The Arduino Nano ESP32 (with and without headers) is a Nano form factor board based on the ESP32-S3 (embedded in the NORA-W106-10B from u-blox). This is the first Arduino board to be based fully on an ESP32, and features Wi-Fi, Bluetooth LE, debugging via native USB in the Arduino IDE as well as low power. The Nano ESP32 is compatible with the Arduino IoT Cloud, and has support for MicroPython. It is an ideal board for getting started with IoT development. Features
Tiny footprint: Designed with the well-known Nano form factor in mind, this board's compact size makes it perfect for embedding in standalone projects.
Wi-Fi and Bluetooth: Harness the power of the ESP32-S3 microcontroller, well-known in the IoT realm, with full Arduino support for wireless and Bluetooth connectivity.
Arduino and MicroPython support: Seamlessly switch between Arduino and MicroPython programming with a few simple steps.
Arduino IoT Cloud compatible: Quickly and easily create IoT projects with just a few lines of code. The setup takes care of security, allowing you to monitor and control your project from anywhere using the Arduino IoT Cloud app.
HID support: Simulate human interface devices, such as keyboards or mice, over USB, opening up new possibilities for interacting with your computer. Specifications Microcontroller u-blox NORA-W106 (ESP32-S3) USB connector USB-C Pins Built-in LED pins 13 Built-in RGB LED pins 14-16 Digital I/O pins 14 Analog input pins 8 PWM pins 5 External interrupts All digital pins Connectivity Wi-Fi u-blox NORA-W106 (ESP32-S3) Bluetooth u-blox NORA-W106 (ESP32-S3) Communication UART 2x I²C 1x, A4 (SDA), A5 (SCL) SPI D11 (COPI), D12 (CIPO), D13 (SCK). Use any GPIO for Chip Select (CS) Power I/O Voltage 3.3 V Input voltage (nominal) 6-21 V Source Current per I/O pin 40 mA Sink Current per I/O pin 28 mA Clock speed Processor Up to 240 MHz Memory ROM 384 kB SRAM 512 kB External Flash 128 Mbit (16 MB) Dimensions 18 x 45 mm Downloads Datasheet Schematics
The FNIRSI DSO152 is an extremely practical and cost-effective handheld oscilloscope with a real-time sampling rate of 2.5 MSa/s, a bandwidth of 200 kHz and complete trigger functions (single, normal and automatic).
It can be used for both periodic analog signals and non-periodic digital signals and can measure voltages up to ±400 V. Equipped with an efficient one-key AUTO, it can display the measured waveform without cumbersome adjustments. It is equipped with a high-resolution 2.8-inch LCD screen with a resolution of 320x240 pixels and a built-in 1000 mAh high-quality lithium battery for up to 4 hours of operation.
Specifications
Sampling rate
2.5 MSa/s
Bandwidth
200 kHz
Vertical sensitivity
10 mV/DIV - 20 V/DIV (Progress according to the 1-2-5 way)
Time base range
10µS/DIV - 50s/DIV (Progress according to the 1-2-5 way)
Voltage range
X1: ±40 V (Vpp: 80 V)X10: ±400 V (Vpp: 800 V)
Trigger method
Auto/Normal/Single
Coupling method
AC/DC
Display
2.8" (320 x 240 pixels)
USB charging
5 V/1 A
Lithium battery capacity
1000 mAh
Square wave calibration
Frequency: 1K, Duty cycle: 50%
Dimensions
99 x 68.3 x 19.5 mm
Weight
100 g
Included
FNIRSI DSO152 oscilloscope
Alligator clip probe
USB cable
Lanyard
Manual
Downloads
Manual
Firmware V0.1
Looking for a fun DIY Christmas project? Assemble and program this extra-large Poly Reindeer figurine and make its LEDs shine all the colors of the rainbow! Ideal for both beginners and advanced makers! This educational and fun kit combines soldering and programming skills in one XL-sized project. First, you will need to solder some simple components onto the copper plated circuit board. The components include fancy RGB LEDs that have a special diffused effect. Once the soldering work is finished, you will be able to program the colors and light effects of the different LEDs thanks to the onboard Arduino Nano Every. The Arduino will be pre-programmed with some basic LED effects, so your kit will work once you power it with the included adaptor. Or you can choose to write your own code based on the available example code. Programmable add-ons The printed circuit board of this project is designed especially so you can add different add-ons. For example, add an OLED screen to display messages or program it to countdown the days until Christmas! Or add an IoT Tuya chip so your project can communicate with your smartphone. You can even add a sound microphone, motion sensor or light sensor. Features XL-sized & copper plated circuit board (PCB) in the shape of a polymetric reindeer 22 addressable (programmable) RGB LEDs 14 x 5 mm RGB LEDs 10 x 8 mm RGB LEDs Arduino Nano Every Onboard push button USB A to USB micro cable for programming USB A to USB B cable for power supply Wooden holder Complete manual and video available in 5 languages Example code for Arduino available Educational & fun for all ages and skill levels Expandable with lots of add-ons: an OLED screen a smart IoT sensor to connect with your smartphone a microphone sensor and more! Not included: soldering iron, soldering tin, pliers and an soldering mat Specifications Dimensions: 168 x 270 mm Power supply: 5 V/2.1 A max. (cable included)
Sound Secrets and Technology
What would today’s rock and pop music be without electric lead and bass guitars? These instruments have been setting the tone for more than sixty years. Their underlying sound is determined largely by their electrical components. But, how do they actually work? Almost no one is able to explain this to the true musician with no technical background. This book answers many questions simply, in an easily-understandable manner.
For the interested musician (and others), this book unveils, in a simple and well-grounded way, what have, until now, been regarded as manufacturer secrets. The examination explores deep within the guitar, including pickups and electrical environment, so that guitar electronics are no longer considered highly secret. With a few deft interventions, many instruments can be rendered more versatile and made to sound a lot better – in the most cost-effective manner.
The author is an experienced electronics professional and active musician. He has thoroughly tested everything described here, in practice.
A Beginner's Guide to AI and Edge Computing
Artificial Intelligence (AI) is now part of our daily lives. With companies developing low-cost AI-powered hardware into their products, it is now becoming a reality to purchase AI accelerator hardware at comparatively very low costs. One such hardware accelerator is the Hailo module which is fully compatible with the Raspberry Pi 5. The Raspberry Pi AI Kit is a cleverly designed hardware as it bundles an M.2-based Hailo-8L accelerator with the Raspberry Pi M.2 HAT+ to offer high speed inferencing on the Raspberry Pi 5. Using the Raspberry Pi AI Kit, you can build complex AI-based vision applications, running in real-time, such as object detection, pose estimation, instance segmentation, home automation, security, robotics, and many more neural network-based applications.
This book is an introduction to the Raspberry Pi AI Kit, and it is aimed to provide some help to readers who are new to the kit and wanting to run some simple AI-based visual models on their Raspberry Pi 5 computers. The book is not meant to cover the detailed process of model creation and compilation, which is done on an Ubuntu computer with massive disk space and 32 GB memory. Examples of pre-trained and custom object detection are given in the book.
Two fully tested and working projects are given in the book. The first project explains how a person can be detected and how an LED can be activated after the detection, and how the detection can be acknowledged by pressing an external button. The second project illustrates how a person can be detected, and how this information can be passed to a smart phone over a Wi-Fi link, as well as how the detection can be acknowledged by sending a message from the smartphone to your Raspberry Pi 5.
The ZY-204 is a versatile solderless breadboard with a total of 1660 tie points, perfect for building and testing electronic circuits without soldering.
It includes 2 terminal strips with 1260 tie-points and 4 distribution strips with 400 tie-points, providing ample space for complex circuit designs. 3 binding posts allow for easy connection to external power supplies.
Features
2 Terminal Strips 1260 Tie-points
4 Distribution Strips 400 Tie-points
3 Binding Posts
Black aluminum plate
Colored coordinates for easy component placement
Dimensions: 215 x 130 mm
This PiCAN 2 board provides CAN-Bus capability for the Raspberry Pi 2/3. It uses the Microchip MCP2515 CAN controller with MCP2551 CAN transceiver. Connection are made via DB9 or 3-way screw terminal. This board includes a switch mode power suppler that powers the Raspberry Pi is well.
Easy to install SocketCAN driver. Programming can be done in C or Python.
Not suitable for Raspberry Pi 4, please use PiCAN 3 instead.
Features
CAN v2.0B at 1 Mb/s
High speed SPI Interface (10 MHz)
Standard and extended data and remote frames
CAN connection via standard 9-way sub-D connector or screw terminal
Compatible with OBDII cable
Solder bridge to set different configuration for DB9 connector
120Ω terminator ready
Serial LCD ready
LED indicator
Foot print for two mini push buttons
Four fixing holes, comply with Pi Hat standard
SocketCAN driver, appears as can0 to application
Interrupt RX on GPIO25
5 V/1 A SMPS to power Raspberry Pi and accessories from DB9 or screw terminal
Reverse polarity protection
High efficiency switch mode design
6-20 V input range
Optional fixing screws – select at bottom of this webpage
Downloads
User guide
Schematic Rev B
Writing your own program in Python
Python3 examples in Github
3rd Edition – Fully updated for Raspberry Pi 4
The Raspberry Pi is a very cheap but complete computer system that allows all sorts of electronics parts and extensions to be connected. This book addresses one of the strongest aspects of the Raspberry Pi: the ability to combine hands-on electronics and programming.
Combine hands-on electronics and programming
After a short introduction to the Raspberry Pi you proceed with installing the required software. The SD card that can be purchased in conjunction with this book contains everything to get started with the Raspberry Pi. At the side of the (optional) Windows PC, software is used which is free for downloading. The book continues with a concise introduction to the Linux operating system, after which you start programming in Bash, Python 3 and Javascript. Although the emphasis is on Python, the coverage is brief and to the point in all cases – just enabling you to grasp the essence of all projects and start adapting them to your requirements. All set, you can carry on with fun projects.
The book is ideal for self-study
No fewer than 45 exciting and compelling projects are discussed and elaborated in detail. From a flashing lights to driving an electromotor; from processing and generating analog signals to a lux meter and a temperature control. We also move to more complex projects like a motor speed controller, a web server with CGI, client-server applications and Xwindows programs.
Each project has details of the way it got designed that way
The process of reading, building, and programming not only provides insight into the Raspberry Pi, Python, and the electronic parts used, but also enables you to modify or extend the projects any way you like. Also, feel free to combine several projects into a larger design.
The Zero Delay Encoder Encoder makes it simple to attach your own arcade joysticks and buttons, and to connect to the Raspberry, PC or other devices. Create your own controller and enjoy your games without any compromises or control your robot project according to your ideas. Features Compatible with Linux, Windows, MAME and other common emulators and systems. Complete controller base with all cables included Supports up to 12 buttons Auto, Fire and Turbo modes Additional connection: Sanwa/Seimitsu 5-Pin LEDs: 1 × Power-LED, 1 × Mode-LED The scope of delivery includes Zero Delay Encoder, USB Cable, 13 × 4.8 mm cable.
The Raspberry Pi USB 3 Hub expands your device connectivity by converting a single USB-A port into four USB 3.0 ports. With an optional external USB-C power input, it can support high-power peripherals, while lower-power peripherals work without additional power. The USB 3 Hub is fully tested for seamless compatibility with all Raspberry Pi products.
Features
Single Upstream Connection: USB 3.0 Type-A connector with an 8 cm captive cable
Four Downstream Ports: USB 3.0 Type-A ports for multiple device connections
High-Speed Data Transfer: Supports speeds up to 5 Gbps
Compatibility: Works with USB 3.0 Type-A host ports and is backward-compatible with USB 2.0 ports
Downloads
Datasheet
This component storage box is the perfect solution for more organization on your workbench, especially when working with small electronic components. The box with 128 compartments offers enough space to store components such as resistors, capacitors, diodes and transistors clearly and safely. Each part has its own compartment, which makes it possible to access them quickly when you need them for a project. With the Niimbot label printer you can professionally label various objects.
This offer contains:
Elektor Electronic Component Storage Box (normal price: €39.95)
Niimbot D110 Label Printer (normal price: €29.95)
Elektor Electronic Component Storage Box
This Electronic Component Storage Box with 128 compartments is an essential tool for anyone handling small electronic components, particularly SMDs. It provides a practical, well-organized solution for storing a wide array of miniature parts like resistors, capacitors, diodes, and transistors. Each component can be stored in its own dedicated space, ensuring that the specific part you need for any project is always easy to locate.
Whether you're a professional electronics engineer, a maker or a DIY enthusiast, this storage box offers the perfect blend of functionality and convenience. Its design helps eliminate clutter, optimize component management and keep your work environment tidy so you can focus on what really matters: building and troubleshooting electronic circuits.
Dimensions of each compartment (L x W x H): 22 x 15 x 16 mm
Dimensions of the box (L x W x H): 280 x 215 x 45 mm
Included
1x Component Storage Box (incl. 128 compartments with lids and foam)
3x Spare lids
2x Sheets of blank labels
2x Box labels
Niimbot D110 Label Printer
Based on direct thermal technology, the Niimbot D110 label printer offers a printing experience without ink, toner or ribbons, making it a cost-effective solution compared to traditional printers. Its compact size and light weight make it easy to transport and fits easily into any pocket.
With Bluetooth connectivity and a built-in 1500 mAh battery, this wireless mini printer allows you to print from up to 10 meters away, giving you flexibility on the go, whether you're printing from your smartphone or tablet.
The "Niimbot" app (available for iOS and Android) offers a variety of free templates for customizing labels.
Specifications
Model
D110_M (Upgraded Version 2024)
Material
ABS
Resolution
203 DPI
Printing speed
30-60 mm/s
Print width
12-15 mm
Printing technology
Thermal
Operating temperature
5°C ~ 45°C (41°F ~ 113°F)
Battery capacity
1500 mAh
Charging interface
USB-C
Charging time
2 hours
Connection
Bluetooth 4.0
Wireless distance
10 m
Dimensions
98 x 76 x 30 mm
Weight
149 g
Included
1x Niimbot D110 Label Printer
1x Label tape (12 x 40 mm)
1x USB cable
1x Manual
Downloads
iOS App
Android App
32 new Projects, Practical Examples and Exercises with the Elektor Arduino Nano MCCAB Training Board
Electronics and microcontroller technology offer the opportunity to be creative. This practical microcontroller course provides you with the chance to bring your own Arduino projects and experience such moments of success. Ideally, everything works as you imagined when you switch it on for the first time. In practice, however, things rarely work as expected. At that point, you need knowledge to efficiently search for and find the reason for the malfunction.
In this book for advanced users, we delve deep into the world of microcontrollers and the Arduino IDE to learn new procedures and details, enabling you to successfully tackle and solve even more challenging situations.
With this book, the author gives the reader the necessary tools to create projects independently and also to be able to find errors quickly. Instead of just offering ready-made solutions, he explains the background, the hardware used, and any tools required. He sets tasks in which the reader contributes their own creativity and writes the Arduino sketch themselves.
If you don’t have a good idea and get stuck, there is, of course, a suggested solution for every project and every task, along with the corresponding software, which is commented on and explained in detail in the book.
This practical course will teach you more about the inner workings of the Arduino Nano and its microcontroller. You will get to know hardware modules that you can use to realize new and interesting projects. You will familiarize yourself with software methods such as ‘state machines,’ which can often be used to solve problems more easily and clearly.
The numerous practical projects and exercise sketches are once again realized on the Arduino Nano MCCAB Training Board, which you may already be familiar with from the course book ‘Microcontrollers Hands-on Course for Arduino Starters’, and which contains all the hardware peripherals and operating elements we need for the input/output operations of our sketches.
Readers who do not yet own the Arduino Nano MCCAB Training Board can purchase the required hardware separately, or alternatively, build it on a breadboard.
Your gateway to IoT and microcontroller programming
With 450+ components and 117 online projects, this comprehensive kit ignites your creativity. The tutorials by Paul McWhorter make learning enjoyable for beginners and advanced users. This kit supports MicroPython, C/C++, and Piper Make, offering diverse programming options.
Explore sensors, actuators, LEDs, and LCDs for endless project possibilities. From home automation to robotics, this kit empowers your tech journey.
Features
IoT Starter Kit for Beginners: This kit offers a rich IoT learning experience for beginners. With 450+ components, 117 projects, and expert-led video lessons, this kit makes learning microcontroller programming and IoT engaging and accessible.
Expert-Guided Video Lessons: The kit includes 27 video tutorials by the renowned educator, Paul McWhorter. His engaging style simplifies complex concepts, ensuring an effective learning experience in microcontroller programming.
Wide Range of Hardware: The kit includes a diverse array of components like sensors, actuators, LEDs, LCDs, and more, enabling you to experiment and create a variety of projects with the Raspberry Pi Pico W.
Supports Multiple Languages: The kit offers versatility with support for three programming languages - MicroPython, C/C++, and Piper Make, providing a diverse programming learning experience.
Dedicated Support: Benefit from our ongoing assistance, including a community forum and timely technical help for a seamless learning experience.
Included
Raspberry Pi Pico W
Breadboard
Jumper Wires
Resistor
Transistor
Capacitor
Diode
Li-po Charger Module
74HC595
TA6586 – Motor Driver Chip
LED
RGB LED
LED Bar Graph
7-segment Display
4-Digit 7-Segment Display
LED Dot Matrix
I²C LCD1602
WS2812 RGB 8 LEDs Strip
Buzzer
DC Motor
Servo
DC Water Pump
Relay
Button
Micro Switch
Slide Switch
Potentiometer
Infrared Receiver
Joystick Module
4x4 Keypad
MPR121 Module
MFRC522 Module
Photoresistor
Thermistor
Tilt Switch
Reed Switch
PIR Motion Sensor Module
Water Level Sensor Module
Ultrasonic Module
DHT11 Humiture Sensor
MPU6050 Module
Documentation
Online Tutorials in 3 languages (EN, DE and JP)
Functionality, structure and handling of a power module
For readers with first steps in power management the “Abc of Power Modules” contains the basic principles necessary for the selection and use of a power module. The book describes the technical relationships and parameters related to power modules and the basis for calculation and measurement techniques.
Contents
Basics
This chapter describes the need of a DC/DC voltage converter and its basic functionality. Furthermore, various possibilities for realizing a voltage regulator are presented and the essential advantages of a power module are mentioned.
Circuit topologies
Circuit concepts, buck and boost topologies very frequently used with power modules are explained in detail and further circuit topologies are introduced.
Technology, construction and regulation technology
The mechanical construction of a power module is presented, which has a significant influence on EMC and thermal performance. Furthermore, control methods are explained and circuit design tips are provided in this chapter.
Measuring methods
Meaningful measurement results are absolutely necessary to assess a power module. The relevant measurement points and measurement methods are described in this chapter.
Handling
The aspects of storage and handling of power modules are explained, as well as their manufacturing and soldering processes.
Selection of a power modules
Important parameters and criteria for the optimal selection of a power module are presented in this section.
With this kit you can built all the projects described in the book 'Mastering the Arduino Uno R4'. The kit comes with several LEDs, sensors, actuators, and other components. The purpose of the kit is to make a flying start with hardware and software aspects of projects designed around the Arduino Uno microcontroller system.
Included
1x RFID reader module
1x DS1302 clock module
1x 5 V stepper motor
1x '2003' stepper motor drive board
5x Green LED
5x Yellow LED
5x Red LED
2x Rocker switch
1x Flame sensor
1x LM35 sensor module
1x Infrared receiver
3x Light-dependent resistors (LDRs)
1x IR remote controller
1x Breadboard
4x Pushbutton (with four caps)
1x Buzzer
1x Piezo sounder
1x Adjustable resistor (potentiometer)
1x 74HC595 shift register
1x 7-segment display
1x 4-digit 7-segment display
1x 8x8 Dot-matrix display
1x 1602 / I²C LCD module
1x DHT11 Temperature and humidity module
1x Relay module
1x Sound module
Set of Dupont cables
Set of Breadboard cables
1x Water sensor
1x PS2 Joystick
5x 1 k-ohm resistor
5x 10 k-ohm resistor
5x 220-ohm resistor
1x 4x4 keypad module
1x 9g Servo (25 cm)
1x RFID card
1x RGB module
1x 9 V battery DC jack
Not included
Mastering the Arduino Uno R4 (Book)
Arduino Uno R3/R4 (Board)
An assortment of coloured wires: you know it's a beautiful thing. Six different colours of stranded wire in a cardboard dispenser box. Sit this on your workbench, and stop worrying about having a piece of wire around!
Included
22 AWG
25 ft / Spool
6 Spools in Six Different Colors
Colours are Red, Blue, Yellow, Green, Black, and White
Dispenser Box
Create Models for 3D Printing, CNC Milling, Process Communication and Documentation
Engineers dread designing 3D models using traditional modeling software. OpenSCAD takes a refreshing and completely different approach. Create your models by arranging geometric solids in a JavaScript-like language, and use them with your 3D printer, CNC mill, or process communication.
OpenSCAD differs from other design systems in that it uses programmatical modeling. Your model is made up of primitives that are invoked using a C-, Java- or Python-like language. This approach to model design is close to the “mechanical work” done in the real world and appeals to engineers and others who are not a member of the traditional creative class.
OpenSCAD also provides a wide variety of comfort functions that break the 1:1 relationship between code and geometry. This book demonstrates the various features of the programming language using practical examples such as a replacement knob for a LeCroy oscilloscope, a wardrobe hanger, a container for soap dispensers, and various other real-life examples.
Written by an engineer with over 15 years of experience, this book is intended for Linux and Windows users alike. If you have programming experience in any language, this book will have you producing practical three-dimensional objects in short order!
The antenna allows for reception of L-band satellites that transmit between 1525-1660 MHz, such as Inmarsat, Iridium and GPS. Please note it is NOT for receiving weaker signals like HRPT and GOES which require a dish antenna. The patch comes with useful mounting accessories including a window suction cup, bendable tripod and 3M RG174 coax cable. The patch and active circuitry is enclosed in a weather proof enclosure. Links Inmarsat STD-C EGC AERO Satellite ACARS AERO C-Channel Voice Iridium Decoding GPS and GNSS Experiments
YDLIDAR TG15 is a 360-degree two-dimensional rangefinder. Based on the principle of TOF, it is equipped with related optics, electricity, and algorithm design to achieve high-frequency and high-precision distance measurement. The mechanical structure rotates 360 degrees to continuously output the angle information as well as the point cloud data of the scanning environment while ranging.
Features
360 degree omnidirectional scanning ranging distance measurement
Small distance error, stable performance and high accuracy
IP65 protection level
Strong resistance to ambient light interference
Industrial grade brush-less motor drive for stable performance
Laser power meets Class I laser safety standards
5-12 Hz adaptive scanning frequency (support customization)
Photomagnetic fusion technology to achieve wireless communication, wireless power supply
Ranging frequency up to 20 kHz (support customization)
Applications
Robot navigation and obstacle avoidance
Industrial automation
Robot ROS teaching and research
Regional security
Smart transportation
Environmental scanning and 3D reconstruction
Commercial robot /Robot vacuum cleaner
Downloads
Datasheet
User Manual
Development Manual
SDK
Tool
ROS
We've incorporated tinkering essentials like a mini breadboard, motor drivers, ADC inputs, a built in speaker, general purpose inputs/outputs, switches, and two Breakout Garden slots so you can add on a couple of breakouts.
We've also managed to fit in a vibrant 240x240 IPS LCD screen with four tactile buttons so you can easily monitor and control what your project is doing. It's all wrapped up in a nice, sturdy baseboard with a pleasingly compact footprint which won't involve nearly as many trailing wires as if you were experimenting with a traditional breadboard setup.
Our comprehensive MicroPython and C++ libraries will let you control every aspect of the board like a digital maestro. It's great for beginners and advanced users.
Features
Pico Explorer Base
Piezo speaker
1.54' IPS LCD screen (240x240)
Four user-controllable switches
Two Half-Bridge motor drivers (with over current indicator LED)
Easy access GPIO and ADC pin Headers
Two Breakout Garden I²C sockets
Mini breadboard
Rubber feet
Compatible with Raspberry Pi Pico
No soldering required (as long as your Pico has header pins attached).
Dimensions: approx 117 x 63 x 20 mm (L x W x H, assembled)
C/C++ and MicroPython libraries
Schematic
Bring your projects to life with this multifunctional precision drill, engineered for a wide range of applications including cutting, drilling, engraving, polishing, and more. Powered by a robust 135 W motor, it offers variable speed control with an impressive range of 10,000 to 32,000 rpm – ensuring precise and consistent performance across various materials and tasks.
The drill comes in a convenient carry case with a comprehensive 162-piece accessory set, providing the right tool for every job and enabling seamless transitions between different applications. Whether you're a hobbyist or a professional, this versatile tool delivers the power, control, and reliability you need for high-quality craftsmanship.
Multifunctional Versatility
This all-in-one precision drill comes with 162 accessories, making it perfect for a wide range of applications – from cutting and drilling to engraving and polishing. Effortlessly switch between projects and stay prepared for any task.
Powerful Performance
Featuring a 135 W motor and a variable speed range from 10,000 to 32,000 rpm, this drill delivers consistent, high-performance output. It ensures accuracy and efficiency, even for the most demanding jobs.
Comprehensive Accessory Set
Whether you're a dedicated hobbyist or a professional, the included accessories provide everything you need to get the job done right. Enjoy maximum flexibility and convenience in one complete package.
Ergonomic, User-Friendly Design
Designed for comfort and ease of use, the drill features intuitive controls and an ergonomic grip. It fits comfortably in your hand, allowing for precise work—even during extended use.
Built to Last
Crafted from high-quality materials, this precision drill is built for durability and long-term reliability. Whether you're just starting out or are an experienced maker, this tool is made to deliver outstanding results again and again. Let me know if you'd like a more technical, casual, or sales-focused version too!
Included
1x Electric drill (10000-32000 rpm with on/off switch)
1x Flexible shaft (ideal attachment for precise, detailed work or hard to reach places)
1x Collet nut
4x Collets
10x Diamond wheel points
5x Fiberglass cutting disc
62x Cut-off wheels
1x Rubber polishing disc
2x Sanding drums
22x Sanding bands
1x Sanding flap wheel
12x Polishing stones
9x Wire brushes
7x Polishing felts
1x Silicon carbide grindstone
10x Grinding discs
4x Mandrels
2x Polishing compound
6x Drills (2x 1.5 mm, 2x 2.3 mm, 2x 3.1 mm)
1x Tool
Downloads
Manual
This NVMe M.2 2242 SSD (128 GB) is already pre-installed with Raspberry Pi OS for immediate use with the Raspberry Pi 5 M.2 HAT+.
Features
Form factor: M.2 2242 M-Key NVMe SSD
Pre-loaded with Raspberry Pi OS
High level of ability to endure shock, vibration, and high temperature
SMART TRIM support
PCIe Interface: PCIe Gen3 x2
Compliance: NVMe 1.3, PCI Express Base 3.1
Capacity: 128 GB
Speed:
Read: Up to 1700 MB/s
Write: Up to 600 MB/s
Shock: 1500 G/0.5 ms
Operation temperature: 0°C-70°C
Up to 30x faster than a typical hard disk drive
Boosts burst write performance, making it ideal for typical computer workloads
Faster boot-up, shutdown, application load, and response for Raspberry Pi
Downloads
Datasheet
HyperPixel 4.0 Square has all the great features of our standard HyperPixel 4.0 – a crisp, brilliant IPS display with touchscreen, and high-speed DPI interface – it's just more square!
This square version of HyperPixel 4.0 is great for custom interfaces and control panels, and works really well for Pico-8 games. Everything is pre-soldered and ready to go, just pop it onto your RPi, run our installer, and away you go!
Features
High-speed DPI interface
4.0" IPS (wide viewing angle, 160°) display (72x72 mm)
720x720 pixels (~254 PPI)
18-bit colour (262,144 colors)
60 FPS frame rate
Optional capacitive touchscreen
40-pin female header included to boost height for Raspberry Pi B+, 2, 3, 3B+ and 4
Standoffs included to securely attach to your RPi
Compatible with all 40-pin header Raspberry Pi models
One-line installer
HyperPixel 4.0 Square uses a high-speed DPI interface, allowing it to shift 5x more pixel data than the usual SPI interface that these small RPi displays normally use. It has a 60 FPS frame rate and a resolution of approximately 254 pixels per inch (720x720px) on its 4.0' display. The display can show 18-bits of colour (262,144 colors).
This Touch version has a capacitive touch display that's more sensitive and responsive to touch than a resistive touch display, and it's capable of multi-touch!
Please note: when installing HyperPixel 4.0 Square onto your RPi make sure not to press down on the screen surface! Hold the board by its edges and wiggle it to mate with the extended header (or GPIO header). Also take care not to pull on the edges of the glass display when removing your HyperPixel.
It'll work with any 40-pin version of the RPi, including RPi Zero and RPi Zero W. If you're using it with a larger RPi then use the extra 40-pin header that's included to boost it up to the required height. If you're using a Zero or Zero W then just pop it straight onto the GPIO.
The included standoff kit allows you to mount your HyperPixel 4.0 Square safely and securely to your RPi. Just screw them into the posts on the underside of the HyperPixel 4.0 Square PCB and then secure with screws through the mounting holes on your RPi.
Downloads
GitHub
NRF24L01 is a universal ISM band monolithic transceiver chip works in the 2.4-2.5 GHz. Features Wireless transceiver including: Frequency generator, enhanced type, SchockBurstTM, mode controller, power amplifier, crystal amplifier, modulator, demodulator The output power channel selection and protocol settings can be set extremely low current consumption, through the SPI interface As the transmit mode, the transmit power is 6 dBm, the current is 9.0 mA, the accepted mode current is 12.3 mA, the current consumption of the power-down mode and standby mode are lower Built-in 2.4 GHz antenna, supports up to six channels of data reception Size: 15 x 29 mm (including antenna)