply 3.3 V Interface QSPI Included 1x T-Display S3 Long 1x Power cable 2x STEMMA QT/Qwiic interface cable (P352) 1x Female pin (double row) Downloads GitHub

    € 54,95€ 39,95

    Members identical

  •  -50% LuckFox Pico Mini B Linux Micro Development Board (with Headers) - Elektor

    Luckfox LuckFox Pico Mini B Linux Micro Development Board (with Headers)

    LuckFox Pico Mini is a compact Linux micro development board based on the Rockchip RV1103 chip, providing a simple and efficient development platform for developers. It supports a variety of interfaces, including MIPI CSI, GPIO, UART, SPI, I²C, USB, etc., which is convenient for quick development and debugging. Features Single-core ARM Cortex-A7 32-bit core with integrated NEON and FPU Built-in Rockchip self-developed 4th generation NPU, features high computing precision and supports int, int8, and int16 hybrid quantization. The computing power of int8 is 0.5 TOPS, and up to 1.0 TOPS with int4 Built-in self-developed third-generation ISP3.2, supports 4-Megapixel, with multiple image enhancement and correction algorithms such as HDR, WDR, multi-level noise reduction, etc. Features powerful encoding performance, supports intelligent encoding mode and adaptive stream saving according to the scene, saves more than 50% bit rate of the conventional CBR mode so that the images from camera are high-definition with smaller size, double the storage space Built-in RISC-V MCU supports low power consumption and fast start-up, supports 250 ms fast picture capture and loading Al model library at the same time to realize face recognition "in one second" Built-in 16-bit DRAM DDR2, which is capable of sustaining demanding memory bandwidths Integrated with built-in POR, audio codec and MAC PHY Specifications Processor ARM Cortex-A7, single-core 32-bit CPU, 1.2 GHz, with NEON and FPU NPU Rockchip 4th-gen NPU, supports int4, int8, int16; up to 1.0 TOPS (int4) ISP Third-gen ISP3.2, up to 4 MP input at 30fps, HDR, WDR, noise reduction RAM 64 MB DDR2 Storage 128 MB SPI NAND Flash USB USB 2.0 Host/Device via Type-C Camera Interface MIPI CSI 2-lane GPIO Pins 17 GPIO pins Power Consumption Low power, RISC-V MCU for fast startup Dimensions 28 x 21 mm Downloads Wiki

    € 19,95€ 9,95

    Members identical

  • LuckFox Pico Ultra Linux Micro Development Board - Elektor

    Luckfox LuckFox Pico Ultra Linux Micro Development Board

    The LuckFox Pico Ultra is a compact single-board computer (SBC) powered by the Rockchip RV1106G3 chipset, designed for AI processing, multimedia, and low-power embedded applications. It comes equipped with a built-in 1 TOPS NPU, making it ideal for edge AI workloads. With 256 MB RAM, 8 GB onboard eMMC storage, integrated WiFi, and support for the LuckFox PoE module, the board delivers both performance and versatility across a wide range of use cases. Running Linux, the LuckFox Pico Ultra supports a variety of interfaces – including MIPI CSI, RGB LCD, GPIO, UART, SPI, I²C, and USB – providing a simple and efficient development platform for applications in smart home, industrial control, and IoT. Specifications Chip Rockchip RV1106G3 Processor Cortex-A7 1.2 GHz Neural Network Processor (NPU) 1 TOPS, supports int4, int8, int16 Image Processor (ISP) Max input 5M @30fps Memory 256 MB DDR3L WiFi + Bluetooth 2.4GHz WiFi-6 Bluetooth 5.2/BLE Camera Interface MIPI CSI 2-lane DPI Interface RGB666 PoE Interface IEEE 802.3af PoE Speaker interface MX1.25 mm USB USB 2.0 Host/Device GPIO 30 GPIO pins Ethernet 10/100M Ethernet controller and embedded PHY Default Storage Medium eMMC (8 GB) Included 1x LuckFox Pico Ultra W 1x LuckFox PoE module 1x IPX 2.4G 2 db antenna 1x USB-A to USB-C cable 1x Screws pack Downloads Wiki

    € 39,95

    Members € 35,96

  • NXP FRDM - MCXN947 Development Board - Elektor

    NXP Semiconductors NXP FRDM-MCXN947 Development Board

    The FRDM-MCXN947 is a compact and versatile development board designed for rapid prototyping with MCX N94 and N54 microcontrollers. It features industry-standard headers for easy access to the MCU's I/Os, integrated open-standard serial interfaces, external flash memory, and an onboard MCU-Link debugger. Specifications Microcontroller MCX-N947 Dual Arm Cortex-M33 cores @ 150 MHz each with optimized performance efficiency, up to 2 MB dual-bank flash with optional full ECC RAM, External flash Accelerators: Neural Processing Unit, PowerQuad, Smart DMA, etc. Memory Expansion *DNP Micro SD card socket Connectivity Ethernet Phy and connector HS USB-C connectors SPI/I²C/UART connector (PMOD/mikroBUS, DNP) WiFi connector (PMOD/mikroBUS, DNP) CAN-FD transceiver Debug On-board MCU-Link debugger with CMSIS-DAP JTAG/SWD connector Sensor P3T1755 I³C/I²C Temp Sensor, Touch Pad Expansion Options Arduino Header (with FRDM expansion rows) FRDM Header FlexIO/LCD Header SmartDMA/Camera Header Pmod *DNP mikroBUS User Interface RGB user LED, plus Reset, ISP, Wakeup buttons Included 1x FRDM-MCXN947 Development Board 1x USB-C Cable 1x Quick Start Guide Downloads Datasheet Block diagram

    € 29,95

    Members € 26,96

  • CubeCell HTCC - AB01 (V2) LoRa Development Board (EU868) - Elektor

    Heltec Automation CubeCell HTCC-AB01 (V2) LoRa Development Board (EU868)

    Out of stock

    The CubeCell series is designed primarily for LoRa/LoRaWAN node applications. Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels. The HTCC-AB01 (V2) is an upgraded version of the HTCC-AB01 board. Features Arduino compatible Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex-M0+ Core) and SX1262 LoRaWAN 1.0.2 support Ultra low power design, 3.5 uA in deep sleep Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching) Good impendence matching and long communication distance. Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing Specifications Main Chip ASR6502 (48 MHz ARM Cortex-M0+ MCU) LoRa Chipset SX1262 Frequency 863~870 MHz Max. TX Power 21 ±1 dBm Max. Receiving Sensitivity −134 dBm Hardware Resource 1x UART1x SPI1x I²C1x SWD1x 12-bit ADC input8-channel DMA engine8x GPIO2x PWM Memory 128 Kb FLASH16 Kb SRAM Power consumption Deep Sleep 3.5 uA Interfaces 1x USB-C1x LoRa Antenna (IPEX 1.0)SH1.25; 11x 2x 2.54 Pin header1x (2x 2.54 Pin header) Solar Energy VS pin can be connected to 5.5~7 V solar panel Battery 3.7 V Lithium battery (power supply and charging) Operating temperature −20~70°C Dimensions 40.6 x 22.9 x 7.6 mm Included 1x CubeCell HTCC-AB01 (V2) Development Board 1x Antenna 1x 2x SH1.25 battery connector Downloads Datasheet Schematic Quick start GitHub

    Out of stock

    € 19,95

    Members € 17,96

  • Arduino Pro Portenta H7 Lite - Elektor

    Arduino Arduino Pro Portenta H7 Lite

    Out of stock

    Portenta H7 Lite allows you to build your next smart project. Ever wanted an automated house? Or a smart garden? Well, now it’s easy with the Arduino IoT Cloud compatible boards. It means: you can connect devices, visualize data, control and share your projects from anywhere in the world. The Arduino Pro Portenta H7 Lite is very similar to the Portenta H7, that simultaneously can run high level code along with real time tasks thanks to its two processors. It is, for example, possible to execute Arduino compiled code along with MicroPython one and have both cores to communicate with one another. However, the H7 Lite is a low-cost board with H7 functionalities that can be configured to specific use cases. Features Dual Core – Two best-in-class processors in one, running parallel tasks AI on the edge – So powerful it can run AI state machines Customization – The board is highly customizable in volumes High-level programming language support (Micropython) The Portenta H7 Lite offers twofold functionality: it can run either like any other embedded microcontroller board, or as the main processor of an embedded computer. For example, use the Portenta Vision Shield to transform your H7 Lite into an industrial camera capable of performing real-time machine learning algorithms on live video feeds. As the H7 Lite can easily run processes created with TensorFlow Lite, you could have one of the cores computing a computer vision algorithm on the fly, while the other carries out low-level operations like controlling a motor or acting as a user interface. Solutions High-end industrial machinery Laboratory equipment Computer vision PLCs Robotics controllers Mission-critical devices High-speed booting computation (ms) Two Parallel Cores The Portenta H7 Lite’s main processor is the STM32H747 dual core including a Cortex-M7 running at 480 MHz and a Cortex-M4 running at 240 MHz. The two cores communicate via a Remote Procedure Call mechanism that allows calling functions on the other processor seamlessly. Both processors share all the in-chip peripherals and can run: Arduino sketches on top of the ARM Mbed OS Native Mbed applications MicroPython / JavaScript via an interpreter TensorFlow Lite A New Standard for Pinouts The Portenta family adds two 80-pin high-density connectors at the bottom of the board. This ensures scalability for a wide range of applications: simply upgrade your Portenta board to the one suiting your needs. USB-C Multipurpose Connector The board’s programming connector is a USB-C port that can also be used to power the board, as a USB Hub, or to deliver power to OTG connected devices. Arduino IoT Cloud Use your Portenta board on Arduino’s IoT Cloud, a simple and fast way to ensure secure communication for all of your connected Things. Specifications Microcontroller STM32H747XI Dual Cortex-M7+M4 32-bit low power ARM MCU (datasheet) Secure element (default) Microchip ATECC608 Board power supply (USB/VIN) 5 V Supported battery Li-Po Single Cell, 3.7 V, 700 mAh Minimum (integrated charger) Circuit operating voltage 3.3 V Current consumption 2.95 μA in Standby mode (Backup SRAM OFF, RTC/LSE ON) Timers 22x timers and watchdogs UART 4x ports (2 with flow control) Ethernet PHY 10 / 100 Mbps (through expansion port only) SD card Interface for SD card connector (through expansion port only) Operational temperature -40 °C to +85 °C MKR headers Use any of the existing industrial MKR shields on it High-density connectors Two 80-pin connectors will expose all of the board's peripherals to other devices Camera interface 8-bit, up to 80 MHz ADC 3x ADCs with 16-bit max. resolution (up to 36 channels, up to 3.6 MSPS) DAC 2x 12-bit DAC (1 MHz) USB-C Host / Device, High / Full Speed, Power delivery Downloads Datasheet Schematics

    Out of stock

    € 94,95

    Members € 85,46

  •  -30% Milk - V Duo 256M RISC - V Singe - board Computer - Elektor

    milkV Milk-V Duo 256M RISC-V Singe-board Computer

    The Milk-V Duo 256M is an ultra-compact embedded development platform based on the SG2002 chip. It can run Linux and RTOS, providing a reliable, low-cost, and high-performance platform for professionals, industrial ODMs, AIoT enthusiasts, DIY hobbyists, and creators. This board is an upgraded version of Duo with a memory boost to 256M, catering to applications demanding larger memory capacities. The SG2002 elevates computational power to 1.0 TOPS @ INT8. It enables seamless switching between RISC-V/ARM architectures and supports simultaneous operation of dual systems. Additionally, it includes an array of rich GPIO interfaces such as SPI, UART, suitable for a wide range of hardware development in edge intelligent monitoring, including IP cameras, smart peephole locks, visual doorbells, and more. SG2002 is a high-performance, low-power chip designed for various product fields such as edge intelligent surveillance IP cameras, smart door locks, visual doorbells, and home intelligence. It integrates H.264 video compression and decoding, H.265 video compression encoding, and ISP capabilities. It supports multiple image enhancement and correction algorithms such as HDR wide dynamic range, 3D noise reduction, defogging, and lens distortion correction, providing customers with professional-grade video image quality. The chip also incorporates a self-developed TPU, delivering 1.0 TOPS of computing power under 8-bit integer operations. The specially designed TPU scheduling engine efficiently provides high-bandwidth data flow for all tensor processing unit cores. Additionally, it offers users a powerful deep learning model compiler and software SDK development kit. Leading deep learning frameworks like Caffe and Tensorflow can be easily ported to its platform. Furthermore, it includes security boot, secure updates, and encryption, providing a series of security solutions from development, mass production, to product applications. The chip integrates an 8-bit MCU subsystem, replacing the typical external MCU to achieve cost-saving and power efficiency goals. Specifications SoC SG2002 RISC-V CPU C906 @ 1 Ghz + C906 @ 700 MHz Arm CPU 1x Cortex-A53 @ 1 GHz MCU 8051 @ 6 KB SRAM Memory 256 MB SIP DRAM TPU 1.0 TOPS @ INT8 Storage 1x microSD connector or 1x SD NAND on board USB 1x USB-C for power and data, USB Pads available CSI 1x 16P FPC connector (MIPI CSI 2-lane) Sensor Support 5 M @ 30 fps Ethernet 100 Mbps Ethernet with PHY Audio Via GPIO Pads GPIO Up to 26x GPIO Pads Power 5 V/1 A OS Support Linux, RTOS Dimensions 21 x 51 mm Downloads Documentation GitHub

    € 32,95€ 22,95

    Members identical

  • Velleman ATmega328 Uno Development Board - Elektor

    Velleman Velleman ATmega328 Uno Development Board

    The ATmega328 Uno Development Board (Arduino Uno compatible) is a microcontroller board based on the ATmega328. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analogue inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP header and a reset button. It contains everything needed to support the microcontroller; connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. Specifications Microcontroller ATmega328 Operating voltage 5 V DC Input voltage (recommended) 7-12 V DC Input voltage (limits) 6-20 V DC Digital I/O pins 14 (of which 6 provide PWM output) Analogue input pins 6 SRAM 2 kB (ATmega328) EEPROM 1 kB (ATmega328) Flash memory 32 kB (ATmega328) of which 0.5 kB used by bootloader Clock speed 16 MHz Downloads Manual

    € 22,95

    Members € 20,66

  • Arduino MKR Zero - Elektor

    Arduino Arduino MKR Zero

    The Arduino MKR Zero is a development board for music makers! With an SD card holder and dedicated SPI interfaces (SPI1), you are able to play music files without extra hardware. The MKR Zero brings you the power of a Zero in the smaller format established by the MKR form factor. The MKR Zero board acts as a great educational tool for learning about 32-bit application development. It has an on-board SD connector with dedicated SPI interfaces (SPI1) that allows you to play with MUSIC files with no extra hardware! The board is powered by Atmel’s SAMD21 MCU, which features a 32-bit ARM Cortex M0+ core. The board contains everything needed to support the microcontroller; simply connect it to a computer with a micro-USB cable or power it by a LiPo battery. The battery voltage can also be monitored since a connection between the battery and the analog converter of the board exists. Specifications Microcontroller SAMD21 ARM Cortex-M0+ 32-bit low power Board power supply (USB/VIN) 5 V Supported battery Li-Po single cell, 3.7 V, 700 mAh minimum DC current for 3.3 V pin 600 mA DC current for 5 V pin 600 mA Circuit operating voltage 3.3 V Digital I/O pins 22 PWM pins 12 (0, 1, 2, 3, 4, 5, 6, 7, 8, 10, A3 - or 18 -, A4 -or 19) UART 1 SPI 1 I²C 1 Analog input pins 7 (ADC 8/10/12 bit) Analog output pins 1 (DAC 10 bit) External interrupts 10 (0, 1, 4, 5, 6, 7, 8, A1 -or 16-, A2 - or 17) DC current per I/O pin 7 mA Flash memory 256 KB Flash memory for bootloader 8 KB SRAM 32 KB EEPROM No Clock speed 32.768 kHz (RTC), 48 MHz LED_BUILTIN 32 Downloads Datasheet Eagle Files Schematics Fritzing Pinout

    € 36,95

    Members € 33,26

  •  -16% Arduino MKR NB 1500 - Elektor

    Arduino Arduino MKR NB 1500

    Arduino MKR NB 1500 allows you to build your next smart project. Ever wanted an automated house? Or a smart garden? Well, now it’s easy with the Arduino IoT Cloud compatible boards. It means: you can connect devices, visualize data, control and share your projects from anywhere in the world. Whether you’re a beginner or a pro, we have a wide range of plans to make sure you get the features you need. Add Narrowband communication to your project with the MKR NB 1500. It's the perfect choice for devices in remote locations without an Internet connection, or in situations in which power isn't available like on-field deployments, remote metering systems, solar-powered devices, or other extreme scenarios. The board's main processor is a low power ARM Cortex-M0 32-bit SAMD21, like in the other boards within the Arduino MKR family. The Narrowband connectivity is performed with a module from u-blox, the SARA-R410M-02B, a low power chipset operating in the de different bands of the IoT LTE cellular range. On top of those, secure communication is ensured through the Microchip ECC508 crypto chip. Besides that, the pcb includes a battery charger, and a connector for an external antenna. This board is designed for global use, providing connectivity on LTE's Cat M1/NB1 bands 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28. Operators offering service in that part of the spectrum include: Vodafone, AT&T, T-Mobile USA, Telstra, and Verizon, among others. Specifications The Arduino MKR NB 1500 is based on the SAMD21 microcontroller. Microcontroller SAMD21 Cortex-M0+ 32-bit low power ARM MCU (datasheet) Radio module u-blox SARA-R410M-02B (datasheet summary) Secure element ATECC508 (datasheet) Board power supply (USB/VIN) 5 V Supported battery Li-Po Single Cell, 3.7 V, 1500 mAh Minimum Circuit operating voltage 3.3 V Digital I/O pins 8 PWM pins 13 (0 .. 8, 10, 12, 18 / A3, 19 / A4) UART 1 SPI 1 I²C 1 Analog input pins 7 (ADC 8/10/12 bit) Analog output pins 1 (DAC 10 bit) External interrupts 8 (0, 1, 4, 5, 6, 7, 8, 16 / A1, 17 / A2) DC current per I/O pin 7 mA Flash memory 256 KB (internal) SRAM 32 KB EEPROM No Clock speed 32.768 kHz (RTC), 48 MHz LED_BUILTIN 6 USB Full-speed USB device and embedded host Antenna gain 2 dB Carrier frequency LTE bands 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28 Power class (radio) LTE Cat M1 / NB1: Class 3 (23 dBm) Data rate (LTE M1 halp-duplex) UL 375 kbps / DL 300 kbps Data rate (LTE NB1 full-duplex) UL 62.5 kbps / DL 27.2 kbps Working region Multiregion Device location GNSS via modem Power consumption (LTE M1) min 100 mA / max 190 mA Power consumption (LTE NB1) min 60 mA / max 140 mA SIM card MicroSIM (not included with the board) Dimensions 67.6 x 25 mm Weight 32 g Downloads Eagle Files Schematics Pinout

    € 94,95€ 79,95

    Members identical

  •  -29% CubeCell HTCC - AB02 LoRa Development Board (EU868) - Elektor

    Heltec Automation CubeCell HTCC-AB02 LoRa Development Board (EU868)

    Out of stock

    The CubeCell series is designed primarily for LoRa/LoRaWAN node applications. Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels. The HTCC-AB02 is a developer-friendly board, ideal for quickly testing and validating communication solutions. Features Arduino compatible Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262 LoRaWAN 1.0.2 support Ultra low power design, 3.5 uA in deep sleep Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching) Good impendence matching and long communication distance Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information Specifications Main Chip ASR6502 (48 MHz ARM Cortex-M0+ MCU) LoRa Chipset SX1262 Frequency 863~870 MHz Max. TX Power 22 ±1 dBm Max. Receiving Sensitivity −135 dBm Hardware Resource 2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO Memory 128 Kb FLASH16 Kb SRAM Power consumption Deep sleep 3.5 uA Interfaces 1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header) Battery 3.7 V lithium battery (power supply and charging) Solar Energy VS pin can be connected to 5.5~7 V solar panel USB to Serial Chip CP2102 Display 0.96" OLED (128 x 64) Operating temperature −20~70°C Dimensions 51.9 x 25 x 8 mm Included 1x CubeCell HTCC-AB02 Development Board 1x Antenna 1x 2x SH1.25 battery connector Downloads Datasheet Schematic Quick start GitHub

    Out of stock

    € 34,95€ 24,95

    Members identical

  •  -30% CubeCell HTCC - AB02S LoRa Development Board with GPS (EU868) - Elektor

    Heltec Automation CubeCell HTCC-AB02S LoRa Development Board with GPS (EU868)

    The CubeCell series is designed primarily for LoRa/LoRaWAN node applications. Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels. The HTCC-AB02S is a developer-friendly board with an integrated AIR530Z GPS module, ideal for quickly testing and validating communication solutions. Features Arduino compatible Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262 LoRaWAN 1.0.2 support Ultra low power design, 21 uA in deep sleep Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching) Good impendence matching and long communication distance Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information Using Air530 GPS module with GPS/Beidou Dual-mode position system support Specifications Main Chip ASR6502 (48 MHz ARM Cortex-M0+ MCU) LoRa Chipset SX1262 Frequency 863~870 MHz Max. TX Power 22 ±1 dBm Max. Receiving Sensitivity −135 dBm Hardware Resource 2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO Memory 128 Kb FLASH16 Kb SRAM Power consumption Deep sleep 21 uA Interfaces 1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header) Battery 3.7 V lithium battery (power supply and charging) Solar Energy VS pin can be connected to 5.5~7 V solar panel USB to Serial Chip CP2102 Display 0.96" OLED (128 x 64) Operating temperature −20~70°C Dimensions 55.9 x 27.9 x 9.5 mm Included 1x CubeCell HTCC-AB02S Development Board 1x Antenna 1x 2x SH1.25 battery connector Downloads Datasheet Schematic GPS module (Manual) Quick start GitHub

    € 49,95€ 34,95

    Members identical

  • Waveshare Jetson Orin Nano AI Development Kit - Elektor

    Waveshare Waveshare Jetson Orin Nano AI Development Kit

    Out of stock

    This AI Edge Computing Development Kit is based on the Jetson Orin Nano Module providing rich peripheral interfaces such as M.2, DP, USB, etc. This kit also comes with a pre-installed AW-CB375NF wireless network card that supports Bluetooth 5.0 and dual-band WIFI, with two additional PCB antennas, for providing high-speed and reliable wireless network connection and Bluetooth communication. Specifications AI performance 40 TOPS GPU 1024-core N-VIDIA Ampere architecture GPU with 32 Tensor Cores GPU frequency 625 MHz (max) CPU 6-core Arm Cortex-A78AE v8.2 64-bit CPU, 1.5 MB L2 + 4 MB L3 CPU frequency 1.5 GHz (max) RAM 8 GB 128-bit LPDDR5, 68 GB/s Storage 128 GB NVMe Solid State Drive Power 7~15 W PCIE M.2 Key M slot with x4 PCIe Gen3 M.2 Key M slot with x2 PCIe Gen3 M.2 Key E slot USB USB Type-A: 4x USB 3.2 Gen2 USB Type-C (UFP) CSI camera 2x MIPI CSI-2 camera connector Video encode 1080p30 supported by 1-2 CPU cores Video decode 1x 4K60 (H.265) 2x 4K30 (H.265) 5x 1080p60 (H.265) 11x 1080p30 (H.265) Display 1x DisplayPort 1.2 (+MST) connector Interfaces 40-Pin Expansion Header (UART, SPI, I²S, I²C, GPIO), 12-pin button header, 4-pin fan header, DC power jack Networking 1x GbE connector Dimensions 103 x 90.5 x 34 mm Included Waveshare Orin Nano development kit 1x Jetson Orin Nano Module (8 GB) 1x JETSON-ORIN-IO-BASE 1x Cooling Fan 1x 128 GB NVMe Solid State Drive (assembled) 1x Wireless network card (assembled) 1x USB Type A to Type-C cable (1 m) 1x Ethernet cable (1.5 m) 1x Jumper 1x Power adapter (EU) Documentation Wiki

    Out of stock

    € 799,00

    Members € 719,10

  •  -26% Waveshare Jetson Nano Development Kit Lite - Elektor

    Waveshare Waveshare Jetson Nano Development Kit Lite

    The Waveshare Jetson Nano Development Kit, based on AI computers Jetson Nano (with 16 GB eMMC) and Jetson Xavier NX, provides almost the same IOs, size, and thickness as the Jetson Nano Developer Kit (B01), more convenient for upgrading the core module. By utilizing the power of the core module, it is qualified for fields like image classification, object detection, segmentation, speech processing, etc., and can be used in sorts of AI projects. Specifications GPU 128-core Maxwell CPU Quad-core ARM A57 @ 1.43 GHz RAM 4 GB 64-bit LPDDR4 25.6 GB/s Storage 16 GB eMMC + 64 GB TF Card Video encoder 250 MP/s 1x 4K @ 30 (HEVC) 2x 1080p @ 60 (HEVC) 4x 1080p @ 30 (HEVC) Video decoder 500 MP/s 1x 4K @ 60 (HEVC) 2x 4K @ 30 (HEVC) 4x 1080p @ 60 (HEVC) 8x 1080p @ 30 (HEVC) Camera 1x MIPI CSI-2 D-PHY lanes Connectivity Gigabit Ethernet, M.2 Key E expansion connector Display HDMI USB 1x USB 3.2 Gen 1 Type A 2x USB 2.0 Type A 1x USB 2.0 Micro-B Interfaces GPIO, I²C, I²S, SPI, UART Dimensions 100 x 80 x 29 mm Included 1x JETSON-NANO-LITE-DEV-KIT (carrier + Nano + heatsink) 1x AC8265 dual-mode NIC 1x Cooling fan 1x USB cable (1.2 m) 1x Ethernet cable (1.5 m) 1x 5 V/3 A power adapter (EU) 1x 64 GB TF Card 1x Card reader Documentation Wiki

    € 269,00€ 199,95

    Members identical

  •  -18% unPhone IoT Development Platform - Elektor

    Pimoroni unPhone IoT Development Platform

    The unPhone is an open-source IoT development platform powered by the ESP32S3 microcontroller. It features integrated LoRa, Wi-Fi, and Bluetooth connectivity, a touchscreen, and a LiPo battery, offering a robust and versatile solution for IoT development. Its compatibility with Adafruit's FeatherWing standard enables easy expansion, making it an ideal choice for educators, makers, and developers seeking a flexible and user-friendly platform. Features ESP32S3 microcontroller (with 8 MB flash and 8 MB PSRAM) LoRaWAN licence-free radio communication (plus the ESP32's excellent wifi and bluetooth support) 3.5" (320 x 480) LCD capacitive touchscreen for easy debugging and UI creation IR LEDs for surreptitiously switching the cafe TV off 1200 mAh LiPo battery with USB-C charging Vibration motor for notifications Compass/Accelorometer A robust case SD card slot Power and reset buttons Programmable in C++ or CircuitPython Expander board that supports two Featherwing sockets and a prototyping area Open source firmware compatible with the Arduino IDE, PlatformIO and Espressif's IDF development framework Included unPhone (assembled) Expander board FPC cable (to link the expander board to unPhone) Self adhesive mounts for the expander board Code Examples C++ library Kick the tyres on everything in the box The main LVGL demo CircuitPython Support forum Textbook (especially chapter 11)

    € 219,00€ 179,95

    Members identical

  •  -25% Arduino Pro Portenta Cat - M1 NB - IoT GNSS Shield - Elektor

    Arduino Arduino Pro Portenta Cat-M1 NB-IoT GNSS Shield

    The Arduino Pro Portenta Cat. M1/NB IoT GNSS Shield allows you to enhance the connectivity features of your Portenta H7 applications. The shield leverages a Cinterion TX62 wireless module by Thales, designed for highly efficient, low-power IoT applications to deliver optimized bandwidth and performance. The Portenta Cat. M1/NB IoT GNSS Shield combines with the strong edge computing power of the Portenta H7 to enable the development of asset tracking and remote monitoring applications in industrial settings, as well as in agriculture, public utilities and smart cities. The shield offers cellular connectivity to both Cat. M1 and NB-IoT networks with the option to use eSIM technology. Easily track your valuables – across the city or worldwide – with your choice of GPS, GLONASS, Galileo or BeiDou. Features Change connectivity capabilities without changing the board Add NB-IoT, CAT. M1 and positioning to any Portenta product Possibility to create a small multiprotocol router (WiFi - BT + NB-IoT/CAT. M1) Greatly reduce communication bandwidth requirements in IoT applications Low-power module Compatible also with MKR boards Remote Monitoring Industrial and agricultural companies can leverage the Portenta Cat. M1/NB IoT GNSS Shield to remotely monitor gas detectors, optical sensors, machinery alarm systems, biological bug traps and more. Technology providers providing smart city solutions can compound the power and reliability of the Portenta H7 with the Portenta Cat. M1/NB IoT GNSS Shield, to connect data and automate actions for a truly optimized use of resources and enhanced user experience. Asset Monitoring Add monitoring capabilities to any asset by combining the performance and edge computing features of the Portenta family boards. The Portenta Cat. M1/NB IoT GNSS Shield is ideal to monitor valuable goods and also for monitoring industrial machinery and equipment. Specifications Connectivity Cinterion TX62 wireless module; NB-IoT - LTE CAT.M1; 3GPP Rel.14 Compliant Protocol LTE Cat. M1/NB1/NB2; UMTS BANDS: 1 / 2 / 3 / 4 / 5 / 8 / 12(17) / 13 / 18 / 19 / 20 / 25 / 26 / 27 / 28 / 66 / 71 / 85; LTE Cat.M1 DL: max. 300 kbps, UL: max. 1.1 Mbps; LTE Cat.NB1 DL: max. 27 kbps, UL: max. 63 kbps; LTE Cat.NB2 DL: max. 124 kbps, UL: max. 158 kbps Short messaging service (SMS) Point-to-point mobile terminated (MT) and mobile originated (MO) Text Mode; Protocol Data Unit (PDU) Mode Localization support GNSS capability (GPS/BeiDou/Galileo/GLONASS) Other Embedded IPv4 and IPv6 TCP/IP stack access; Internet Services: TCP server/client, UDP client, DNS, Ping, HTTP client, FTP client, MQTT client Secure Connection with TLS/DTLS Secure boot Dimensions 66 x 25.4 mm Operating temperature -40° C to +85° C (-104° F to 185°F) Downloads Datasheet Schematics

    € 99,95€ 74,95

    Members identical

Login

Forgot password?

Don't have an account yet?
Create account