IoT & LoRa

1 product


  • RA-08H LoRaWAN Development Board with integrated RP2040 and 1.8" LCD (EU868)

    RA-08H LoRaWAN Development Board with integrated RP2040 and 1.8" LCD (EU868)

    Lora technology and Lora devices have been widely used in the field of the Internet of Things (IoT), and more and more people are joining and learning Lora development, making it an indispensable part of the IoT world. To help beginners learn and develop Lora technology better, a Lora development board has been designed specifically for beginners, which uses RP2040 as the main control and is equipped with the RA-08H module that supports Lora and LoRaWAN protocols to help users realize development. RP2040 is a dual-core, high-performance, and low-power ARM Cortex-M0+ architecture chip, suitable for IoT, robots, control, embedded systems, and other application fields. RA-08H is made from the Semtech-authorized ASR6601 RF chip, which supports the 868 MHz frequency band, has a 32 MHz MCU built-in, which has more powerful functions than ordinary RF modules, and also supports AT command control. This board retains various functional interfaces for development, such as the Crowtail interface, the common PIN to PIN header that leads out GPIO ports, and provides 3.3 V and 5 V outputs, suitable for the development and use of commonly used sensors and electronic modules on the market. In addition, the board also reserves RS485 interface, SPI, I²C, and UART interfaces, which can be compatible with more sensors/modules. In addition to the basic development interfaces, the board also integrates some commonly used functions, such as a buzzer, a custom button, red-yellow-green three-color indicator lights, and a 1.8-inch SPI interface LCD screen with a resolution of 128x160. Features Uses RP2040 as the main controller, with two 32-bit ARM Cortex M0+ processor cores (dual-core), and provides more powerful performance Integrates the RA-08H module with 32 MHz MCU, supports the 868 MHz frequency band and AT command control Abundant external interface resources, compatible with Crowtail series modules and other common interface modules on the market Integrates commonly used functions like buzzer, LED light, LCD display and custom button, making it more concise and convenient when creating projects Onboard 1.8-inch 128x160 SPI-TFT-LCD, ST7735S driver chip Compatible with Arduino/Micropython, easy to carry out different projects Specifications Main Chip Raspberry Pi RP2040, built-in 264 KB SRAM, onboard 4 MB Flash Processor Dual Core Arm Cortex-M0+ @ 133 MHz RA-08H Frequency band 803-930 MHz RA-08H Interface External antenna, SMA interface or IPEX first-generation interface LCD Display Onboard 1.8-inch 128x160SPI-TFT-LCD LCD Resolution 128x160 LCD Driver ST7735S (4-wire SPI) Development environment Arduino/MicroPython Interfaces 1x passive buzzer 4x user-defined buttons 6x programmable LEDs 1x RS485 communication interface 8x 5 V Crowtail interfaces (2x analog interfaces, 2x digital interfaces, 2x UART, 2x I²C) 12x 5 V universal pin header IO 14x 3.3 V universal pin header IO 1x 3.3 V/5 V switchable SPI 1x 3.3 V/5 V switchable UART 3x 3.3 V/5 V switchable I²C Working input voltage USB 5 V/1 A Operating temperature -10°C ~ 65°C Dimensions 102 x 76.5 mm (L x W) Included 1x Lora RA-08H Development Board 1x Lora Spring Antenna (868 MHz) 1x Lora Rubber Antenna (868 Mhz) Downloads Wiki

    € 32,95

    Members € 29,66

What is the Internet of Things (IoT)?

The Internet of Things, or IoT, is a system of interconnected computing devices, physical objects with sensors, processing power, software, and other technologies that have unique identifiers (UID). The IoT network deals with communication between machines, device identification, and communication. Therefore, choosing the best wireless network based on the IoT specifications is essential.

IoT devices can transfer data over a network without the need for human-to-human or human-to-computer interaction. As a result, users may experience difficulties with security, integration, process capability, scalability, and accessibility. Solving these problems requires a smart approach to IoT device management.

What are LoRa and LoRaWAN?

LoRa enables transmissions over very long distances (more than 10 km in rural areas) with low power consumption. It is a widely used technology for IoT networks worldwide. Thanks to LoRa technology, we can solve some of the world's biggest problems: energy management, natural resource reduction, environmental protection, infrastructure efficiency, disaster relief, and more.

However, the low bandwidth of LoRa cannot be used for just any application. Due to limitations in the frequency range it uses, the protocol is unable to transmit continuously.

LoRaWAN is a low-power, wide area networking protocol built on LoRa radio modulation technology. It connects devices wirelessly to the Internet and manages communications between end-node devices and network gateways. Thus, LoRaWAN defines the communication protocol and system architecture for the network, while the physical layer of LoRa enables the long-distance communication link, with the help of the gateway.

The gateway helps to realize transmission from an electrical device to the cloud, especially in environments where other types of networks are not usable due to technical limitations.

What can you do with LoRa technology? What does Elektor offer? What accessories are there?

LoRa is an excellent choice for indoor use in a broad spectrum of applications, including smart cities, buildings, agriculture, metering, healthcare, and logistics. It is safe, bidirectional, low-power, and has a long range.

Accessories help users optimize their IoT setups. Elektor offers a wide choice of components, including gateways, RFID readers, IoT shields, and different types of sensors (e.g. temperature, position, and humidity) to meet the diverse needs of a wide range of customers.

The future of LoRa

LoRa will help reduce the costs of creating IoT solutions and enable large-scale IoT applications. It is expected to play a key role as a communications network. For example, we expect it to be used for a wide range of applications, such as numerous smart lighting systems, hydropower usage tracking, and industrial data monitoring and analysis.

Login

Forgot password?

Don't have an account yet?
Create an account