The PC has long-time outgrown its function as a pure computer and has become an all-purpose machine. This book is targeted towards those people that want to control existing or self-built hardware from their computer.
Using Visual Basic as Rapid Application Development tool we will take you on a journey to unlock the world beyond the connectors of the PC.
After familiarising yourself with Visual Basic, its development environment and the toolset it offers, items such as serial communications, printer ports, bit-banging, protocol emulation, ISA, USB and Ethernet interfacing and the remote control of test-equipment over the GPIB bus, are covered in extent. Each topic is accompanied by clear, ready to run code, and where necessary, schematics are provided that will get your projects up to speed in no time.
This book will show you advanced things like: using tools like Debug to find hardware addresses, setting up remote communication using TCP/IP and UDP sockets and even writing your own internet servers. Or how about connecting your own block of hardware over USB or Ethernet and controlling it from Visual Basic. Other things like internet-program communication, DDE and the new graphics interface of Windows XP are covered as well.
All examples are ready to compile using Visual Basic 5.0, 6.0, NET or 2005. Extensive coverage is given on the differences between what could be called Visual Basic Classic and Visual basic .NET / 2005.
If you are going to be drilling, we recommend drilling on FR1 substrates. Unlike FR4, FR1 dust does not contain fiber glass. It is also a softer material, which means a less wear and tear on the drill bits. Download the template and incorporate them into your design here. 10 substrates included.
Need to dispense your own UV sensitive fluids (up to 550nm)?
Included
4x 5cc UV-Blocking Syringe Barrels
4x Standard Fit Pistons (white)
4x High Viscosity Fit Pistons (red)
4x Tip Caps
4x End Caps
2x Female to Female Luer couplers
A set of high precision drill bits, covering the most common drill bit sizes.
Just pop them in the V-One Drill with a 2.5 mm hex key (not included) and start drilling.
The following sizes are included (2 of each):
0.70 mm
0.80 mm
0.90 mm
1.00 mm
1.60 mm
Looking to dispense materials with a lower viscosity? These are the nozzles for you. Don't use this with our standard ink or solder paste... that will result in poor performance.
This pack contains 4 extra fine nozzles with an internal diameter of 0.100 mm (4 mil).
If you want to push the resolution limits of the V-One, these dispensing tips will help enable your experimental projects. This pack contains 4 extra fine nozzles with an internal diameter of 0.150 mm (6 mil).
Do not use with solder paste! It will clog!
The Punk Console circuit is an advanced tutorial to get you familiar with the V-One Drill attachment. Learn how to create a double sided board and turn the knobs to create music! The kit contains: 2x Green LEDs 8x 1k Resistors 3x 0.01uF Capacitor 2x 500K Trimpots 1x 556 Timer 1x Piezo Buzzer 1x 9 V Battery 1x 9 V Battery Connector Rivets and a V-One Drill are required.
Use the right tool for the right job. These steel stakes are used to press the rivets on the PCB after holes have been drilled. They have been designed for optimum performance on the ink and ensure an electrical connection between the top and bottom layers of your PCB. Learn how to use them here.
Do you need a way to connect the top and bottom layers? Rivets are the key!Rivets are little copper tubes that make a mechanical connection between the top and bottom layer. We found rivets to be the easiest way to create vias. Be sure to pick up the corresponding rivet tool if you don't have one!
Pack of 200
Inner Diameter - 1.0mm
Head Diameter - 2.2mm
Drill Size: 1.5mm (or 1.6mm)
Confused on how to use them? Checkout our tutorial here.
Solder Paste Dispensing and Reflow All-in-One
The Voltera V-One creates two-layer prototype circuit boards on your desk. Gerber files go in, printed circuit boards come out. The dispenser lays down a silver-based conductive ink to print your circuit right before your eyes. Assembling traditional and additive boards is easy with the V-One’s solder paste dispensing and reflow features. Simply mount your board on the print bed and import your Gerber file into Voltera’s software.
No more stencils required
Voltera’s software is designed to be understood easily. From importing your Gerber files to the moment you press print, the software safely walks you through each step.
Compatible with EAGLE, Altium, KiCad, Mentor Graphics, Cadence, DipTrace, Upverter.
Included
V-One PCB printer
V-One dispenser
V-One probe
Nozzle pack
Tip caps
3 x 4" FR1 substrate pack
2 x 3" FR1 substrate pack
Substrate clamps
Thumbscrew pack
Hello World kit
Solder wire
Tweezers
Power supply
Power adapter
Cables
User guides
Downloads
Specifications
V-One Software
Manuals
Safety Datasheets
Technical Datasheets
Voltera CAM file for EAGLE
Substrates and Templates
More Info
Frequently Asked Questions
More from the Voltera community
Technical Specifications
Printing Specifications
Minimum trace width
0.2 mm
Minimum passive size
1005
Minimum pin-to-pin pitch (conductive ink)
0.8 mml
Minimum pin-to-pin pitch (solder paste)
0.5 mml
Resistivity
12 mΩ/sq @ 70 um height
Substrate material
FR4
Maximum board thickness
3 mm
Soldering Specifications
Solder paste alloy
Sn42/Bi57.6/Ag0.4
Solder wire alloy
SnBiAg1
Soldering iron temperature
180-210°C
Print Bed
Print area
135 x 113.5 mm
Max. heated bed temperature
240°C
Heated bed ramp rate
~2°C/s
Footprint
Dimensions
390 x 257 x 207 mm (L x W x H)
Weight
7 kg
Computing Requirements
Compatible operating systems
Windows 7 or higher, MacOS 10.11 or higher
Compatible file format
Gerber
Connection type
Wired USB
Certification
EN 61326-1:2013
EMC requirements
IEC 61010-1
Safety requirements
CE Marking
Affixed to the Voltera V-One printers delivered to European customers
Designed and assembled in Canada.
More technical information
Quickstart
Explore Flexible Printed Electronics on the V-One
Voltera V-One Capabilities Reel
Voltera V-One PCB Printer Walkthrough
Unpacking the V-One
V-One: Solder Paste Dispensing and Reflow All-in-One
Voltera @ Stanford University's Bao Research Group: Robotic Skin and Stretchable Sensors
Voltera @ Princeton: The Future of Aerospace Innovation
The Pico-10DOF-IMU is an IMU sensor expansion module specialized for Raspberry Pi Pico. It incorporates sensors including gyroscope, accelerometer, magnetometer, baroceptor, and uses I²C bus for communication.
Combined with the Raspberry Pi Pico, it can be used to collect environment sensing data like temperature and barometric pressure, or to easily DIY a robot that detects motion gesture and orientation.
Features
Standard Raspberry Pi Pico header, supports Raspberry Pi Pico series
Onboard ICM20948 (3-axis gyroscope, 3-axis accelerometer, and 3-axis magnetometer) for detecting motion gesture, orientation, and magnetic field
Onboard LPS22HB barometric pressure sensor, for sensing the atmospheric pressure of the environment
Comes with development resources and manual (Raspberry Pi Pico C/C++ and MicroPython examples)
Specifications
Operating voltage
5 V
Accelerometer
Resolution: 16-bitMeasuring range (configurable): ±2, ±4, ±8, ±16gOperating current: 68.9uA
Gyroscope
Resolution: 16-bitMeasuring range (configurable): ±250, ±500, ±1000, ±2000°/secOperating current: 1.23mA
Magnetometer
Resolution: 16-bitMeasuring range: ±4900µTOperating current: 90uA
Baroceptor
Measuring range: 260 ~ 1260hPaMeasuring accuracy (ordinary temperature): ±0.025hPaMeasuring speed: 1Hz - 75Hz
2-ch CAN HAT+ is an isolated expansion board for Raspberry Pi. It supports dual-channel CAN communication and features multi-protection circuits, wide voltage input, and more.
Features
Designed for Raspberry Pi
Standard HAT+ design, with onboard EEPROM chip.
Adopts MCP2515 and SN65HVD230 dual-chip solution, allowing 2-channel CAN communication.
Integrated power isolation, providing stable isolated voltage, requires no extra power supply for the isolated terminal.
Onboard digital isolation chip, signal isolation communication is safer, more stable, and better anti-interference.
Onboard SM24CANB (transient voltage suppressor), provides ESD protection and transient peak voltage protection.
Onboard voltage conversion circuit, select 3.3 V/5 V operating voltage by jumper.
Onboard 120 Ω terminal resistor, enable through the jumper cap.
Elicits the SPI control interface, for connecting with host control boards like STM32/Arduino.
Provides online supporting information manuals and demos.
Specifications
CAN controller
MCP2515
Control Bus
SPI
Power supply method
External power supply terminal or Raspberry Pi GPIO
Terminal voltage input
DC 7~36 V
Operating voltage
5 V
Logic level
3.3 V/5 V
Dimensions
65.0 x 56.5 mm
Downloads
Wiki
Features 2.13' capacitive touch e-Paper display, 5-point touch, 250×122 pixels Supports waken up by user-defined gesture No backlight, keeps displaying last content for a long time even when power down Ultra low power consumption, basically power is only required for refreshing Standard Raspberry Pi 40PIN GPIO extension header, supports Raspberry Pi Zero / Zero W Comes with development resources and manual (examples for Raspberry Pi) Included 1x 2.13inch Touch e-Paper HAT 1x ABS case 1x Screwdriver 1x Thermal tape 1x Rubber feet 4pcs 2x Screws Downloads Documentation
Features Adopts both 4-wire SPI and I²C interface, better compatibility, fast data rate Standard Raspberry Pi Pico header, supports Raspberry Pi Pico series boards Comes with development resources and manual (Raspberry Pi Pico C/C++ and MicroPython examples) Specifications Logical voltage 3.3 V Viewing angle >160° Operating voltage 3.3 V/5 V Resolution 128×32 pixels Communication interface 4-wire SPI, I²C Display size 55.02 × 13.10 mm Display panel OLED Pixel size 0.41 × 0.39 mm Driver SSD1305 Dimensions 63.00 × 26.00 mm
Features No backlight, keeps displaying last content for a long time even when power down Ultra low power consumption, basically power is only required for refreshing SPI interface, requires minimal IO pins Comes with development resources and manual (Raspberry Pi Pico C/C++ and MicroPython examples) Specifications Operating voltage 3.3 V Display color red, black, white Interface 3-wire SPI, 4-wire SPI Grey scale 2 Outline dimensions 74.00 × 37.5 0mm Full refresh time 15s Display size 60.088 × 30.704 mm Refresh power 42.4 mW (typ.) Dot pitch 0.203 × 0.202 mm Standby current <0.01 uA (almost none) Resolution 296×152 pixels Viewing angle >170° Downloads Wiki
Features No backlight Displays last images even when powered down Ultra low power consumption SPI interface Compatible with 3.3 V and 5 V Specifications Operating voltage 3.3 V / 5 V Interface 3-wire SPI, 4-wire SPI Outline dimension 89.5 x 38 mm Display size 66.89 x 29.05 mm Dot pitch 0.138 x 0.138 Resolution 296 x 128 Display color red, black, white Grey level 2 Full refresh time 15 s Refresh power 26.4 mW Standby power <0.017 mW Viewing angle >170° For more information check out the waveshare wiki here.
Features 480 x 320 resolution, IPS screen, 65K colors, clear and colorful displaying effect Dedicated touch controller, bringing more smooth touching effect than AD-controlled solutions MicroSD card slot for storing images and direct displaying them easily Programmable backlight control, power saving Comes with development resources and manual (Raspberry Pi Pico C/C++ and MicroPython examples) Specifications Operating voltage 5 V Resolution 480 x 320 pixels Communication interface SPI Display size 73.44 x 48.96 mm Display panel IPS Pixel size 0.153 x 0.153 mm Driver ILI9488 Dimensions 86.00 x 57.20 mm Touch controller XPT2046 Downloads Wiki
Features
SPI-compatible, easy to drive
Standard Raspberry Pi Pico header, supports Raspberry Pi Pico series
Comes with development resources and manual (Raspberry Pi Pico C/C++ and MicroPython examples)
Specifications
Operating voltage
5 V
Digits
4
Dispaly size
0.4 inch
LED color
red
Driver
74HC595
Display part no.
FJ4401AH
Dimensions
52 × 21 mm