Learn how to use the ESP32 Microcontroller and MicroPython programming in your future projects!
The project book, written by well-known Elektor author Dogan Ibrahim, holds many software- and hardware-based projects especially developed for the MakePython ESP32 Development Kit. The kit comes with several LEDs, sensors, and actuators. The kit will help you acquire the basic knowledge to create IoT projects.
The book’s fully evaluated projects feature all the supplied components. Each project includes a block diagram, a circuit diagram, a full program listing, and a complete program description.
Included in the kit
1x MakePython ESP32 development board with color LCD
1x Ultrasonic ranging module
1x Temperature and humidity sensor
1x Buzzer module
1x DS18B20 module
1x Infrared module
1x Potentiometer
1x WS2812 module
1x Sound sensor
1x Vibration sensor
1x Photosensitive resistance module
1x Pulse sensor
1x Servo motor
1x USB cable
2x Button
2x Breadboard
45x Jumper wire
10x Resistor 330R
10x LED (Red)
10x LED (Green)
1x Project book (206 pages)
46 Projects in the Book
LED Projects
Blinking LED
Flashing SOS
Blinking LED – using a timer
Alternately flashing LEDs
Button control
Changing the LED flashing rate using pushbutton interrupts
Chasing-LEDs
Binary-counting LEDs
Christmas lights (random-flashing 8 LEDs)
Electronic dice
Lucky day of the week
Pulsewidth Modulation (PWM) Projects
Generate a 1000-Hz PWM waveform with 50% duty cycle
LED brightness control
Measuring the frequency and duty cycle of a PWM waveform
Melody maker
Simple electronic organ
Servo motor control
Servo motor DS18B20 thermometer
Analog To Digital Converter (ADC) Projects
Voltmeter
Plotting the analog input voltage
ESP32 internal temperature sensor
Ohmmeter
Photosensitive resistance module
Digital To Analog Converter (DAC) Projects
Generating fixed voltages
Generating a sawtooth-wave signal
Generating a triangular-wave signal
Arbitrary periodic waveform
Generating a sinewave signal
Generating accurate sinewave signal using timer interrupts
Using The OLED Display
Seconds counter
Event counter
DS18B20 OLED based digital thermometer
ON-OFF temperature controller
Measuring the temperature and humidity
Ultrasonic distance measurement
Height of a person (stadiometer)
Heart rate (pulse) measurement
Other Sensors Supplied with the Kit
Theft alarm
Sound-activated light
Infrared obstacle avoidance with buzzer
WS2812 RGB LED ring
Timestamping temperature and humidity readings
Network Programming
Wi-Fi scanner
Remote control from the Internet browser (using a smartphone or PC) – Web Server
Storing temperature and humidity data in the Cloud
Low-Power Operation
Using a timer to wake up the processor
When you experiment with the Raspberry Pi on a regular basis and you connect a variety of external hardware to the GPIO port via the header you may well have caused some damage in the past. The Elektor Raspberry Pi Buffer Board is there to prevent this! The board is compatible with Raspberry Pi Zero, Zero 2 (W), 3, 4, 5, 400 and 500.
All 26 GPIOs are buffered with bi-directional voltage translators to protect the Raspberry Pi when experimenting with new circuits. The PCB is intended to be inserted in the back of Raspberry Pi 400/500. The connector to connect to the Raspberry Pi is a right angled 40-way receptacle (2x20). The PCB is only a fraction wider. A 40-way flat cable with appropriate 2x20 headers can be connected to the buffer output header to experiment for instance with a circuit on a breadboard or PCB.
The circuit uses 4x TXS0108E ICs by Texas Instruments. The PCB can also be put upright on a Raspberry Pi.
Downloads
Schematics
Layout
The Elektor MultiCalculator Kit is an Arduino-based multifunction calculator that goes beyond basic calculations. It offers 22 functions including light and temperature measurement, differential temperature analysis, and NEC IR remote control decoding. The Elektor MultiCalculator is a handy tool for use in your projects or for educational purposes.
The kit features a Pro Mini module as the computing unit. The PCB is easy to assemble using through-hole components. The enclosure consists of 11 acrylic panels and mounting materials for easy assembly. Additionally, the device is equipped with a 16x2 alphanumeric LCD, 20 buttons, and temperature sensors.
The Elektor MultiCalculator is programmable with the Arduino IDE through a 6-way PCB header. The available software is bilingual (English and Dutch). The calculator can be programmed with a programming adapter, and it is powered through USB-C.
Modes of Operation
Calculator
4-Ring Resistor Code
5-Ring Resistor Code
Decimal to Hexadecimal and Character (ASCII) conversion
Hexadecimal to Decimal and Character (ASCII) conversion
Decimal to Binary and Character (ASCII) conversion
Binary to Decimal and Hexadecimal conversion
Hz, nF, capacitive reactance (XC) calculation
Hz, µH, inductive reactance (XL) calculation
Resistance calculation of two resistors connected in parallel
Resistance calculation of two resistors connected in series
Calculation of unknown parallel resistor
Temperature measurement
Differential temperature measurement T1&T2 and Delta (δ)
Light measurement
Stopwatch with lap time function
Item counter
NEC IR remote control decoding
AWG conversion (American Wire Gauge)
Rolling Dice
Personalize startup message
Temperature calibration
Specifications
Menu languages: English, Dutch
Dimensions: 92 x 138 x 40 mm
Build time: approx. 5 hours
Included
PCB and though-hole components
Precut acrylic sheets with all mechanical parts
Pro Mini microcontroller module (ATmega328/5 V/16 MHz)
Programming adapter
Waterproof temperature sensors
USB-C cable
Downloads
Software
Examine your circuits with high precision and solder even the smallest SMDs and elements without any hassle.
Features
Multifunctional HDMI Digital Microscope features Full HD, comfortable headroom, improved ergonomy, multiple output signals with different resolutions.
Tilt angle of the wide LCD monitor is adjustable.
Comes with remote control.
Can be used as stand-alone.
Specifications
Screen size
7 inch (17.8 cm)
Image sensor
4 MP
Video output
UHD 2880x2160 (24fps)FHD 1920x1080 (60fps/30fps)HD 1280x720 (120fps)
Video format
MP4
Magnification
Up to 270 times (27 inch HDMI monitor)
Photo resolution
Max. 12 MP (4032x3024)
Photo format
JPG
Focus range
Min. 5 cm
Frame rate
Max. 120fps (under 600 Lux Brightness & HDP120)
Video interface
HDMI
Storage
microSD card (up to 32 GB)
Power source
5 V DC
Light source
2 LEDs with the stand
Stand size
20 x 12 x 19 cm
Included
1x Andonstar AD407 Digital Microscope
1x Metal stand with 2 LEDs
1x Optical bracket
1x UV filter
1x IR remote
1x Switch cable
1x Power adapter
1x HDMI cable
2x Screws
1x Screwdriver
1x User manual
Downloads
Manual
Model Comparison
AD407
AD407 Pro
AD409
AD409 Pro-ES
Screen size
7 inch (17.8 cm)
7 inch (17.8 cm)
10.1 inch (25.7 cm)
10.1 inch (25.7 cm)
Image sensor
4 MP
4 MP
4 MP
4 MP
Video output
2160p
2160p
2160p
2160p
Interfaces
HDMI
HDMI
USB, HDMI, WiFi
USB, HDMI, WiFi
Video format
MP4
MP4
MP4
MP4
Magnification
Up to 270x
Up to 270x
Up to 300x
Up to 300x
Photo resolution
Max. 4032x3024
Max. 4032x3024
Max. 4032x3024
Max. 4032x3024
Photo format
JPG
JPG
JPG
JPG
Focus distance
Min. 5 cm
Min. 5 cm
Min. 5 cm
Min. 5 cm
Frame rate
Max. 120f/s
Max. 120f/s
Max. 120f/s
Max. 120f/s
Storage
microSD card
microSD card
microSD card
microSD card
PC support
No
No
Windows
Windows
Mobile connection
No
No
WiFi + Measurement
WiFi + Measurement
Power source
5 V DC
5 V DC
5 V DC
5 V DC
Light source
2 LEDs with the stand
2 LEDs with the stand
2 LEDs with the stand
2 LEDs with the stand
Endoscope
No
No
No
Yes
Stand size
20 x 12 x 19 cm
20 x 18 x 32 cm
18 x 20 x 30 cm
18 x 20 x 32 cm
Weight
1.6 kg
2.1 kg
2.2 kg
2.5 kg
More than 200 power supply designs for home construction This USB Stick contains over 200 different power supply circuits from the volumes 2001-2022 of Elektor. The article search feature allows you to search full-text content. The results are always displayed as pre-formatted PDF documents. Highlights Cuk Converter Automatic Battery Switchover Battery Voltage LED Digital Benchtop Power Supply Lithium-Ion Charger Solar Cell Charger Electronic Fuse High Voltage Regulator Power Supply for USB Devices Step-up Converter for LEDs Battery Management and much more... On the Stick you will also find a folder with additional material such as PCB layouts, Gerber files and software.
PiKVM V3 is an open-source Raspberry Pi-based KVM over IP device. It will help you to manage servers or workstations remotely, whatever the state of the operating system or whether one is installed.
PiKVM V3 allows you to turn on/off or restart your computer, configure the UEFI/BIOS, and even reinstall the OS using the virtual CD-ROM or flash drive. You can use your remote keyboard and mouse or PiKVM can simulate a keyboard, mouse, and a monitor, which are then presented in a web browser as if you were working on a remote system directly.
Features
HDMI Full HD capture based on the TC358743 chip (extra low latency ~100 ms and many features like compression control).
OTG Keyboard & mouse; Mass Storage Drive emulation.
Ability to simulate 'removal and insertion' for USB.
Onboard ATX power control
Onboard fan controller
Real-time clock (RTC)
RJ-45 and USB serial console port (to manage PiKVM OS or to connect with the server).
Optional AVR-based HID (for some rare and strange motherboards whose BIOS doesn't understand the OTG emulated keyboard).
Optional OLED screen to display network status or other desired information.
Ready-made board. No need for soldering or breadboarding.
PiKVM OS – the software is fully open.
Included
PiKVM V3 HAT board for Raspberry Pi 4
USB-C bridge board – to connect the HAT with Pi over USB-C
ATX controller adapter board and wiring – to connect the HAT to the motherboard (if you want to manage power supply through hardware).
2 flat CSI cables
Screws and brass standoffs
Required
Raspberry Pi 4
MicroSD card
USB-C to USB-A cable
HDMI cable
Straight Ethernet cable (for the ATX expansion board connection)
Power supply unit (5.1 V/3 A USB-C, officiel RPi power supply is recommended)
Downloads
User Guide
Images
GitHub
Links
The PiKVM Project and Lessons Learned: Q&A with PiKVM creator and developer Maxim Devaev
PiKVM: Raspberry Pi as a KVM Remote Control
3K5 Noteworthy Designs (1975-2024)
This USB archive stick contains over 3,500 noteworthy circuits from all areas of electronics (audio & video, hobby & modelling, home & garden, test & measurement, computers & microcontrollers, radio, power supplies & batteries) published in Elektor Magazine since 1975. Most circuits are sourced from the Elektor Summer Circuits editions.
You can use the article search function to find specific content in the full text. The results are always shown as preformatted PDF documents. Adobe Reader may be used to browse articles as well as find individual words and expressions using the program’s integrated Search functions.
Please note that no Summer Circuits editions were published between 2014 and 2022, so these years are not included in the directory.
Specifications
USB
USB 3.0
Storage
32 GB
Connectors
1x USB-A1x USB-C
The book "Node-RED and Raspberry Pi Pico W" describes the Node-RED programming environment in great detail with exciting applications on 527 pages. Only at Elektor, the book gets solid hardware support in the form of the popular SunFounder Kepler Kit with over 450 components including a Raspberry Pico W board. With this bundle, most of the experiments and programming exercises contained in the book can be carried out successfully.
This bundle contains:
Book: Node-Red and the Raspberry Pi Pico W (normal price: €50)
SunFounder Kepler Kit voor Raspberry Pi Pico W (normal price: €70)
Book: Node-RED and Raspberry Pi Pico W
From basics to flows for sensors, automation, motors, MQTT, and cloud services
This book is a learning guide and a reference. Use it to learn Node-RED, Raspberry Pi Pico W, and MicroPython, and add these state-of-the-art tools to your technology toolkit. It will introduce you to virtual machines, Docker, and MySQL in support of IoT projects based on Node-RED and the Raspberry Pi Pico W.
This book combines several elements into a platform that powers the development of modern Internet of Things applications. These elements are a flow-based server, a WiFi-enabled microcontroller, a high-level programming language, and a deployment technology. Combining these elements gives you the tools you need to create automation systems at any scale. From home automation to industrial automation, this book will help you get started.
Node-RED is an open-source flow-based development tool that makes it easy to wire together devices, APIs, and online services. Drag and drop nodes to create a flowchart that turns on your lights at sunset or sends you an email when a sensor detects movement. Raspberry Pi Pico W is a version of the Raspberry Pi Pico with added 802.11n Wi-Fi capability. It is an ideal device for physical computing tasks and an excellent match to the Node-RED.
Quick book facts
Project-based learning approach.
Assumes no prior knowledge of flow-based programming tools.
Learn to use essential infrastructure tools in your projects, such as virtual machines, Docker, MySQL and useful web APIs such as Google Sheets and OpenWeatherMap.
Dozens of mini-projects supported by photographs, wiring schematics, and source code. Get these from the book GitHub repository.
Step-by-step instructions on everything.
All experiments are based on the Raspberry Pi Pico W. A Wi-Fi network is required for all projects.
Downloads
GitHub
SunFounder Kepler Kit voor Raspberry Pi Pico W
Your gateway to IoT and microcontroller programming
With 450+ components and 117 online projects, this comprehensive kit ignites your creativity. The tutorials by Paul McWhorter make learning enjoyable for beginners and advanced users. This kit supports MicroPython, C/C++, and Piper Make, offering diverse programming options.
Explore sensors, actuators, LEDs, and LCDs for endless project possibilities. From home automation to robotics, this kit empowers your tech journey.
Features
IoT Starter Kit for Beginners: This kit offers a rich IoT learning experience for beginners. With 450+ components, 117 projects, and expert-led video lessons, this kit makes learning microcontroller programming and IoT engaging and accessible.
Expert-Guided Video Lessons: The kit includes 27 video tutorials by the renowned educator, Paul McWhorter. His engaging style simplifies complex concepts, ensuring an effective learning experience in microcontroller programming.
Wide Range of Hardware: The kit includes a diverse array of components like sensors, actuators, LEDs, LCDs, and more, enabling you to experiment and create a variety of projects with the Raspberry Pi Pico W.
Supports Multiple Languages: The kit offers versatility with support for three programming languages - MicroPython, C/C++, and Piper Make, providing a diverse programming learning experience.
Dedicated Support: Benefit from our ongoing assistance, including a community forum and timely technical help for a seamless learning experience.
Included
Raspberry Pi Pico W
Breadboard
Jumper Wires
Resistor
Transistor
Capacitor
Diode
Li-po Charger Module
74HC595
TA6586 – Motor Driver Chip
LED
RGB LED
LED Bar Graph
7-segment Display
4-Digit 7-Segment Display
LED Dot Matrix
I²C LCD1602
WS2812 RGB 8 LEDs Strip
Buzzer
DC Motor
Servo
DC Water Pump
Relay
Button
Micro Switch
Slide Switch
Potentiometer
Infrared Receiver
Joystick Module
4x4 Keypad
MPR121 Module
MFRC522 Module
Photoresistor
Thermistor
Tilt Switch
Reed Switch
PIR Motion Sensor Module
Water Level Sensor Module
Ultrasonic Module
DHT11 Humiture Sensor
MPU6050 Module
Documentation
Online Tutorial
Getting started in electronics is not as difficult as you may think. With this bundle (book + kit of parts), you can explore and learn the most important electrical and electronics engineering concepts in a fun way by doing various experiments. You will learn electronics practically without getting into complex technical jargon and long calculations. As a result, you will be creating your own projects soon.
This kit contains the components required to build most of the detailed examples of the book on a breadboard and try them out for real.
The kit can, of course, also be used without the book for building other circuits and doing your own experiments.
Kit contents
1x 39 Ω, 1 W resistor
1x 47 Ω resistor
1x 180 Ω resistor
1x 330 Ω resistor
3x 1 kΩ resistor
1x 2.2 kΩ resistor
1x 3.9 kΩ resistor
1x 6.8 kΩ resistor
1x 10 kΩ resistor
1x 15 kΩ resistor
1x 22 kΩ resistor
1x 33 kΩ resistor
1x 47 kΩ resistor
1x 56 kΩ resistor
1x 82 kΩ resistor
1x 120 kΩ resistor
1x 680 kΩ resistor
2x 100 kΩ resistor
1x 10 kΩ trimmer
1x 10 kΩ linear potentiometer
1x 100 kΩ linear potentiometer
1x LDR
1x 1 nF ceramic capacitor
2x 10 nF ceramic capacitor
1x 100 nF ceramic capacitor
1x 1 µF, 25 V aluminium electrolytic capacitor
2x 10 µF, 25 V aluminium electrolytic capacitor
1x 100 µF, 25 V aluminium electrolytic capacitor
1x 470 µF, 25 V aluminium electrolytic capacitor
1x 1000 µF, 25 V aluminium electrolytic capacitor
1x RGB LED, Common-Cathode (CC)
1x 1N4148 small signal diode
1x 1N4733A 5.1 V, 1 W Zener diode
3x LED, red
2x BC337 NPN transistor
1x IRFZ44N N-channel MOSFET
2x NE555 timer
1x LM393 comparator
1x 74HCT08 quad AND gate
3x Tactile switch
2x SPDT switch
1x Relay, SPDT, 9 VDC
1x Active buzzer
1x Passive buzzer
50 cm Solid wire, 16 AWG, unjacketed
2x PP3 9 V battery clip
1x Breadboard
20x Jumper wire
This bundle contains:
Practical Electronics Crash Course Kit (valued at: €45)
Book: Practical Electronics Crash Course (normal price: €45)
This bundle contains:
Book: Building Wireless Sensor Networks with OpenThread (normal price: €40)
Nordic Semiconductor nRF52840 USB Dongle (normal price: €20)
Book: Building Wireless Sensor Networks with OpenThread
This book will guide you through the operation of Thread, the setup of a Thread network, and the creation of your own Zephyr-based OpenThread applications to use it. You’ll acquire knowledge on:
The capture of network packets on Thread networks using Wireshark and the nRF Sniffer for 802.15.4.
Network simulation with the OpenThread Network Simulator.
Connecting a Thread network to a non-Thread network using a Thread Border Router.
The basics of Thread networking, including device roles and types, as well as the diverse types of unicast and multicast IPv6 addresses used in a Thread network.
The mechanisms behind network discovery, DNS queries, NAT64, and multicast addresses.
The process of joining a Thread network using network commissioning.
CoAP servers and clients and their OpenThread API.
Service registration and discovery.
Securing CoAP messages with DTLS, using a pre-shared key or X.509 certificates.
Investigating and optimizing a Thread device’s power consumption.
Once you‘ve set up a Thread network with some devices and tried connecting and disconnecting them, you’ll have gained a good insight into the functionality of a Thread network, including its self-healing capabilities. After you’ve experimented with all code examples in this book, you’ll also have gained useful programming experience using the OpenThread API and CoAP.
Nordic Semiconductor nRF52840 USB Dongle
The nRF52840 dongle is a small, low-cost USB dongle that supports Bluetooth 5.3, Bluetooth mesh, Thread, ZigBee, 802.15.4, ANT and 2.4 GHz proprietary protocols. The dongle is the perfect target hardware for use with nRF Connect for Desktop as it is low-cost but still support all the short range wireless standards used with Nordic devices.
The dongle has been designed to be used as a wireless HW device together with nRF Connect for Desktop. For other use cases please do note that there is no debug support on the dongle, only support for programming the device and communicating through USB.
It is supported by most of the nRF Connect for Desktop apps and will automatically be programmed if needed. In addition custom applications can be compiled and downloaded to the dongle. It has a user programmable RGB LED, a green LED, a user programmable button as well as 15 GPIO accessible from castellated solder points along the edge. Example applications are available in the nRF5 SDK under the board name PCA10059.
The nRF52840 dongle is supported by nRF Connect for Desktop as well as programming through nRFUtil.
Features
Bluetooth 5.2 ready multiprotocol radio
2 Mbps
Long Range
Advertising Extensions
Channel Selection Algorithm #2 (CSA #2)
IEEE 802.15.4 radio support
Thread
ZigBee
Arm Cortex-M4 with floating point support
DSP instruction set
ARM CryptoCell CC310 cryptographic accelerator
15 GPIO available via edge castellation
USB interface direct to nRF52840 SoC
Integrated 2.4 GHz PCB antenna
1 user-programmable button
1 user-programmable RGB LED
1 user-programmable LED
1.7-5.5 V operation from USB or external
Downloads
Datasheet
Hardware Files
The FNIRDSI DSO-TC4 is a multifunctional transistor oscilloscope that is both comprehensive and practical. It is designed for use in maintenance and R&D applications, integrating an oscilloscope, transistor tester, and signal generator into a single device.
Features
Equipped with a 2.8-inch TFT color screen for a clear and intuitive display
Built-in high-capacity rechargeable lithium battery (1500 mAh) with a standby time of up to 4 hours
Compact and lightweight, ideal for mobile use
Specifications
Oscilloscope
Analog Bandwidth
10 MHz
Real-Time Sampling Rate
48 MSa/s
Input Impedance
1 MΩ
Coupling Mode
AC/DC
Test Voltage Range
1:1 Probe: 80 Vpp (+40 V)
10:1 Probe: 800 Vpp (+400 V)
Vertical Sensitivity
10 mV/div~10 V/div (X1 range)
Vertical Displacement
Adjustable with indication
Time Base Range
50ns~20s
Trigger Mode
Auto/Normal/Single
Trigger Type
Rising edge, Falling edge
Trigger Level
Adjustable with indication
Waveform Freeze
Yes (HOLD function)
Automatic Measurement
Max, Min, Avg, RMS, Vpp, Frequency, Cycle, Duty Cycle
Component Tester
Transistor
Amplification factor "hfe"; Base-Emitter voltage "Ube", Ic/Ie, Collector-Emitter reverse leakage current "Iceo", Ices, Forward voltage drop of protection diode "Uf"
Diode
Forward voltage drop <5 V (Forward voltage drop, Junction capacitance, Reverse leakage current)
Zener Diode
0.01~32 V
Reverse Breakdown Voltage (K-A-A Test Area)
Field-Effect Transistor (FET)
JFET: Gate capacitance "Cg", Drain current Id under "Vgs", Forward voltage drop of protection diode "Uf"
IGBT: Drain current Id under Vgs, Forward voltage drop of protection diode Uf
MIOSTET: Threshold voltage "Vt", Gate capacitance "Cg", Drain-Source resistance "Rds", Forward voltage drop of protection diode "Uf"
Unidirectional SCR
Trigger voltage <5V, Gate level (Gate voltage)
Bidirectional SCR
Trigger current <6mA (Gate voltage)
Capacitor
25pF~100mF, Capacitance value, Loss factor "Vloss"
Resistor
0.01Ω~50MΩ
Inductor
10μH~1000μH, DC resistance
DS18B20
Temperature sensor, Pins: GND, DQ, VDD
DHT11
Temperature and humidity sensor, Pins: VDD, DATA, GND
Signal Generator
Output Waveform
Supports 13 waveform outputs
Waveform Frequency
0-50 KHz
Square Wave Duty Cycle
0-100%
Waveform Amplitude
0.1-3.0 V
General
Display
2.8-inch TFT color screen
Backlight
Brightness adjustable
Power Supply
USB-C (5 V/1 A)
Battery
3.7 V/1500 mAh
Languages
English, German, Spanish, Portuguese, Russian, Chinese, Japanese, Korean
Dimensions
90 x 142 x 27.5 mm
Weight
186 g
Included
1x FNIRSI DSO-TC4 (3-in-1) Oscilloscope (10 MHz)
1x P6100 Oscilloscope probes (10X)
1x Alligator clip probe
3x Test hooks
1x Adapter
1x USB-C charging cable
1x Manual
Downloads
Manual
Firmware V0.0.3 (+V1.0.9)
This Rework Station Bundle, consisting of the ZD-8968 Hot Air Rework Station and the ZD-11P PCB holder, offers precise temperature control, adjustable airflow, and a stable hold for your circuit board.
The ZD-8968 Hot Air Rework Station is a high-performance device designed for precision desoldering and rework tasks with SMD components. It features a wide temperature range of 100-500°C (212-932°F), with adjustable air and temperature control, a clear LED display, and an automatic sleep mode for enhanced safety and efficiency.
The ZD-11P PCB Holder is equipped with 5 adjustable 360° rotatable goosenecks (4 with alligator clips, 1 with flashlight holder + flashlight), providing additional flexibility and stability. It securely holds the PCB in place, making the handling of SMD components easier and more precise.
Features
300 W heating power ensures quick heat-up
Wide temperature range 100-500°C (212-932°F) allows precise control
Closed-loop sensor and MCU zero-crossing design ensure accurate and stable temperature regulation.
The hot air pump handle includes a built-in sensor that switches to Working Mode when picked up and to Standby Mode when placed back in the holder.
Automatic standby mode activates after 10 minutes of inactivity.
Automatic cooling system and deferred power-off function protect the heating element.
Brushless motor fan provides quiet operation, smooth airflow, and an extended lifespan.
High-quality heating element doubles working efficiency and saves energy.
LED digital display for clear monitoring of temperature settings.
Simple buttons for adjusting air volume and temperature.
Switching between °C and °F
Heat-resistant stand with hot air gun holder, 5 flexible adjustable arms with alligator clips and a flashlight (AA battery not included)
Specifications
ZD-8968 Hot Air Rework Station
Power
300 W
Temperature range
100-500°C (212-932°F)
Power supply
220-240 V AC/50 Hz
Weight
1.2 kg
ZD-11P PCB Holder
Base (Dimensions)
210 x 134 mm
Metal rod (Height)
250 mm
Included
Base, metal rod, 4 gooseneck arms with alligator clips, 1 gooseneck arm with flashlight holder
Included
1x ZD-8968 Hot Air Rework Station
1x ZD-11P PCB Holder (stand with soldering iron holder with 5 adjustable arms, 4 with alligator clips and 1 with flashlight holder)
1x Flashlight (AA battery not included)
3x Hot air nozzles (79-7911, 79-7912, 79-7913)
1x Power cord (EU)
1x Power cord (UK)
1x Manual
Develop Arm Cortex-M7 powered Audio, DSP and Motor Control Projects
At the heart of NXP Semiconductors‘ MIMXRT1010 Development Kit is the i.MX RT1010 Crossover MCU sporting an Arm Cortex-M7 core truly capable of running power- and memory hungry DSP applications. The popular MCUXpresso IDE is key to creating software for the development kit, while a powerful SDK is provided to reduce program development time and effort. The dev kit offers great connectivity through its audio CODECs, 4-way headphone jack, external speaker connection, microphone, and Arduino interface.
Conveniently, several on-board debug probes are supplied with the kit allowing you to debug your programs by talking directly to the MCU. Helped by the debugger, you can single-step through a program, insert breakpoints, view and modify variables, and so on. Using the MCUXpresso IDE and the SDK, many working and tested projects are developed in the book based on parts, modules, and technologies, including:
LED and LCDs
ADC
I²C projects
SPI projects
UART projects
Motor Control
Audio and Digital Audio Processing (DSP)
This bundle contains:
Elektor Book: Get Started with the NXP i.MX RT1010 Development Kit (normal price: €34.95)
NXP i.MX RT1010 Kit Development Kit (normal price: €49.95)
NEW: Now incl. volume 2024 + Elektor GPT
5 Elektor Decades (’70s, ’80s, ’90s, ’00s, and ’10s) on a USB Stick
This USB stick (32 GB, USB 3.0) is loaded with all the Elektor magazine English editions (as PDFs) from 1974 to 2024. Elektor engineers, authors, and editors aim to inspire you to master electronics and computer technology by presenting professionally designed circuits that are easy to build.
We also cover the latest developments in electronics and information technology. With the Elektor Archive on a USB stick, you can browse our previous English editions at your convenience and learn about MCU-based projects, robotics, electronics testing, embedded programming, analog techniques, and much more.
All the Elektor magazine editions are stored as PDFs on a 32-GB USB stick (USB 3.0). The 10,000+ articles have been classified by date of publication (month/year), and a comprehensive index enables you to search the entire USB stick. Subject areas include:
Audio & video
Computers & microcontrollers
Radio, hobby & modelling
Home & garden
Power supplies & batteries
Test & measurement
Software
And everything else that doesn’t fit in one of these categories.
NEW
Elektor GPT is an AI-powered tool that helps users navigate through the decades-long Elektor archive. Using advanced search algorithms and natural language processing, Elektor GPT quickly finds articles, projects, and other resources from the archive.
Specifications
USB
USB 3.0
Storage
32 GB
Interfaces
1x USB-A1x USB-C
System requirements
PC with Adobe Reader 7.0 or higher
Web browser
This bundle contains:
Book: Get Started with the NXP FRDM-MCXN947 Development Board (normal price: €40)
NXP FRDM-MCXN947 Development Board (normal price: €30)
Book: Get Started with the NXP FRDM-MCXN947 Development Board
Develop projects on connectivity, graphics, machine learning, motor control, and sensors
This book is about the use of the FRDM-MCXN947 Development Board, developed by NXP Semiconductors. It integrates the dual Arm Cortex-M33, operating at up to 150 MHz. Ideal for Industrial, IoT, and machine learning applications. It features Hi-Speed USB, CAN 2.0, I³C and 10/100 Ethernet. The board includes an on-board MCU-Link debugger, FlexI/O for LCD control, and dual-bank flash for read-while-write operations, supporting large external serial memory configurations.
One of the important features of the development board is that it features an integrated eIQ Neutron Neural Processing Unit (NPU), thus enabling users to develop AI-based projects. The development board also supports Arduino Uno form factor header pins, making it compatible with many Arduino shields, mikroBUS connector for MikroElektronika Click Boards, and Pmod connector.
One of the nice things of the FRDM-MCXN947 development board is that it includes several on-board debug probes, allowing programmers to debug their programs by communicating directly with the MCU. With the help of the debugger, programmers can single-step through a program, insert breakpoints, view and modify variables and so on.
Many working and tested projects have been developed in the book using the popular MCUXpresso IDE and the SDK with various sensors and actuators. Use of the popular CMSIS-DSP library is also explained with several commonly used matrix operations.
The projects provided in the book can be used without any modifications in many applications. Alternatively, readers can base their projects on those given in the book during the development of their own projects.
NXP FRDM-MCXN947 Development Board
The FRDM-MCXN947 is a compact and versatile development board designed for rapid prototyping with MCX N94 and N54 microcontrollers. It features industry-standard headers for easy access to the MCU's I/Os, integrated open-standard serial interfaces, external flash memory, and an onboard MCU-Link debugger.
Specifications
Microcontroller
MCX-N947 Dual Arm Cortex-M33 cores @ 150 MHz each with optimized performance efficiency, up to 2 MB dual-bank flash with optional full ECC RAM, External flash
Accelerators: Neural Processing Unit, PowerQuad, Smart DMA, etc.
Memory Expansion
*DNP Micro SD card socket
Connectivity
Ethernet Phy and connector
HS USB-C connectors
SPI/I²C/UART connector (PMOD/mikroBUS, DNP)
WiFi connector (PMOD/mikroBUS, DNP)
CAN-FD transceiver
Debug
On-board MCU-Link debugger with CMSIS-DAP
JTAG/SWD connector
Sensor
P3T1755 I³C/I²C Temp Sensor, Touch Pad
Expansion Options
Arduino Header (with FRDM expansion rows)
FRDM Header
FlexIO/LCD Header
SmartDMA/Camera Header
Pmod *DNP
mikroBUS
User Interface
RGB user LED, plus Reset, ISP, Wakeup buttons
Included
1x FRDM-MCXN947 Development Board
1x USB-C Cable
1x Quick Start Guide
Downloads
Datasheet
Block diagram
The TOPDON TC004 Lite thermal imaging camera combines simplicity with advanced features, making it ideal for both hobbyists and professionals.
With a 160 x 120 pixel resolution, 1x/2x/4x zoom, and a wide 40° x 30° field of view, it delivers sharp and accurate thermal images. It operates across a broad temperature range (−20°C to +550°C), making it suitable for various industries like HVAC, electrical, and automotive diagnostics.
Its lightweight design, 2.8” display, and 15-hour battery life ensure portability and uninterrupted use, providing a powerful tool for thorough thermal analysis.
Features
Wide Temp Ranging from −20°C to +550°C (−4°F to +1022°F)
IR Photography
5 Color Palettes for More Possibilities
Tripod Mountable for a Stable View
High and Low Temperature Alarm
Monitor Temperature Change with Waveform Graphs
Long-lasting 15 Hour Battery Life
Specifications
TC004
TC004 SE
TC004 Lite
Display
2.8" Color TFT (320 x 240 Pixels)
2.8" Color TFT (320 x 240 Pixels)
2.8" Color TFT (320 x 240 Pixels)
IR light resolution
256 x 192 Pixels
256 x 192 Pixels
160 x 120 Pixels
Spectral range
8~14 μm
8~14 μm
8~14 μm
FOV
52.5° x 39.5°
56° x 42°
40° x 30°
Storage
2 GB RAM + 16 GB TF card
32 GB Built-in
512 MB Built-in
Measuring range
−20~350°C (−4~662°F)
−20~550°C (−4~1022°F)
−20~550°C (−4~1022°F)
Temperature resolution
0.1°C (0.18°F)
0.1°C (0.18°F)
0.1°C (0.18°F)
Measuring modes
Center spot/hot spot/cold spot
Center spot/hot spot/cold spot
Center spot/hot spot/cold spot
Measuring accuracy
±2°C or ±2%
±2°C or ±2%
±2°C or ±2%
Frame rate
25 Hz
25 Hz
25 Hz
Focal length
3.2 mm (0.12")
3.2 mm (0.12")
2.6 mm (0.1")
NETD
<40 mK
<40 mK
<40 mK
Magnification
1x/2x/4x (digital zoom)
1x/2x/4x (digital zoom)
1x/2x/4x (digital zoom)
Tripod screw hole
Yes
Yes
Yes
High/Low temperature alarm
Yes
Yes
Yes
LED flashlight
Yes
Yes
No
Video recording
Yes
Yes
No
Auto shutdown
5 min, 10 min, 20 min, OFF
5 min, 10 min, 20 min, OFF
5 min, 10 min, 20 min, OFF
Battery
Built-in 5000 mAh battery
Built-in 5300 mAh battery
Built-in 2900 mAh battery
Charging time
4 h
4 h
4 h
Standby time
12 h
16 h (High Brightness)21 h (Low Brightness)
15 h
Operating system
Standalone use/Windows devices
Standalone use/Windows devices
Standalone use
PC-based analysis
Supports image analysis with PC
Yes
No
Dimensions
240 x 70 x 90 mm
240 x 70 x 90 mm
240 x 70 x 90 mm
Weight
520 g
520 g
520 g
Included
1x TOPDON TC004 Lite Thermal Imaging Camera
1x USB Power Supply
4x Plugs (EU, UK, US, and AU)
1x USB Cable
1x Storage Bag
1x Manual
Downloads
Datasheet
Manual
The Raspberry Pi AI Camera is a compact camera module based on the Sony IMX500 Intelligent Vision Sensor. The IMX500 combines a 12 MP CMOS image sensor with on-board inferencing acceleration for various common neural network models, allowing users to develop sophisticated vision-based AI applications without requiring a separate accelerator.
The AI Camera enhances captured still images or video with tensor metadata, while keeping the Raspberry Pi's processor free for other tasks. Support for tensor metadata in the libcamera and Picamera2 libraries, as well as the rpicam-apps application suite, ensures ease of use for beginners while providing unparalleled power and flexibility for advanced users.
The Raspberry Pi AI Camera is compatible with all Raspberry Pi models.
Features
12 MP Sony IMX500 Intelligent Vision Sensor
Sensor modes: 4056x3040 (@ 10fps), 2028x1520 (@ 30fps)
1.55 x 1.55 µm cell size
78-degree field of view with manually adjustable focus
Integrated RP2040 for neural network and firmware management
Specifications
Sensor
Sony IMX500
Resolution
12.3 MP (4056 x 3040 pixels)
Sensor size
7.857 mm (type 1/2.3)
Pixel size
1.55 x 1.55 μm
IR cut filter
Integrated
Autofocus
Manual adjustable focus
Focus range
20 cm – ∞
Focal length
4.74 mm
Horizontal FOV
66 ±3°
Vertical FOV
52.3 ±3°
Focal ratio (F-stop)
F1.79
Output
Image (Bayer RAW10), ISP output (YUV/RGB), ROI, metadata
Input tensor maximum size
640 x 640 (H x V)
Framerate
• 2x2 binned: 2028x1520 10-bit 30fps• Full resolution: 4056x3040 10-bit 10fps
Ribbon cable length
20 cm
Cable connector
15 x 1 mm FPC or 22 x 0.5 mm FPC
Dimensions
25 x 24 x 11.9 mm
Downloads
Datasheet
Documentation
The PTS200 is a powerful, ESP32-controlled portable smart soldering iron with an adjustable output power range of 18 to 100 W. Paired with a 100-watt power supply and a 4-ohm soldering tip, this soldering iron eliminates the need for a traditional soldering station, fully meeting the demands of various soldering tasks. It features 4 adjustable operating voltages, allowing it to be configured for different power sources.
Features
100 W Power Output: Experience rapid heating with a powerful 100 W output, reaching 450°C (842°F) in just 8 seconds for quick and efficient soldering.
Universal Tip Compatibility: Compatible with T12/TS100/TS101 tips, making the PTS200 adaptable to a wide range of soldering tasks.
Fast Charging Protocols: Supports PD3.0 and QC2.0/QC3.0, enabling power from fast charging adapters or power banks, ideal for soldering on the go.
Automatic Sleep Function: Extends the lifespan of the soldering tips. The superfast wake-up feature ensures the soldering iron is always ready when needed.
Ergonomic Design: Crafted with a CNC-machined metal body, the PTS200 offers both ergonomic comfort and reliable heat dissipation.
Specifications
Output Power
18-100 W
Input Voltage (adjustable)
• 9 V/2 A• 12 V/1.5 A• 15 V/3 A• 20 V/5 A
Temperature Range
50-450°C (122-842°F)
Heating Time
8 seconds
Temperature Stability
±2%
Microcontroller
ESP32-S2
Display
0.96" OLED (128 x 64 pixels)
Power Supply
USB-C
Special Features
• Automatic sleep• CNC metal shell• Compatible with T12/TS101/TS100/Pinecil soldering tips• 20 V/5 A (100 W maximum power)
Included
PTS200 Soldering Iron
Soldering tip BC2 (4 Ω)
Soldering tip K (4 Ω)
Soldering tip B2 (4 Ω)
Soldering tip I (4 Ω)
100 W power supply (EU)
USB-C cable
Software
Firmware
The Elektor Super Servo Tester can control servos and measure servo signals. It can test up to four servo channels at the same time.
The Super Servo Tester comes as a kit. All the parts required to assemble the Super Servo Tester are included in the kit. Assembling the kit requires basic soldering skills. The microcontroller is already programmed.
The Super Servo Tester features two operating modes: Control/Manual and Measure/Inputs.
In Control/Manual mode the Super Servo Tester generates control signals on its outputs for up to four servos or for the flight controller or ESC. The signals are controlled by the four potentiometers.
In Measure/Inputs the Super Servo Tester measures the servo signals connected to its inputs. These signals may come from for instance an ESC, a flight controller, or the receiver or another device. The signals are also routed to the outputs to control the servos or the flight controller or ESC. The results are shown on the display.
Specifications
Operating modes
Control/Manual & Measure/Inputs
Channels
3
Servo signal inputs
4
Servo signal outputs
4
Alarm
Buzzer & LED
Display
0.96' OLED (128 x 32 pixels)
Input voltage on K5
7-12 VDC
Input voltage on K1
5-7.5 VDC
Input current
30 mA (9 VDC on K5, nothing connected to K1 and K2)
Dimensions
113 x 66 x 25 mm
Weight
60 g
Included
Resistors (0.25 W)
R1, R3
1 kΩ, 5%
R2, R4, R5, R6, R7, R9, R10
10 kΩ, 5%
R8
22 Ω, 5%
P1, P2, P3, P4
10 kΩ, lin/B, vertical potentiometer
Capacitors
C1
100 µF 16 V
C2
10 µF 25 V
C3, C4, C7
100 nF
C5, C6
22 pF
Semiconductors
D1
1N5817
D2
LM385Z-2.5
D3
BZX79-C5V1
IC1
7805
IC2
ATmega328P-PU, programmed
LED1
LED, 3 mm, red
T1
2N7000
Miscellaneous
BUZ1
Piezo buzzer with oscillator
K1, K2
2-row, 12-way pinheader, 90°
K5
Barrel jack
K4
1-row, 4-way pin socket
K3
2-row, 6-way boxed pinheader
S1
Slide switch DPDT
S2
Slide switch SPDT
X1
Crystal, 16 MHz
28-way DIP socket for IC2
Elektor PCB
OLED display, 0.96', 128 x 32 pixels, 4-pin I²C interface
Links
Elektor Magazine
Elektor Labs
The Elektor Milliohmmeter Adapter uses the precision of a multimeter to measure very low resistance values. It is an adapter that converts a resistance into a voltage that can be measured with a standard multimeter.
The Elektor Milliohmmeter Adapter can measure resistances below 1 mΩ using a 4-wire (Kelvin) method. It is useful for locating short circuits on printed circuit boards (PCB).
The adapter features three measurement ranges – 1 mΩ, 10 mΩ, and 100 mΩ – selectable via a slide switch. It also includes onboard calibration resistors. The Elektor Milliohmmeter Adapter is powered by three 1.5 V AA batteries (not included).
Specifications
Measurement ranges
1 mΩ, 10 mΩ, 100 mΩ, 0.1%
Power supply
3x 1.5 V AA batteries (not included)
Dimensions
103 x 66 x 18 mm (compatible with Hammond 1593N-type enclosure, not included)
Special feature
On-board calibration resistors
Downloads
Documentation
The ZD-5L Hot Glue Gun is a versatile and easy-to-use tool designed for household, DIY, and professional use. It features a compact and lightweight design for comfortable handling, and its built-in stand ensures safe and stable operation.
Whether you're a DIY enthusiast or a professional, this Glue Gun is a perfect addition to your toolkit, an efficient and practical solution for bonding, repairing, and creating. It is ideal for various materials like glass, cardboard, metal, plastic, leather, fabric and more.
The ZD-5L uses 7.2 mm glue sticks. It is powered by an 18650 battery and charged via USB-C.
Specifications
Charging Voltage
5 V DC
Charging Current
Adaptive, 2 A (max)
Charging Interface
USB-C
Battery
18650 Lithium
Glue Stick
7.2 mm OD
Heat-up time
approx. 2 min.
Time of Use
approx. 60 min.
Sleep Time
5 min. without action
Included
1x ZD-5L Glue Gun
1x 18650 Lithium battery (2200 mAh)
2x Glue Sticks (10 cm)
1x USB cable
ESP32-S3-BOX-3 is based on Espressif’s ESP32-S3 Wi-Fi + Bluetooth 5 (LE) SoC, with AI acceleration capabilities. In addition to ESP32-S3’s 512 KB SRAM, ESP32-S3-BOX-3 comes with 16 MB of Quad flash and 16 MB of Octal PSRAM.
ESP32-S3-BOX-3 runs Espressif’s own speech-recognition framework, ESP-SR, which provides users with an offline AI voice-assistant. It features far-field voice interaction, continuous recognition, wake-up interruption, and the ability to recognize over 200 customizable command words. BOX-3 can also be transformed into an online AI chatbot using advanced AIGC development platforms, such as OpenAI.
Powered by the high-performance ESP32-S3 SoC, BOX-3 provides developers with an out-of-the-box solution to creating Edge AI and HMI applications. The advanced features and capabilities of BOX-3 make it an ideal choice for those in the IIoT industry who want to embrace Industry 4.0 and transform traditional factory-operating systems.
ESP32-S3-BOX-3 is the main unit powered by the ESP32-S3-WROOM-1 module, which offers 2.4 GHz Wi-Fi + Bluetooth 5 (LE) wireless capability as well as AI acceleration capabilities. On top of 512 KB SRAM provided by the ESP32-S3 SoC, the module comes with additional 16 MB Quad flash and 16 MB Octal PSRAM. The board is equipped a 2.4-inch 320 x 240 SPI touch screen (the ‘red circle’ supports touch), two digital microphones, a speaker, 3‑axis Gyroscope, 3‑axis Accelerometer, one Type-C port for power and download/debug, a high-density PCIe connector which allows for hardware extensibility, as well as three functional buttons.
Features
ESP32-S3
WiFi + Bluetooth 5 (LE)
Built-in 512 KB SRAM
ESP32-S3-WROOM-1
16 MB Quad flash
16 MB Octal PSRAM
Included
ESP32-S3-BOX-3 Unit
ESP32-S3-BOX-3 Sensor
ESP32-S3-BOX-3 Dock
ESP32-S3-BOX-3 Bracket
ESP32-S3-BOX-3 Bread
RGB LED module and Dupont wires
USB-C cable
Downloads
GitHub
Add super-fast storage to your Raspberry Pi 5 allowing for lightning fast boots, NAS use, and snappy applications!
NVMe Base is a PCIe extension board for Raspberry Pi 5. Simply populate it with the included 500 GB M-Key NVMe SSD (2230 to 2280 sizes supported) and mount it under your RPi for a compact and fast storage solution.
It's the perfect solution for turning your Raspberry Pi 5 into a file server, media centre, reverse proxy, etc.
Included
NVMe Base PCB with M.2 Slot (M-Key)
'PCIe Pipe' Flat Flex Cable
4x Rubber feet
M2 bolt and 2x nuts for SSD mounting
4x 7 mm M2.5 standoffs for base mounting
8x short M2.5 bolts for base mounting
4x long M2.5 bolts for 'pass-thru' mounting with a HAT
500 GB NVMe SSD
Downloads
Documentation