Bestsellers

979 products

  • Raspberry Pi Pico RP2040 - Elektor

    Raspberry Pi Foundation Raspberry Pi Pico

    Specifications RP2040 microcontroller chip designed by Raspberry Pi in the UK Dual-core ARM Cortex M0+ processor, with a flexible clock running up to 133 MHz 264 kB SRAM, and 2 MB on-board Flash memory Castellated module allows soldering directly to carrier boards USB 1.1 host and device support Energy-efficient sleep and dormant modes Drag and drop programming using mass storage via USB 26x multifunction GPIO pins 2x SPI, 2x I²C, 2x UART, 3x 12-bit ADC, 16x controllable PWM channels On-chip accurate clock and timer Temperature sensor On-chip accelerated floating point libraries 8x programmable IO (PIO) state machines for custom peripherals Why a Raspberry Pi Pico? Designing your own microcontroller instead of buying an existing one brings a number of advantages. According to Raspberry Pi itself, not one of the existing products available for this comes close to their price/performance ratio. This Raspberry Pi Pico has also given Raspberry Pi the ability to add some innovative and powerful features of their own. These features are not available anywhere else. A third reason is that the Raspberry Pi Pico has given Raspberry Pi the ability to create powerful software around the product. Surrounding this software stack is an extensive documentation set. The software and documentation meet the high standard of Raspberry Pi's core products (such as the Raspberry Pi 400, Pi 4 Model B and Pi 3 Model A+). Who is this microcontroller for? The Raspberry Pi Pico is suitable for both advanced and novice users. From controlling a display to controlling many different devices that you use every day. Automating everyday operations is made possible by this technology. Beginner users The Raspberry Pi Pico is programmable in the C and MicroPython languages and is customizable for a wide range of devices. In addition, the Pico is as easy to use as dragging and dropping files. This makes this microcontroller ideally suited for the novice user. Advanced users For advanced users, it is possible to take advantage of the Pico's extensive peripherals. The peripherals include the SPI, I²C, and eight programmable I/O (PIO)-state machines. What makes the Raspberry Pi Pico unique? What's unique about the Pico is that it was developed by Raspberry Pi itself. The RP2040 features a dual-core Arm Cortex-M0+ processor with 264 KB of internal RAM and support for up to 16 MB of off-chip Flash. The Raspberry Pi Pico is unique for several reasons: The product has the highest price/quality ratio in the microcontroller board market. The Raspberry Pi Pico has been developed by Raspberry Pi itself. The software stack surrounding this product is of high quality and comes paired with a comprehensive documentation set.

    € 4,95

    Members identical

  • Raspberry Pi Pico RP2040 W - Elektor

    Raspberry Pi Foundation Raspberry Pi Pico W

    Raspberry Pi Pico W is a microcontroller board based on the Raspberry Pi RP2040 microcontroller chip. The RP2040 microcontroller chip ('Raspberry Silicon') offers a dual-core ARM Cortex-M0+ processor (133 MHz), 256 KB RAM, 30 GPIO pins, and many other interface options. In addition, there is 2 MB of on-board QSPI flash memory for code and data storage. Raspberry Pi Pico W has been designed to be a low cost yet flexible development platform for RP2040 with a 2.4 GHz wireless interface using an Infineon CYW43439. The wireless interface is connected via SPI to the RP2040. Features of Pico W RP2040 microcontroller with 2 MB of flash memory On-board single-band 2.4 GHz wireless interfaces (802.11n) Micro USB B port for power and data (and for reprogramming the flash) 40 pin 21 x 51 mm 'DIP' style 1 mm thick PCB with 0.1' through-hole pins also with edge castellations Exposes 26 multi-function 3.3 V general purpose I/O (GPIO) 23 GPIO are digital-only, with three also being ADC capable Can be surface mounted as a module 3-pin ARM serial wire debug (SWD) port Simple yet highly flexible power supply architecture Various options for easily powering the unit from micro USB, external supplies or batteries High quality, low cost, high availability Comprehensive SDK, software examples and documentation Features of the RP2040 microcontroller Dual-core cortex M0+ at up to 133 MHz On-chip PLL allows variable core frequency 264 kByte multi-bank high performance SRAM External Quad-SPI Flash with eXecute In Place (XIP) and 16 kByte on-chip cache High performance full-crossbar bus fabric On-board USB1.1 (device or host) 30 multi-function general purpose I/O (four can be used for ADC) 1.8-3.3 V I/O voltage 12-bit 500 ksps analogue to digital converter (ADC) Various digital peripherals 2x UART, 2x I²C, 2x SPI, 16x PWM channels 1x timer with 4 alarms, 1x real time clock 2x programmable I/O (PIO) blocks, 8 state machines in total Flexible, user-programmable high-speed I/O Can emulate interfaces such as SD card and VGA Note: Raspberry Pi Pico W I/O voltage is fixed at 3.3 V. Downloads Datasheet Specifications of 3-pin Debug Connector

    € 7,95

    Members identical

  • ESP32 - C3 - DevKitM - 1 - Elektor

    Espressif ESP32-C3-DevKitM-1

    ESP32-C3-DevKitM-1 is an entry-level development board based on ESP32-C3-MINI-1, a module named for its small size. This board integrates complete Wi-Fi and Bluetooth LE functions. Most of the I/O pins on the ESP32-C3-MINI-1 module are broken out to the pin headers on both sides of this board for easy interfacing. Developers can either connect peripherals with jumper wires or mount ESP32-C3-DevKitM-1 on a breadboard. Specifications ESP32-C3-MINI-1 ESP32-C3-MINI-1 is a general-purpose Wi-Fi and Bluetooth LE combo module that comes with a PCB antenna. At the core of this module is ESP32-C3FN4, a chip that has an embedded flash of 4 MB. Since flash is packaged in the ESP32-C3FN4 chip, rather than integrated into the module, ESP32-C3-MINI-1 has a smaller package size. 5 V to 3.3 V LDO Power regulator that converts a 5 V supply into a 3.3 V output. 5 V Power On LED Turns on when the USB power is connected to the board. Pin Headers All available GPIO pins (except for the SPI bus for flash) are broken out to the pin headers on the board. For details, please see Header Block. Boot Button Download button. Holding down Boot and then pressing Reset initiates Firmware Download mode for downloading firmware through the serial port. Micro-USB Port USB interface. Power supply for the board as well as the communication interface between a computer and the ESP32-C3FN4 chip. Reset Button Press this button to restart the system. USB-to-UART Bridge Single USB-UART bridge chip provides transfer rates up to 3 Mbps. RGB LED Addressable RGB LED, driven by GPIO 8. Downloads ESP32-C3 Datasheet ESP32-C3-MINI-1 Datasheet ESP32-C3-DevKitM-1 Schematic ESP32-C3-DevKitM-1 PCB Layout ESP32-C3-DevKitM-1 Dimensions

    € 19,95

    Members € 17,96

  •  -44% MakePython ESP32 Development Kit - Elektor

    Elektor Bundles MakePython ESP32 Development Kit

    Learn how to use the ESP32 Microcontroller and MicroPython programming in your future projects! The project book, written by well-known Elektor author Dogan Ibrahim, holds many software- and hardware-based projects especially developed for the MakePython ESP32 Development Kit. The kit comes with several LEDs, sensors, and actuators. The kit will help you acquire the basic knowledge to create IoT projects. The book’s fully evaluated projects feature all the supplied components. Each project includes a block diagram, a circuit diagram, a full program listing, and a complete program description. Included in the kit 1x MakePython ESP32 development board with color LCD 1x Ultrasonic ranging module 1x Temperature and humidity sensor 1x Buzzer module 1x DS18B20 module 1x Infrared module 1x Potentiometer 1x WS2812 module 1x Sound sensor 1x Vibration sensor 1x Photosensitive resistance module 1x Pulse sensor 1x Servo motor 1x USB cable 2x Button 2x Breadboard 45x Jumper wire 10x Resistor 330R 10x LED (Red) 10x LED (Green) 1x Project book (206 pages) 46 Projects in the Book LED Projects Blinking LED Flashing SOS Blinking LED – using a timer Alternately flashing LEDs Button control Changing the LED flashing rate using pushbutton interrupts Chasing-LEDs Binary-counting LEDs Christmas lights (random-flashing 8 LEDs) Electronic dice Lucky day of the week Pulsewidth Modulation (PWM) Projects Generate a 1000-Hz PWM waveform with 50% duty cycle LED brightness control Measuring the frequency and duty cycle of a PWM waveform Melody maker Simple electronic organ Servo motor control Servo motor DS18B20 thermometer Analog To Digital Converter (ADC) Projects Voltmeter Plotting the analog input voltage ESP32 internal temperature sensor Ohmmeter Photosensitive resistance module Digital To Analog Converter (DAC) Projects Generating fixed voltages Generating a sawtooth-wave signal Generating a triangular-wave signal Arbitrary periodic waveform Generating a sinewave signal Generating accurate sinewave signal using timer interrupts Using The OLED Display Seconds counter Event counter DS18B20 OLED based digital thermometer ON-OFF temperature controller Measuring the temperature and humidity Ultrasonic distance measurement Height of a person (stadiometer) Heart rate (pulse) measurement Other Sensors Supplied with the Kit Theft alarm Sound-activated light Infrared obstacle avoidance with buzzer WS2812 RGB LED ring Timestamping temperature and humidity readings Network Programming Wi-Fi scanner Remote control from the Internet browser (using a smartphone or PC) – Web Server Storing temperature and humidity data in the Cloud Low-Power Operation Using a timer to wake up the processor

    € 89,95€ 49,95

    Members identical

  • CAN Module MCP2515 - Elektor

    Makerfabs CAN Module MCP2515

    This CAN Module is based on the CAN bus controller MCP2515 and CAN transceiver TJA1050. With this module, you will easy to control any CAN Bus device by SPI interface with your MCU, such as Arduino Uno and so on. Features Support CAN V2.0B Communication rate up to 1 MB/s Working Voltage: 5 V Working Current: 5 mA Interface: SPI Downloads MCP2515 Datasheet TJA1050 Datasheet

    € 9,95

    Members € 8,96

  • Raspberry Pi Pico RP2040 WH - Elektor

    Raspberry Pi Foundation Raspberry Pi Pico WH

    Raspberry Pi Pico WH is a microcontroller board based on the Raspberry Pi RP2040 microcontroller chip. The RP2040 microcontroller chip ('Raspberry Silicon') offers a dual-core ARM Cortex-M0+ processor (133 MHz), 256 KB RAM, 30 GPIO pins, and many other interface options. In addition, there is 2 MB of on-board QSPI flash memory for code and data storage. Raspberry Pi Pico WH has been designed to be a low cost yet flexible development platform for RP2040 with a 2.4 GHz wireless interface using an Infineon CYW43439. The wireless interface is connected via SPI to the RP2040. Features of Pico WH RP2040 microcontroller with 2 MB of flash memory On-board single-band 2.4 GHz wireless interfaces (802.11n) Micro USB B port for power and data (and for reprogramming the flash) 40 pin 21 x 51 mm 'DIP' style 1 mm thick PCB with 0.1' through-hole pins also with edge castellations Exposes 26 multi-function 3.3 V general purpose I/O (GPIO) 23 GPIO are digital-only, with three also being ADC capable Can be surface mounted as a module 3-pin ARM serial wire debug (SWD) port Simple yet highly flexible power supply architecture Various options for easily powering the unit from micro USB, external supplies or batteries High quality, low cost, high availability Comprehensive SDK, software examples and documentation Pre-populated headers and 3-pin debug connector Features of the RP2040 microcontroller Dual-core cortex M0+ at up to 133 MHz On-chip PLL allows variable core frequency 264 kByte multi-bank high performance SRAM External Quad-SPI Flash with eXecute In Place (XIP) and 16 kByte on-chip cache High performance full-crossbar bus fabric On-board USB1.1 (device or host) 30 multi-function general purpose I/O (four can be used for ADC) 1.8-3.3 V I/O voltage 12-bit 500 ksps analogue to digital converter (ADC) Various digital peripherals 2x UART, 2x I²C, 2x SPI, 16x PWM channels 1x timer with 4 alarms, 1x real time clock 2x programmable I/O (PIO) blocks, 8 state machines in total Flexible, user-programmable high-speed I/O Can emulate interfaces such as SD card and VGA Note: Raspberry Pi Pico W I/O voltage is fixed at 3.3 V. Downloads Datasheet Specifications of 3-pin Debug Connector

    € 9,95

    Members identical

  • PID - based Practical Digital Control with Raspberry Pi and Arduino Uno - Elektor

    Elektor Publishing PID-based Practical Digital Control with Raspberry Pi and Arduino Uno

    The Arduino Uno is an open-source microcontroller development system encompassing hardware, an Integrated Development Environment (IDE), and a vast number of libraries. It is supported by an enormous community of programmers, electronic engineers, enthusiasts, and academics. The libraries in particular really smooth Arduino programming and reduce programming time. What’s more, the libraries greatly facilitate testing your programs since most come fully tested and working. The Raspberry Pi 4 can be used in many applications such as audio and video media devices. It also works in industrial controllers, robotics, games, and in many domestic and commercial applications. The Raspberry Pi 4 also offers Wi-Fi and Bluetooth capability which makes it great for remote and Internet-based control and monitoring applications. This book is about using both the Raspberry Pi 4 and the Arduino Uno in PID-based automatic control applications. The book starts with basic theory of the control systems and feedback control. Working and tested projects are given for controlling real-life systems using PID controllers. The open-loop step time response, tuning the PID parameters, and the closed-loop time response of the developed systems are discussed together with the block diagrams, circuit diagrams, PID controller algorithms, and the full program listings for both the Raspberry Pi and the Arduino Uno. The projects given in the book aim to teach the theory and applications of PID controllers and can be modified easily as desired for other applications. The projects given for the Raspberry Pi 4 should work with all other models of Raspberry Pi family. The book covers the following topics: Open-loop and closed-loop control systems Analog and digital sensors Transfer functions and continuous-time systems First-order and second-order system time responses Discrete-time digital systems Continuous-time PID controllers Discrete-time PID controllers ON-OFF temperature control with Raspberry Pi and Arduino Uno PID-based temperature control with Raspberry Pi and Arduino Uno PID-based DC motor control with Raspberry Pi and Arduino Uno PID-based water level control with Raspberry Pi and Arduino Uno PID-based LED-LDR brightness control with Raspberry Pi and Arduino Uno

    € 39,95

    Members € 35,96

  •  -23% Miniware DT71 Mini Digital Tweezers - Elektor

    Miniware Miniware DT71 Mini Digital Tweezers

    LCR/ESR Meter, Multimeter, SMD Tester with built-in Micro Signal Generator The Miniware DT71 digital tweezers are a truly 'smart' buy for pro engineers and makers alike. The compact DT71 has a unique trinary structure which can be separated into the controller, testing arms, and tweezer tips. You can use the DT71 to take measurements and to automatically identify SMD components such as resistors, capacitors, and diodes. Highlights DT71 Mini Digital Tweezers is a tool for multi-function measurements with full differential input measurement. DT71 has a unique trinary structure, which can be separated into the controller, testing arms, and tweezer tips, flexible to be replaced and combined. It is compact and pocket-size for easy carrying. You can use it in laboratories, workbenches, warehouses, and in the field. It also has dual built-in rechargeable lithium batteries that can last 10 hours at a stretch with a single full charge that takes about 2 hours to charge. DT71 Mini Digital Tweezers have an OLED screen on the 360° rotatable controller, providing visibility at all angles. Smart gesture recognition will automatically identify left/right-hand operation and adjust screen display. It has various measurement types to fulfill all your needs. The test arms of DT71 Mini Digital Tweezers use magnetic elasticity to provide an easy clipping, ergonomic, and long-lasting structure. DT71 Mini Digital Tweezers features a pair of beautiful intensified gold-plated interchangeable tweezer tips, which enables higher measuring accuracy. DT71 Mini Digital Tweezers have manual and automatic Identification modes. In auto mode, DT71 can automatically identify SMDs including resistor, capacitor, inductor, and diode, showing both main and secondary parameters, very useful in fast distinguishing different components. Meanwhile, a built-in miniature waveform signal generator can output a variety of waveform signals. DT71 provides a perfect solution for debugging and maintenance of complex electronic systems and the classification and detection of discrete chip components. Different from other LCR testers, DT71 Mini Digital Tweezers have no physical buttons, instead, it has a hidden touch button on top of the controller, which makes it easy to operate with only a light touch. DT71 Mini Digital Tweezers has intelligent functions such as Automatic identification, Automatic shutdown, and also the firmware can be upgraded. Features Innovative trinary structure: separated into the controller, testing arms, and tweezer tips, which are flexible to be replaced and combined. 360° rotatable controller with OLED screen, with good viewing angles. Smart gesture recognition with automatic identification of left/right-hand operation and adjusting the screen orientation accordingly. Hidden touch button on top of the controller, which makes it easy to operate with only a light touch. Test arms use magnetic elasticity to provide an easy clipping, ergonomic, and long-lasting structure. Built-in dual lithium batteries in test arms, balancing both arms and providing a longer standby time. Several kinds of gold-plated interchangeable tweezer tips, enabling higher measurement accuracy in various usages. Automatically identify SMDs including resistor, capacitor, inductor, and diode, showing both main and secondary parameters. A built-in signal generator can output a variety of waveform signals. Specifications Product Specifications Operation time 10 hrs (in continuous operation) Charging time 2 hrs Display 96 x 16 OLED Size Controller 47 mm Test Arms 106 mm Weight 22 g Operation Hidden touch button Measurement Specifications Range Resolution Accuracy Resistance 0.1 Ω~1 KΩ 0.1 Ω 0.5%+2 1 KΩ~2000 KΩ 1 KΩ 0.5%+2 Capacitance 0.1 pF~1000 pF 0.1 pF 2%+3 0.001uF~400 uF 0.001 uF 2%+3 Inductance 1 uH~1000 uH 1 uH 5%+3 1 mH~50 mH 1 mH 5%+3 Voltage 1 mV~100 mV 1 mV 2%+5 0.1 V~40 V 0.1 V 1%+3 Frequency 10 Hz~1 KHz 10 Hz 0.1%+3 1 KHz~20000 KHz 1 KHz 0.1%+3 Diode Silicon diodes, Schottky diodes, LEDs (+0.1~3V) 0.1 V 1% Max input voltage -5 V~+50 V Source Impedance 1 MΩ Functions Automatic Identification Yes Designated Measurements Yes Continuity and Diode testing Yes Signal Generator SINE 10 KHz, 5 KHz, 2 KHz, 1 Khz, 500 Hz, 200 Hz NOISE 100 KHz USER 10 KHz, 5 KHz, 2 KHz, 1 Khz, 500 Hz, 200 Hz PULSE 100 KHz, 0 KHz, 20 Khz, 10 KHz, 5 KHz, 2 KHz, 1 Khz, 500 Hz, 200 Hz Included 1x DT71 Digital Tweezers 1x Test Arms 2x Tweezer Tips 1x Data Cable 1x Carrying Case 1x Safety Instructions Downloads Manual Firmware v1.15 Calibration v2.0

    € 109,95€ 84,95

    Members identical

  •  -28% OWON SDS1102 2 - ch Oscilloscope (100 MHz) - Elektor

    OWON OWON SDS1102 2-ch Oscilloscope (100 MHz)

    OWON SDS1102 is an affordable desktop digital oscilloscope with top features: 2-channel device with 100 MHz bandwidth, 1 GSa/s sample rate, 7" LCD display and 10 K pts wavelength. OWON SDS1102 has a simplified synchronization system which supports two trigger types: level and edge. Designed to solve problems that do not require large amounts of memory and difficult trigger types. Features Bandwidth: 100 MHz 2 channels Sample rate: 100 MS/s Ultra-thin body 7-inch high resolution LCD SCPI and LabVIEW supported Specifications Bandwidth 100 MHz Horizontal Scale (s/div) 5 ns/div – 1000 s/div Channel 2 Vertical Sensitivity 5 mV/div – 5 V/div (at input) DC Gain Accuracy 3% Vertical Resolution (A/D) 8 bits (2 channels simultaneously) Input Input Impedance 1 MΩ, 10 pF Input Coupling AC, DC, GND Max Input Voltage ±400 V, CATI, CATII Passive probes х1; х10 Probe Attenuation Factor х1; х10; х100; х1000 Trigger System Trigger Mode Auto, Normal, Single Trigger Type Edge, Video Edge Trigger Source CH1, CH2 Video Trigger Sampling Type Real-time Sample Rate 1 GSa/s Equivalent Sample Rate No Wavelength 10K pts Interpolation sin(x)/x Measurement and Mathematical Treatment System Automatic Measurement Vpp, Vavg, RMS, Frequency, Period, Vmax, Vmin, Vtop, Vbase, Width, Overshoot, Pre-shootRise time, Fall time, +Width, -Width, +Duty, -Duty, Delay A→B, Delay A→B, area, cycle area Math Functions Addition, Subtraction, Multiplication, Division, FFT General Characteristics Display type 7" color LCD Display Resolution 800 x 480 Power 100-240 V, 45-440 Hz, <15 W Dimensions 301 x 70 x 152 mm Weight 1.1 kg Included 1x OWON SDS1102 Oscilloscope 2x Oscilloscope probe 1x Probe Adjust 1x Mains power cord 1x USB Cable 1x CD-Rom 1x Quick Start Guide Downloads Manual Datasheet

    € 249,00€ 179,95

    Members identical

  • Nordic Semiconductor nRF52840 USB Dongle - Elektor

    Nordic Semiconductor Nordic Semiconductor nRF52840 USB Dongle

    The nRF52840 dongle is a small, low-cost USB dongle that supports Bluetooth 5.3, Bluetooth mesh, Thread, ZigBee, 802.15.4, ANT and 2.4 GHz proprietary protocols. The dongle is the perfect target hardware for use with nRF Connect for Desktop as it is low-cost but still support all the short range wireless standards used with Nordic devices. The dongle has been designed to be used as a wireless HW device together with nRF Connect for Desktop. For other use cases please do note that there is no debug support on the dongle, only support for programming the device and communicating through USB. It is supported by most of the nRF Connect for Desktop apps and will automatically be programmed if needed. In addition custom applications can be compiled and downloaded to the dongle. It has a user programmable RGB LED, a green LED, a user programmable button as well as 15 GPIO accessible from castellated solder points along the edge. Example applications are available in the nRF5 SDK under the board name PCA10059. The nRF52840 dongle is supported by nRF Connect for Desktop as well as programming through nRFUtil. Features Bluetooth 5.2 ready multiprotocol radio 2 Mbps Long Range Advertising Extensions Channel Selection Algorithm #2 (CSA #2) IEEE 802.15.4 radio support Thread ZigBee Arm Cortex-M4 with floating point support DSP instruction set ARM CryptoCell CC310 cryptographic accelerator 15 GPIO available via edge castellation USB interface direct to nRF52840 SoC Integrated 2.4 GHz PCB antenna 1 user-programmable button 1 user-programmable RGB LED 1 user-programmable LED 1.7-5.5 V operation from USB or external Downloads Datasheet Hardware Files

    € 19,95

    Members € 17,96

  •  -26% FNIRSI 2C23T (3 - in - 1) 2 - ch Oscilloscope (10 MHz) + Multimeter + Signal Generator - Elektor

    FNIRSI FNIRSI 2C23T (3-in-1) 2-ch Oscilloscope (10 MHz) + Multimeter + Signal Generator

    The FNIRSI 2C23T is a fully functional, highly practical 3-in-1 dual channel digital oscilloscope with a high resolution 2.8-inch LCD display (320 x 240 pixels) designed for the maintenance and development industry. This device is equipped with 3 main functions: oscilloscope, multimeter and signal generator. The oscilloscope has an FPGA+MCU+ADC hardware architecture with a sampling rate of 50 MS/s, an analog bandwidth of 10 MHz and a built-in high-voltage protection module that supports the measurement of peak voltages of ±400 V maximum. The multimeter has a 4-digit 10000-point RMS value and supports AC/DC voltage and current measurements, as well as capacitance, resistance, diode, on/off and other measurement functions. Equipped with a built-in DDS function signal generator, it can output 7 kinds of function signals, with a maximum output of 2 MHz for all signals and a step of 1 Hz; the output frequency, amplitude and duty cycle are adjustable. The built-in 3000 mAh rechargeable lithium battery achieves a standby time of up to 6 hours. Features 2-ch oscilloscope 10 MHz bandwidth 50 MS/s real-time sampling rate 7 signal waveforms 10000 counts 2.8' HD color display (320 x 240 pixels) Dimensions: 167 x 89 x 35 mm Weight: 300 g Specifications Oscilloscope Dual channel, 2x 10 MHz bandwidth, 50 MS/s real-time sampling rate Maximum measured voltage: ±400 V FPGA+ADC+MCU high-performance hardware architecture, capturing waveform details without loss Equipped with complete triggering functions (auto, single, normal) Equipped with efficient automatic adjustment, the measured waveform can be displayed without complicated adjustment Save waveform screenshots, supports exporting images to a computer, facilitate secondary waveform analysis Multimeter 4-bit integer 9999 counting True RMS measurement Identification of voltage, current, capacitance, resistance, diode, on/off, and zero live wire Maximum input voltage: AC 750 V, DC 1000 V Automatic range, intelligent anti burning Data retention, color screen digital display Signal Generator 7 signal waveforms: sine wave, square wave, triangular wave, full wave, half wave, noise wave, DC Output frequency: 1 Hz-2 MHz Output amplituade: 0.1-3.3 V Output duty cycle: 0-100% Included 1x FNIRSI 2C23T (3-in-1) 2-ch Oscilloscope 1x P6100 oscilloscope probes (10X) 1x Multimeter probe 1x Crocodile clip probe 1x USB-C charging cable 1x Manual Downloads Manual

    € 94,95€ 69,95

    Members identical

  • RTL-SDR V4 (incl. Dipole Antenna Kit)

    RTL-SDR RTL-SDR V4 (incl. Dipole Antenna Kit)

    RTL-SDR is an affordable dongle that can be used as a computer-based radio scanner for receiving live radio signals between 500 kHz and 1.75 GHz in your area. The RTL-SDR V4 offers several improvements over generic brands including use of the R828D tuner chip, triplexed input filter, notch filter, improved component tolerances, a 1 PPM temperature compensated oscillator (TCXO), SMA F connector, aluminium case with passive cooling, bias tee circuit, improved power supply, and a built in HF upconverter. RTL-SDR V4 comes with the portable dipole antenna kit. It is great for beginners as it allows for terrestrial and satellite reception and easy to mount outdoors and designed for portable and temporary outside usage. Features Improved HF reception: V4 now uses a built-in upconverter instead of using a direct sampling circuit. This means no more Nyquist folding of signals around 14.4 MHz, improved sensitivity, and adjustable gain on HF. Like the V3, the lower tuning range remains at 500 kHz and very strong reception may still require front end attenuation/filtering. Improved filtering: The V4 makes use of the R828D tuner chip, which has three inputs. The SMA input has been triplexed input into 3 bands: HF, VHF and UHF. This provides some isolation between the 3 bands, meaning out of band interference from strong broadcast stations is less likely to cause desensitization or imaging. Improved filtering x2: In addition to the triplexing, the open drain pin on the R828D can be also used, which allows to add simple notch filters for common interference bands such as broadcast AM, broadcast FM and the DAB bands. These only attenuate by a few dB, but may still help. Improved phase noise on strong signals: Due to an improved power supply design, phase noise from power supply noise has been significantly reduced. Less heat: Another advantage of the improved power supply is low power consumption and less heat generation compared to the V3. Included 1x RTL-SDR V4 dongle (R828D RTL2832U 1PPM TCXO SMA) 2x 23 cm to 1 m telescopic antenna 2x 5 cm to 13 cm telescopic antenna 1x Dipole antenna base with 60 cm RG174 1x 3 m RG174 extension cable 1x Flexible tripod mount 1x Suction cup mount Downloads Datasheet User Guide Quick Start Guide SDR# User Guide Dipole Antenna Guide

    € 64,95

    Members € 58,46

  • C Programming on Raspberry Pi (E - book) - Elektor

    Elektor Digital C Programming on Raspberry Pi (E-book)

    Develop innovative hardware-based projects in C The Raspberry Pi has traditionally been programmed using Python. Although this is a very powerful language, many programmers may not be familiar with it. C on the other hand is perhaps the most commonly used programming language and all embedded microcontrollers can be programmed using it. The C language is taught in most technical colleges and universities and almost all engineering students are familiar with using it with their projects. This book is about using the Raspberry Pi with C to develop a range of hardware-based projects. Two of the most popular C libraries, wiringPi and pigpio are used. The book starts with an introduction to C and most students and newcomers will find this chapter invaluable. Many projects are provided in the book, including using Wi-Fi and Bluetooth to establish communication with smartphones. Many sensor and hardware-based projects are included. Both wiringPi and pigpio libraries are used in all projects. Complete program listings are given with full explanations. All projects have been fully tested and work. The following hardware-based projects are provided in the book: Using sensors Using LCDs I²C and SPI buses Serial communication Multitasking External and timer interrupts Using Wi-Fi Webservers Communicating with smartphones Using Bluetooth Sending data to the cloud Program listings of all Raspberry Pi projects developed in this book are available on the Elektor website. Readers can download and use these programs in their projects. Alternatively, they can customize them to suit their applications.

    € 32,95

    Members € 26,36

  • Official EU Power Supply for Raspberry Pi 4 (black) - Elektor

    Raspberry Pi Foundation Official EU Power Supply for Raspberry Pi 4 (black)

    The Raspberry Pi USB-C power supply is designed specifically to power the Raspberry Pi 4. The power supply features a USB-C cable and is available in four different models to suit different international power sockets, and in two colors. Specifications Output Output voltage +5.1 V DC Minimum load current 0 A Nominal load current 3.0 A Maximum power 15.3 W Load regulation ±5% Line regulation ±2% Ripple & noise 120 mVp-p Rise time 100 ms maximum to regulation limits for DC outputs Turn-on delay 3000 ms maximum at nominal input AC voltage and full load Protection Short circuit protectionOvercurrent protectionOver temperature protection Efficiency 81% minimum (output current from 100%, 75%, 50%, 25%)72% minimum at 10% load Output cable 1.5 m 18AWG Output connector USB-C Input Voltage range 100-240 V AC (rated)96-264 V AC (operating) Frequency 50/60 Hz ±3 Hz Current 0.5 A maximum Power consumption (no load) 0.075 W maximum Inrush current No damage shall occur, and the input fuse shall not blow Operating ambient temperature 0-40°C

    € 9,95

    Members identical

  •  -50% Raspberry Pi Pico Experimenting Bundle - Elektor

    Elektor Bundles Raspberry Pi Pico Experimenting Bundle

    The project book, written by well-known Elektor author Dogan Ibrahim, is an introduction to using the Raspberry Pi Pico Experimenting Kit. The kit is based on the Raspberry Pi Pico processor and includes several on-board as well as external sensors, and an actuator. The kit is programmed using the MicroPython programming language. The Thonny development environment (IDE) is used in all the projects in the book. All the projects given in the book have been fully tested and are working. No prior programming or electronic experience are required to follow the projects.The book’s fully evaluated projects feature all the supplied components. Each project includes a block diagram, a circuit diagram, a full program listing, and a complete program description.Included in the bundle Raspberry Pi Pico RP2040 Pico Expansion Board 1.44-inch TFT LCD with ST7735 driver 3x Pushbutton input 3x LED output 1x Active buzzer 6x Interfaces (UART/GPIO/I²C/ADC) Grove-compatible Powered by Micro-USB 8 Modules MPU6050 6-axis IMU DHT11 humidity & temperature sensor 10 A relay SG90 servo Slide potentiometer Serial-to-WiFi (ESP8266) module Ultrasonic range sensor 8-bit RGB addressable LED (WS2818) module Project book (178 pages) 42 Projects in the BookBoard-Hardware-Based Projects Flashing an on-board LED Flashing SOS Flashing LED – using a timer Alternately flashing LEDs Pushbutton control Changing the LED flashing rate using pushbutton interrupts Binary counting LEDs Randomly flashing yellow, green, and blue LEDs Chasing LEDs Reaction timer Buttons and LEDs The TFT Display Second counter Event counter Reaction timer Display LED and button status Temperature and humidity – display in Thonny window Temperature and humidity – LED output Temperature and humidity – display on TFT ON/OFF temperature control ON/OFF temperature control – setting the desired temperature Voltmeter Changing the brightness of an LED Ultrasonic distance measurement - display in Thonny window Ultrasonic distance measurement - display on TFT Height of a person (stadiometer) Ultrasonic reverse-parking aid with buzzer Ultrasonic liquid level controller Melody maker Servo motor control Accurate servo motor control WS2812 LED strip light show - state machine approach WS2812 LED strip light show – using the neopixel library WS2812 LED strip show – another neopixel library example Displaying 3 dimensions of acceleration A car’s maximum acceleration – using the TFT display Level display using the gyroscope MPU6050 temperature display TFT display test TFT bitmap display Using the WiFi Connect to the local Wi-Fi network and display the IP address Controlling an LED from a smartphone using Wi-Fi Displaying the temperature on a smartphone using Wi-Fi

    € 79,95€ 39,95

    Members identical

  • Raspberry Pi Pico Essentials - Elektor

    Elektor Publishing Raspberry Pi Pico Essentials

    Program, build, and master over 50 projects with MicroPython and the RP2040 microprocessor The Raspberry Pi Pico is a high-performance microcontroller module designed especially for physical computing. Microcontrollers differ from single-board computers, like the Raspberry Pi 4, in not having an operating system. The Raspberry Pi Pico can be programmed to run a single task very efficiently within real-time control and monitoring applications requiring speed. The ‘Pico’ as we call it, is based on the fast, efficient, and low-cost dual-core ARM Cortex-M0+ RP2040 microcontroller chip running at up to 133 MHz and sporting 264 KB of SRAM, and 2 MB of Flash memory. Besides its large memory, the Pico has even more attractive features including a vast number of GPIO pins, and popular interface modules like ADC, SPI, I²C, UART, and PWM. To cap it all, the chip offers fast and accurate timing modules, a hardware debug interface, and an internal temperature sensor. The Raspberry Pi Pico is easily programmed using popular high-level languages such as MicroPython and or C/C++. This book is an introduction to using the Raspberry Pi Pico microcontroller in conjunction with the MicroPython programming language. The Thonny development environment (IDE) is used in all the projects described. There are over 50 working and tested projects in the book, covering the following topics: Installing the MicroPython on Raspberry Pi Pico using a Raspberry Pi or a PC Timer interrupts and external interrupts Analogue-to-digital converter (ADC) projects Using the internal temperature sensor and external temperature sensor chips Datalogging projects PWM, UART, I²C, and SPI projects Using Wi-Fi and apps to communicate with smartphones Using Bluetooth and apps to communicate with smartphones Digital-to-analogue converter (DAC) projects All projects given in the book have been fully tested and are working. Only basic programming and electronics experience is required to follow the projects. Brief descriptions, block diagrams, detailed circuit diagrams, and full MicroPython program listings are given for all projects described. Readers can find the program listings on the Elektor web page created to support the book.

    € 39,95

    Members € 35,96

  • The CAN Bus Companion - Elektor

    Elektor Publishing The CAN Bus Companion

    This book details the use of the Arduino Uno and the Raspberry Pi 4 in practical CAN bus based projects. Using either the Arduino Uno or the Raspberry Pi with off-the-shelf CAN bus interface modules considerably ease developing, debugging, and testing CAN bus based projects. This book is written for students, practicing engineers, enthusiasts, and for everyone else wanting to learn more about the CAN bus and its applications. The book assumes that the reader has some knowledge of basic electronics. Knowledge of the C and Python programming languages and programming the Arduino Uno using its IDE and Raspberry Pi will be useful, especially if the reader intends to develop microcontroller-based projects using the CAN bus. The book should be a useful source of reference material for anyone interested in finding answers to questions such as: What bus systems are available for the automotive industry? What are the principles of the CAN bus? How can I create a physical CAN bus? What types of frames (or data packets) are available in a CAN bus system? How can errors be detected in a CAN bus system and how dependable is a CAN bus system? What types of CAN bus controllers exist? How do I use the MCP2515 CAN bus controller? How do I create 2-node Arduino Uno-based CAN bus projects? How do I create 3-node Arduino Uno-based CAN bus projects? How do I set the acceptance masks and acceptance filters? How do I analyze data on the CAN bus? How do I create 2-node Raspberry Pi-based CAN bus projects? How do I create 3-node Raspberry Pi-based CAN bus projects?

    € 34,95

    Members € 31,46

  •  -20% Elektor Dual DC LISN (150 kHz – 200 MHz) - Elektor

    Elektor Labs Elektor Dual DC LISN (150 kHz – 200 MHz)

    Measuring conducted emission is the simplest and most affordable method of getting some indication of whether a design can meet EMI/EMC requirements. A Line Impedance Stabilization Network (LISN) is an indispensable part of an EMC pre-compliance test setup. In cooperation with Würth Elektronik, Elektor has developed a 5 µH, 50 Ω Dual DC LISN that supports voltages up to 60 V and currents up to 10 A. The instrument measures RF interferences on both channels (the power supply) by means of 5-μH blocking inductances. The internal 10-dB attenuation network – one in each channel – contains a 3rd-order high-pass filter with a cutoff frequency of 9 kHz to protect the input of instruments like a spectrum analyzer from potentially harmful DC voltages or low frequencies coming from the EUT (Equipment Under Test). Specifications RF path Channels 2 (with clamping diodes) Bandwidth 150 kHz – 200 MHz Inductance 5 μH || 50 Ω Internal attenuation 10 dB Connectors SMA DC path Max. current < 10 ADC Max. voltage < 60 VDC DC resistance < 2 x 70 mΩ PCB size 94.2 x 57.4 mm Connectors 4-mm banana Hammond enclosure Type 1590N Dimensions 121 x 66 x 40 mm Included 1x 4-layer PCB with all SMT parts fitted 1x pre-drilled enclosure with ready-printed front panel layout 5x gold-plated, insulated, 4-mm banana sockets, rated for 24 A, 1 kV 1x Hammond enclosure 1590N1, Aluminum (Die-Cast Alloy) More Info Project on Elektor Labs: Dual DC LISN for EMC pre-compliance testing Elektor 9-10/2021: EMC Pre-Compliance Test for Your DC-Powered Project (Part 1) Elektor 11-12/2021: EMC Pre-Compliance Test for Your DC-Powered Project (Part 2)

    € 149,95€ 119,95

    Members identical

  • Raspberry Pi Pico W (Book) - Elektor

    Elektor Publishing Raspberry Pi Pico W (Book)

    Program, build, and master 60+ projects with the Wireless RP2040 The Raspberry Pi Pico and Pico W are based on the fast, efficient, and low-cost dual-core ARM Cortex M0+ RP2040 microcontroller chip running at up to 133 MHz and sporting 264 KB of SRAM and 2 MB of Flash memory. Besides spacious memory, the Pico and Pico W offer many GPIO pins, and popular peripheral interface modules like ADC, SPI, I²C, UART, PWM, timing modules, a hardware debug interface, and an internal temperature sensor. The Raspberry Pi Pico W additionally includes an on-board Infineon CYW43439 Bluetooth and Wi-Fi chipset. At the time of writing this book, the Bluetooth firmware was not yet available. Wi-Fi is however fully supported at 2.4 GHz using the 802.11b/g/n protocols. This book is an introduction to using the Raspberry Pi Pico W in conjunction with the MicroPython programming language. The Thonny development environment (IDE) is used in all of the 60+ working and tested projects covering the following topics: Installing the MicroPython on Raspberry Pi Pico using a Raspberry Pi or a PC Timer interrupts and external interrupts Analogue-to-digital converter (ADC) projects Using the internal temperature sensor and external sensor chips Using the internal temperature sensor and external temperature sensor chips Datalogging projects PWM, UART, I²C, and SPI projects Using Bluetooth, WiFi, and apps to communicate with smartphones Digital-to-analogue converter (DAC) projects All projects are tried & tested. They can be implemented on both the Raspberry Pi Pico and Raspberry Pi Pico W, although the Wi-Fi-based subjects will run on the Pico W only. Basic programming and electronics experience are required to follow the projects. Brief descriptions, block diagrams, detailed circuit diagrams, and full MicroPython program listings are given for all projects.

    € 44,95

    Members identical

  • microSD Card pre - installed with Raspberry Pi OS (32 GB) - Elektor

    Raspberry Pi Foundation microSD Card pre-installed with Raspberry Pi OS (32 GB)

    With this microSD (32 GB) with pre-installed Raspberry Pi OS you can start using your Raspberry Pi right away. Just plug it in and get started!

    € 10,95

    Members identical

  • Develop your own Bluetooth Low Energy Applications - Elektor

    Elektor Publishing Develop your own Bluetooth Low Energy Applications

    For Raspberry Pi, ESP32 and nRF52 with Python, Arduino and Zephyr Bluetooth Low Energy (BLE) radio chips are ubiquitous from Raspberry Pi to light bulbs. BLE is an elaborate technology with a comprehensive specification, but the basics are quite accessible. A progressive and systematic approach will lead you far in mastering this wireless communication technique, which is essential for working in low power scenarios. In this book, you’ll learn how to: Discover BLE devices in the neighborhood by listening to their advertisements. Create your own BLE devices advertising data. Connect to BLE devices such as heart rate monitors and proximity reporters. Create secure connections to BLE devices with encryption and authentication. Understand BLE service and profile specifications and implement them. Reverse engineer a BLE device with a proprietary implementation and control it with your own software. Make your BLE devices use as little power as possible. This book shows you the ropes of BLE programming with Python and the Bleak library on a Raspberry Pi or PC, with C++ and NimBLE-Arduino on Espressif’s ESP32 development boards, and with C on one of the development boards supported by the Zephyr real-time operating system, such as Nordic Semiconductor's nRF52 boards. Starting with a very little amount of theory, you’ll develop code right from the beginning. After you’ve completed this book, you’ll know enough to create your own BLE applications.

    € 39,95

    Members € 35,96

  • PID - based Practical Digital Control with Raspberry Pi and Arduino Uno (E - book) - Elektor

    Elektor Digital PID-based Practical Digital Control with Raspberry Pi and Arduino Uno (E-book)

    The Arduino Uno is an open-source microcontroller development system encompassing hardware, an Integrated Development Environment (IDE), and a vast number of libraries. It is supported by an enormous community of programmers, electronic engineers, enthusiasts, and academics. The libraries in particular really smooth Arduino programming and reduce programming time. What’s more, the libraries greatly facilitate testing your programs since most come fully tested and working. The Raspberry Pi 4 can be used in many applications such as audio and video media devices. It also works in industrial controllers, robotics, games, and in many domestic and commercial applications. The Raspberry Pi 4 also offers Wi-Fi and Bluetooth capability which makes it great for remote and Internet-based control and monitoring applications. This book is about using both the Raspberry Pi 4 and the Arduino Uno in PID-based automatic control applications. The book starts with basic theory of the control systems and feedback control. Working and tested projects are given for controlling real-life systems using PID controllers. The open-loop step time response, tuning the PID parameters, and the closed-loop time response of the developed systems are discussed together with the block diagrams, circuit diagrams, PID controller algorithms, and the full program listings for both the Raspberry Pi and the Arduino Uno. The projects given in the book aim to teach the theory and applications of PID controllers and can be modified easily as desired for other applications. The projects given for the Raspberry Pi 4 should work with all other models of Raspberry Pi family. The book covers the following topics: Open-loop and closed-loop control systems Analog and digital sensors Transfer functions and continuous-time systems First-order and second-order system time responses Discrete-time digital systems Continuous-time PID controllers Discrete-time PID controllers ON-OFF temperature control with Raspberry Pi and Arduino Uno PID-based temperature control with Raspberry Pi and Arduino Uno PID-based DC motor control with Raspberry Pi and Arduino Uno PID-based water level control with Raspberry Pi and Arduino Uno PID-based LED-LDR brightness control with Raspberry Pi and Arduino Uno

    € 32,95

    Members € 26,36

  •  -34% Elektor Raspberry Pi Buffer Board - Elektor

    Elektor Labs Elektor Raspberry Pi Buffer Board

    When you experiment with the Raspberry Pi on a regular basis and you connect a variety of external hardware to the GPIO port via the header you may well have caused some damage in the past. The Elektor Raspberry Pi Buffer Board is there to prevent this! The board is compatible with Raspberry Pi Zero, Zero 2 (W), 3, 4, 5, 400 and 500. All 26 GPIOs are buffered with bi-directional voltage translators to protect the Raspberry Pi when experimenting with new circuits. The PCB is intended to be inserted in the back of Raspberry Pi 400/500. The connector to connect to the Raspberry Pi is a right angled 40-way receptacle (2x20). The PCB is only a fraction wider. A 40-way flat cable with appropriate 2x20 headers can be connected to the buffer output header to experiment for instance with a circuit on a breadboard or PCB. The circuit uses 4x TXS0108E ICs by Texas Instruments. The PCB can also be put upright on a Raspberry Pi. Downloads Schematics Layout

    € 34,95€ 22,95

    Members identical

  •  -20% Elektor MultiCalculator Kit (based on Arduino) - Elektor

    Elektor Labs Elektor Arduino MultiCalculator

    The Elektor MultiCalculator Kit is an Arduino-based multifunction calculator that goes beyond basic calculations. It offers 22 functions including light and temperature measurement, differential temperature analysis, and NEC IR remote control decoding. The Elektor MultiCalculator is a handy tool for use in your projects or for educational purposes. The kit features a Pro Mini module as the computing unit. The PCB is easy to assemble using through-hole components. The enclosure consists of 11 acrylic panels and mounting materials for easy assembly. Additionally, the device is equipped with a 16x2 alphanumeric LCD, 20 buttons, and temperature sensors. The Elektor MultiCalculator is programmable with the Arduino IDE through a 6-way PCB header. The available software is bilingual (English and Dutch). The calculator can be programmed with a programming adapter, and it is powered through USB-C. Modes of Operation Calculator 4-Ring Resistor Code 5-Ring Resistor Code Decimal to Hexadecimal and Character (ASCII) conversion Hexadecimal to Decimal and Character (ASCII) conversion Decimal to Binary and Character (ASCII) conversion Binary to Decimal and Hexadecimal conversion Hz, nF, capacitive reactance (XC) calculation Hz, µH, inductive reactance (XL) calculation Resistance calculation of two resistors connected in parallel Resistance calculation of two resistors connected in series Calculation of unknown parallel resistor Temperature measurement Differential temperature measurement T1&T2 and Delta (δ) Light measurement Stopwatch with lap time function Item counter NEC IR remote control decoding AWG conversion (American Wire Gauge) Rolling Dice Personalize startup message Temperature calibration Specifications Menu languages: English, Dutch Dimensions: 92 x 138 x 40 mm Build time: approx. 5 hours Included PCB and though-hole components Precut acrylic sheets with all mechanical parts Pro Mini microcontroller module (ATmega328/5 V/16 MHz) Programming adapter Waterproof temperature sensors USB-C cable Downloads Software

    € 49,95€ 39,95

    Members identical

Login

Forgot password?

Don't have an account yet?
Create account