The antenna allows for reception of L-band satellites that transmit between 1525-1660 MHz, such as Inmarsat, Iridium and GPS. Please note it is NOT for receiving weaker signals like HRPT and GOES which require a dish antenna. The patch comes with useful mounting accessories including a window suction cup, bendable tripod and 3M RG174 coax cable. The patch and active circuitry is enclosed in a weather proof enclosure. Links Inmarsat STD-C EGC AERO Satellite ACARS AERO C-Channel Voice Iridium Decoding GPS and GNSS Experiments
This PiCAN 2 board provides CAN-Bus capability for the Raspberry Pi 2/3. It uses the Microchip MCP2515 CAN controller with MCP2551 CAN transceiver. Connection are made via DB9 or 3-way screw terminal. This board includes a switch mode power suppler that powers the Raspberry Pi is well.
Easy to install SocketCAN driver. Programming can be done in C or Python.
Not suitable for Raspberry Pi 4, please use PiCAN 3 instead.
Features
CAN v2.0B at 1 Mb/s
High speed SPI Interface (10 MHz)
Standard and extended data and remote frames
CAN connection via standard 9-way sub-D connector or screw terminal
Compatible with OBDII cable
Solder bridge to set different configuration for DB9 connector
120Ω terminator ready
Serial LCD ready
LED indicator
Foot print for two mini push buttons
Four fixing holes, comply with Pi Hat standard
SocketCAN driver, appears as can0 to application
Interrupt RX on GPIO25
5 V/1 A SMPS to power Raspberry Pi and accessories from DB9 or screw terminal
Reverse polarity protection
High efficiency switch mode design
6-20 V input range
Optional fixing screws – select at bottom of this webpage
Downloads
User guide
Schematic Rev B
Writing your own program in Python
Python3 examples in Github
This hardware kit is especially prepared for 'The Official ESP32 Book'. The kit contains all the components used in the projects in this book. With the help of this hardware kit it should be easy and fun to build the projects in the book. Included 1x ESP32 DevKitC 8x LEDs (RED) 1x LED (GREEN) 2x push-button 8x 330 ohm resistors 1x Buzzer 1x RGB LED 1x TMP36 temperature sensor chip 1x DHT11 temperature and humidity chip 1x MCP23017 (DIL 28 package) 1x LDR 1x BC108 (or any other PNP) transistor 1x 7 segment LED 1x Small Microphone Module 1x I²C LCD 1x SG90 servo 1x 4x4 Keypad 8x Female-Male jumpers 4x Male-Male jumpers 1x Small breadboard
The ZY-204 is a versatile solderless breadboard with a total of 1660 tie points, perfect for building and testing electronic circuits without soldering.
It includes 2 terminal strips with 1260 tie-points and 4 distribution strips with 400 tie-points, providing ample space for complex circuit designs. 3 binding posts allow for easy connection to external power supplies.
Features
2 Terminal Strips 1260 Tie-points
4 Distribution Strips 400 Tie-points
3 Binding Posts
Black aluminum plate
Colored coordinates for easy component placement
Dimensions: 215 x 130 mm
Modular and Scalable Control Systems Using Structured Text
This book offers a structured and practical approach to modern PLC development using object-oriented principles. It is a guide for engineers, programmers, and students seeking to harness the power of object-oriented programming (OOP) in the context of industrial automation with PLCs.
The content focuses on the CODESYS development environment and Structured Text (ST), both of which support modern programming techniques while maintaining compatibility with real-time automation requirements. Through step-by-step demos and instructional examples, it demonstrates how modular, reusable code can enhance development efficiency, simplify ongoing maintenance, and enable scalable and flexible control system architectures.
Key topics include:
Structured Text fundamentals: conditions, loops, arrays, and functions
Object-oriented concepts: classes, methods, and inheritance
Advanced techniques: polymorphism, interfaces, and access control
Modular design with reusable components and structured program flow
Implementation of finite state machines and scalable application design
Built around instructional demos and clear explanations, this book helps readers develop maintainable and modern control software in the CODESYS environment using proven programming techniques.
A Retro Roll with a Neon Soul
LED-based dice are common, but their light is cold. Not so for this electronic neon dice, which displays its value with the warm glow of neon lamps. It is perfect for playing games on cold, dark winter evenings. The pips of the dice are neon lamps and the random number generator has six neon lamps to show that it is working.
Even though the dice has an on-board 100-V power supply, it is completely safe. As with all Elektor Classic products, the dice too has its circuit diagram printed on the front while an explanation of how the circuit works can be found on the rear side.
The Neon Lamp Dice comes as a kit of easy-to-solder through-hole parts. The power supply is a 9-V battery (not included).
Features
Warm Vintage Glow
Elektor Heritage Circuit Symbols
Tried & Tested by Elektor Labs
Educational & Geeky Project
Through-Hole Parts Only
Included
Printed Circuit Board
All Components
Wooden Stand
Required
9 V battery
Component List
Resistors (THT, 150 V, 0.25 W)
R1, R2, R3, R4, R5, R6, R14 = 1 MΩ
R7, R8, R9, R10, R11, R12 = 18 kΩ
R13, R15, R16, R17, R18, R21, R23, R24, R25, R26, R28, R30, R33 = 100 kΩ
R32, R34 = 1.2 kΩ
R19, R20, R22, R27, R29 = 4.7 kΩ
R31 = 1 Ω
Capacitors
C1, C2, C3, C4, C5, C6 = 470 nF, 50 V, 5 mm pitch
C7, C9, C11, C12 = 1 µF, 16 V, 2 mm pitch
C8 = 470 pF, 50 V, 5 mm pitch
C10 = 1 µF, 250 V, 2.5 mm pitch
Inductors
L1 = 470 µH
Semiconductors
D1, D2, D3, D4, D5, D6, D7 = 1N4148
D8 = STPS1150
IC1 = NE555
IC2 = 74HC374
IC3 = MC34063
IC4 = 78L05
T1, T2, T3, T4, T5 = MPSA42
T6 = STQ2LN60K3-AP
Miscellaneous
K1 = PP3 9 V battery holder
NE1, NE2, NE3, NE4, NE5, NE6, NE7, NE8, NE9, NE10, NE11, NE12, NE13 = neon light
S2 = Miniature slide switch
S1 = Pushbutton (12 x 12 mm)
Sound Secrets and Technology
What would today’s rock and pop music be without electric lead and bass guitars? These instruments have been setting the tone for more than sixty years. Their underlying sound is determined largely by their electrical components. But, how do they actually work? Almost no one is able to explain this to the true musician with no technical background. This book answers many questions simply, in an easily-understandable manner.
For the interested musician (and others), this book unveils, in a simple and well-grounded way, what have, until now, been regarded as manufacturer secrets. The examination explores deep within the guitar, including pickups and electrical environment, so that guitar electronics are no longer considered highly secret. With a few deft interventions, many instruments can be rendered more versatile and made to sound a lot better – in the most cost-effective manner.
The author is an experienced electronics professional and active musician. He has thoroughly tested everything described here, in practice.
The Zero Delay Encoder Encoder makes it simple to attach your own arcade joysticks and buttons, and to connect to the Raspberry, PC or other devices. Create your own controller and enjoy your games without any compromises or control your robot project according to your ideas. Features Compatible with Linux, Windows, MAME and other common emulators and systems. Complete controller base with all cables included Supports up to 12 buttons Auto, Fire and Turbo modes Additional connection: Sanwa/Seimitsu 5-Pin LEDs: 1 × Power-LED, 1 × Mode-LED The scope of delivery includes Zero Delay Encoder, USB Cable, 13 × 4.8 mm cable.
Build your textbook weather station or conduct environmental research together with the whole world. With many practical projects for Arduino, Raspberry Pi, NodeMCU, ESP32, and other development boards.
Weather stations have enjoyed great popularity for decades. Every current and even every long discontinued electronics magazine has regularly featured articles on building your own weather station. Over the years, they have become increasingly sophisticated and can now be fully integrated into an automated home — although this often requires loyalty to an (expensive) brand manufacturer across all components.
With your own weather and environmental data, you can keep up and measure things that no commercial station can. It’s also fun: expand your knowledge of electronics, current microcontroller development boards and programming languages in a fun and meaningful way. For less than 10 euros you can get started and record your first environmental data — with time and growing interest, you will continue to expand your system.
In this Edition
Which Microcontroller Fits My Project?
The Right Development Environment
Tracking Wind and Weather
Weather Display with OpenWeatherMap and Vacuum Fluorescent Display
Volatile Organic Compounds in the Air We Breathe
Working with MQ Sensors: Measuring Carbon Monoxide — Odorless but Toxic
CO2 Traffic Light with ThingSpeak IoT Connection
An Automatic Plant Watering System
Good Indoor Climate: Temperature and Humidity are Important criteria
Classy Thermometer with Vintage Tube Technology
Nostalgic Weather House for the Whole Family
Measuring Air Pressure and Temperature Accurately
Sunburn Warning Device
DIY Sensor for Sunshine Duration
Simple Smartphone Says: Fog or Clear View?
Identifying Earthquakes
Liquid Level Measurement for Vessels and Reservoirs
Water pH Value Measurement
Detecting Radioactive Radiation
GPS: Sensor Location Service Across the Globe
Saving and Timestamping Log Files on SD Cards
LoRaWAN, The Things Network, and ThingSpeak
Operating a LoRaWAN Gateway for TTN
Defying "Wind and Weather"
Mega Display with Weather Forecasz
3rd Edition – Fully updated for Raspberry Pi 4
The Raspberry Pi is a very cheap but complete computer system that allows all sorts of electronics parts and extensions to be connected. This book addresses one of the strongest aspects of the Raspberry Pi: the ability to combine hands-on electronics and programming.
Combine hands-on electronics and programming
After a short introduction to the Raspberry Pi you proceed with installing the required software. The SD card that can be purchased in conjunction with this book contains everything to get started with the Raspberry Pi. At the side of the (optional) Windows PC, software is used which is free for downloading. The book continues with a concise introduction to the Linux operating system, after which you start programming in Bash, Python 3 and Javascript. Although the emphasis is on Python, the coverage is brief and to the point in all cases – just enabling you to grasp the essence of all projects and start adapting them to your requirements. All set, you can carry on with fun projects.
The book is ideal for self-study
No fewer than 45 exciting and compelling projects are discussed and elaborated in detail. From a flashing lights to driving an electromotor; from processing and generating analog signals to a lux meter and a temperature control. We also move to more complex projects like a motor speed controller, a web server with CGI, client-server applications and Xwindows programs.
Each project has details of the way it got designed that way
The process of reading, building, and programming not only provides insight into the Raspberry Pi, Python, and the electronic parts used, but also enables you to modify or extend the projects any way you like. Also, feel free to combine several projects into a larger design.
This NVMe M.2 2242 SSD (128 GB) is already pre-installed with Raspberry Pi OS for immediate use with the Raspberry Pi 5 M.2 HAT+.
Features
Form factor: M.2 2242 M-Key NVMe SSD
Pre-loaded with Raspberry Pi OS
High level of ability to endure shock, vibration, and high temperature
SMART TRIM support
PCIe Interface: PCIe Gen3 x2
Compliance: NVMe 1.3, PCI Express Base 3.1
Capacity: 128 GB
Speed:
Read: Up to 1700 MB/s
Write: Up to 600 MB/s
Shock: 1500 G/0.5 ms
Operation temperature: 0°C-70°C
Up to 30x faster than a typical hard disk drive
Boosts burst write performance, making it ideal for typical computer workloads
Faster boot-up, shutdown, application load, and response for Raspberry Pi
Downloads
Datasheet
YDLIDAR TG15 is a 360-degree two-dimensional rangefinder. Based on the principle of TOF, it is equipped with related optics, electricity, and algorithm design to achieve high-frequency and high-precision distance measurement. The mechanical structure rotates 360 degrees to continuously output the angle information as well as the point cloud data of the scanning environment while ranging.
Features
360 degree omnidirectional scanning ranging distance measurement
Small distance error, stable performance and high accuracy
IP65 protection level
Strong resistance to ambient light interference
Industrial grade brush-less motor drive for stable performance
Laser power meets Class I laser safety standards
5-12 Hz adaptive scanning frequency (support customization)
Photomagnetic fusion technology to achieve wireless communication, wireless power supply
Ranging frequency up to 20 kHz (support customization)
Applications
Robot navigation and obstacle avoidance
Industrial automation
Robot ROS teaching and research
Regional security
Smart transportation
Environmental scanning and 3D reconstruction
Commercial robot /Robot vacuum cleaner
Downloads
Datasheet
User Manual
Development Manual
SDK
Tool
ROS
Bring your projects to life with this multifunctional precision drill, engineered for a wide range of applications including cutting, drilling, engraving, polishing, and more. Powered by a robust 135 W motor, it offers variable speed control with an impressive range of 10,000 to 32,000 rpm – ensuring precise and consistent performance across various materials and tasks.
The drill comes in a convenient carry case with a comprehensive 162-piece accessory set, providing the right tool for every job and enabling seamless transitions between different applications. Whether you're a hobbyist or a professional, this versatile tool delivers the power, control, and reliability you need for high-quality craftsmanship.
Multifunctional Versatility
This all-in-one precision drill comes with 162 accessories, making it perfect for a wide range of applications – from cutting and drilling to engraving and polishing. Effortlessly switch between projects and stay prepared for any task.
Powerful Performance
Featuring a 135 W motor and a variable speed range from 10,000 to 32,000 rpm, this drill delivers consistent, high-performance output. It ensures accuracy and efficiency, even for the most demanding jobs.
Comprehensive Accessory Set
Whether you're a dedicated hobbyist or a professional, the included accessories provide everything you need to get the job done right. Enjoy maximum flexibility and convenience in one complete package.
Ergonomic, User-Friendly Design
Designed for comfort and ease of use, the drill features intuitive controls and an ergonomic grip. It fits comfortably in your hand, allowing for precise work—even during extended use.
Built to Last
Crafted from high-quality materials, this precision drill is built for durability and long-term reliability. Whether you're just starting out or are an experienced maker, this tool is made to deliver outstanding results again and again. Let me know if you'd like a more technical, casual, or sales-focused version too!
Included
1x Electric drill (10000-32000 rpm with on/off switch)
1x Flexible shaft (ideal attachment for precise, detailed work or hard to reach places)
1x Collet nut
4x Collets
10x Diamond wheel points
5x Fiberglass cutting disc
62x Cut-off wheels
1x Rubber polishing disc
2x Sanding drums
22x Sanding bands
1x Sanding flap wheel
12x Polishing stones
9x Wire brushes
7x Polishing felts
1x Silicon carbide grindstone
10x Grinding discs
4x Mandrels
2x Polishing compound
6x Drills (2x 1.5 mm, 2x 2.3 mm, 2x 3.1 mm)
1x Tool
Downloads
Manual
Create Models for 3D Printing, CNC Milling, Process Communication and Documentation
Engineers dread designing 3D models using traditional modeling software. OpenSCAD takes a refreshing and completely different approach. Create your models by arranging geometric solids in a JavaScript-like language, and use them with your 3D printer, CNC mill, or process communication.
OpenSCAD differs from other design systems in that it uses programmatical modeling. Your model is made up of primitives that are invoked using a C-, Java- or Python-like language. This approach to model design is close to the “mechanical work” done in the real world and appeals to engineers and others who are not a member of the traditional creative class.
OpenSCAD also provides a wide variety of comfort functions that break the 1:1 relationship between code and geometry. This book demonstrates the various features of the programming language using practical examples such as a replacement knob for a LeCroy oscilloscope, a wardrobe hanger, a container for soap dispensers, and various other real-life examples.
Written by an engineer with over 15 years of experience, this book is intended for Linux and Windows users alike. If you have programming experience in any language, this book will have you producing practical three-dimensional objects in short order!
Functionality, structure and handling of a power module
For readers with first steps in power management the “Abc of Power Modules” contains the basic principles necessary for the selection and use of a power module. The book describes the technical relationships and parameters related to power modules and the basis for calculation and measurement techniques.
Contents
Basics
This chapter describes the need of a DC/DC voltage converter and its basic functionality. Furthermore, various possibilities for realizing a voltage regulator are presented and the essential advantages of a power module are mentioned.
Circuit topologies
Circuit concepts, buck and boost topologies very frequently used with power modules are explained in detail and further circuit topologies are introduced.
Technology, construction and regulation technology
The mechanical construction of a power module is presented, which has a significant influence on EMC and thermal performance. Furthermore, control methods are explained and circuit design tips are provided in this chapter.
Measuring methods
Meaningful measurement results are absolutely necessary to assess a power module. The relevant measurement points and measurement methods are described in this chapter.
Handling
The aspects of storage and handling of power modules are explained, as well as their manufacturing and soldering processes.
Selection of a power modules
Important parameters and criteria for the optimal selection of a power module are presented in this section.
Program and build Arduino-based ham station utilities, tools, and instruments
In addition to a detailed introduction to the exciting world of the Arduino microcontroller and its many variants, this book introduces you to the shields, modules, and components you can connect to the Arduino. Many of these components are discussed in detail and used in the projects included in this book to help you understand how these components can be incorporated into your own Arduino projects. Emphasis has been placed on designing and creating a wide range of amateur radio-related projects that can easily be built in just a few days.
This book is written for ham radio operators and Arduino enthusiasts of all skill levels, and includes discussions about the tools, construction methods, and troubleshooting techniques used in creating amateur radio-related Arduino projects. This book teaches you how to create feature-rich Arduino-based projects, with the goal of helping you to advance beyond this book, and design and build your own ham radio Arduino projects.
In addition, this book describes in detail the design, construction, programming, and operation of the following projects:
CW Beacon and Foxhunt Keyer
Mini Weather Station
RF Probe with LED Bar Graph
DTMF Tone Encoder
DTMF Tone Decoder
Waveform Generator
Auto Power On/Off
Bluetooth CW Keyer
Station Power Monitor
AC Current Monitor
This book assumes a basic knowledge of electronics and circuit construction. Basic knowledge of how to program the Arduino using its IDE will also be beneficial.
YARD Stick One (Yet Another Radio Dongle) is a sub-1 GHz wireless transceiver IC on a USB dongle. It is based on the Texas Instruments CC1111.
YARD Stick One can transmit or receive digital wireless signals at frequencies below 1 GHz. It uses the same radio circuit as the popular IM-Me. The radio functions that are possible by customizing IM-Me firmware are now at your fingertips when you attach YARD Stick One to a computer via USB.
Features
Half-duplex transmit and receive
Official operating frequencies: 300-348 MHz, 391-464 MHz, and 782-928 MHz
Unofficial operating frequencies: 281-361 MHz, 378-481 MHz, and 749-962 MHz
Modulations: ASK, OOK, GFSK, 2-FSK, 4-FSK, MSK
Data rates up to 500 kbps
Full-Speed USB 2.0
SMA female antenna connector (50 ohms)
Software-controlled antenna port power (max 50 mA at 3.3 V)
Low pass filter for elimination of harmonics when operating in the 800 and 900 MHz bands
GoodFET-compatible expansion and programming header
GIMME-compatible programming test points
Open source
Downloads
Documentation
GitHub
An assortment of coloured wires: you know it's a beautiful thing. Six different colours of stranded wire in a cardboard dispenser box. Sit this on your workbench, and stop worrying about having a piece of wire around!
Included
22 AWG
25 ft / Spool
6 Spools in Six Different Colors
Colours are Red, Blue, Yellow, Green, Black, and White
Dispenser Box
This PiCAN2 Duo board provides two independent CAN-Bus channels for the Raspberry Pi 4. It uses the Microchip MCP2515 CAN controller with MCP2551 CAN transceiver. Connections are made via 4-way screw terminal. This board has a 5 V/3 A SMPS that can power the Raspberry Pi is well via the screw terminal.p
Easy to install SocketCAN driver. Programming can be done in C or Python.
Features
CAN v2.0B at 1 Mb/s
High speed SPI Interface (10 MHz)
Standard and extended data and remote frames
CAN connection screw terminal
120 Ω terminator ready
Serial LCD ready
LED indicator
Four fixing holes, comply with Pi Hat standard
SocketCAN driver, appears as can0 and can1 to application
Interrupt RX on GPIO25 and GPIO24
5 V/3 A SMPS to power Raspberry Pi and accessories from screw terminal
Reverse polarity protection
High efficiency switch mode design
7-24 V input range
Downloads
User guide
Schematic Rev D
Writing your own program in Python
Python3 examples in Github
NRF24L01 is a universal ISM band monolithic transceiver chip works in the 2.4-2.5 GHz. Features Wireless transceiver including: Frequency generator, enhanced type, SchockBurstTM, mode controller, power amplifier, crystal amplifier, modulator, demodulator The output power channel selection and protocol settings can be set extremely low current consumption, through the SPI interface As the transmit mode, the transmit power is 6 dBm, the current is 9.0 mA, the accepted mode current is 12.3 mA, the current consumption of the power-down mode and standby mode are lower Built-in 2.4 GHz antenna, supports up to six channels of data reception Size: 15 x 29 mm (including antenna)
Based on direct thermal technology, the Niimbot D110 label printer offers a printing experience without ink, toner or ribbons, making it a cost-effective solution compared to traditional printers. Its compact size and light weight make it easy to transport and fits easily into any pocket.
With Bluetooth connectivity and a built-in 1500 mAh battery, this wireless mini printer allows you to print from up to 10 meters away, giving you flexibility on the go, whether you're printing from your smartphone or tablet.
The "Niimbot" app (available for iOS and Android) offers a variety of free templates for customizing labels.
Specifications
Model
D110_M (Upgraded Version 2024)
Material
ABS
Resolution
203 DPI
Printing speed
30-60 mm/s
Print width
12-15 mm
Printing technology
Thermal
Operating temperature
5°C ~ 45°C (41°F ~ 113°F)
Battery capacity
1500 mAh
Charging interface
USB-C
Charging time
2 hours
Connection
Bluetooth 4.0
Wireless distance
10 m
Dimensions
98 x 76 x 30 mm
Weight
149 g
Included
1x Niimbot D110 Label Printer
1x Label tape (12 x 40 mm)
1x USB cable
1x Manual
Downloads
iOS App
Android App
This development board (also known as "Cheap Yellow Display") is powered by the ESP-WROOM-32, a dual-core MCU with integrated Wi-Fi and Bluetooth capabilities. It operates at a main frequency of up to 240 MHz, with 520 KB SRAM, 448 KBROM, and a 4 MB Flash memory. The board features a 2.8-inch display with a resolution of 240x320 and resistive touch.
Furthermore, the board includes a backlight control circuit, touch control circuit, speaker drive circuit, photosensitive circuit, and RGB-LED control circuit. It also provides a TF card slot, serial interface, DHT11 temperature and humidity sensor interface, and additional IO ports.
The module supports development in Arduino IDE, ESP-IDE, MicroPython, and Mixly.
Applications
Image transmission for Smart Home device
Wireless monitoring
Smart agriculture
QR wireless recognition
Wireless positioning system signal
And other IoT applications
Specifications
Microcontroller
ESP-WROOM-32 (Dual-core MCU with integrated Wi-Fi and Bluetooth)
Frequency
Up to 240 MHz (computing power is up to 600 DMIPS)
SRAM
520 KB
ROM
448 KB
Flash
4 MB
Operating voltage
5 V
Power consumption
approx. 115 mA
Display
2.8-inch color TFT screen (240x320)
Touch
Resistive Touch
Driver chip
ILI9341
Dimensions
50 x 86 mm
Weight
50 g
Included
1x ESP32 Dev Board with 2.8" Display and acrylic Shell
1x Touch pen
1x Connector cable
1x USB cable
Downloads
GitHub
A Beginner's Guide to AI and Edge Computing
Artificial Intelligence (AI) is now part of our daily lives. With companies developing low-cost AI-powered hardware into their products, it is now becoming a reality to purchase AI accelerator hardware at comparatively very low costs. One such hardware accelerator is the Hailo module which is fully compatible with the Raspberry Pi 5. The Raspberry Pi AI Kit is a cleverly designed hardware as it bundles an M.2-based Hailo-8L accelerator with the Raspberry Pi M.2 HAT+ to offer high speed inferencing on the Raspberry Pi 5. Using the Raspberry Pi AI Kit, you can build complex AI-based vision applications, running in real-time, such as object detection, pose estimation, instance segmentation, home automation, security, robotics, and many more neural network-based applications.
This book is an introduction to the Raspberry Pi AI Kit, and it is aimed to provide some help to readers who are new to the kit and wanting to run some simple AI-based visual models on their Raspberry Pi 5 computers. The book is not meant to cover the detailed process of model creation and compilation, which is done on an Ubuntu computer with massive disk space and 32 GB memory. Examples of pre-trained and custom object detection are given in the book.
Two fully tested and working projects are given in the book. The first project explains how a person can be detected and how an LED can be activated after the detection, and how the detection can be acknowledged by pressing an external button. The second project illustrates how a person can be detected, and how this information can be passed to a smart phone over a Wi-Fi link, as well as how the detection can be acknowledged by sending a message from the smartphone to your Raspberry Pi 5.
PC USB Logic Analyzers with Arduino, Raspberry Pi, and Co.
Step-by-step instructions guide you through the analysis of modern protocols such as I²C, SPI, UART, RS-232, NeoPixel, WS28xx, HD44780 and 1-Wire protocols. With the help of numerous experimental circuits based on the Raspberry Pi Pico, Arduino Uno and the Bus Pirate, you will learn the practical application of popular USB logic analyzers.
All the experimental circuits presented in this book have been fully tested and are fully functional. The necessary program listings are included – no special programming or electronics knowledge is required for these circuits. The programming languages used are MicroPython and C along with the development environments Thonny and Arduino IDE.
This book uses several models of flexible and widely available USB logic analyzers and shows the strengths and weaknesses of each price range.
You will learn about the criteria that matter for your work and be able to find the right device for you.
Whether Arduino, Raspberry Pi or Raspberry Pi Pico, the example circuits shown allow you to get started quickly with protocol analysis and can also serve as a basis for your own experiments.
After reading this book, you will be familiar with all the important terms and contexts, conduct your own experiments, analyze protocols independently, culminating in a comprehensive knowledge set of digital signals and protocols.