The DiP-Pi Power Master is an Advanced Powering System with embedded sensors interfaces that cover most of possible needs for application based on Raspberry Pi Pico. It can supply the system with up to 1.5 A @ 4.8 V delivered from 6-18 VDC on various powering schemes like Cars, Industrial plant etc., additionally to original micro-USB of the Raspberry Pi Pico. It supports LiPo or Li-Ion Battery with Automatic Charger as also automatic switching from cable powering to battery powering or reverse (UPS functionality) when cable powering lost. Extended Powering Source (EPR) is protected with PPTC Resettable fuse, Reverse Polarity, as also ESD.
The DiP-Pi Power Master contains Raspberry Pi Pico embedded RESET button as also ON/OFF Slide Switch that is acting on all powering sources (USB, EPR or Battery). User can monitor (via Raspberry Pi Pico A/D pins) battery level and EPR Level with PICO’s A/D converters. Both A/D inputs are bridged with 0402 resistors (0 OHM) therefore if for any reason user needs to use those Pico pins for their own application can be easy removed. The charger is automatically charging connected battery (if used) but in addition user can switch charger ON/OFF if their application needs it. DiP-Pi Power Master can be used for cable powered systems, but also for pure Battery Powered System with ON/OFF. Each powering source status is indicated by separate informative LEDs (VBUS, VSYS, VEPR, CHGR, V3V3).
User can use any capacity of LiPo or Li-Ion type; however, must take care to use PCB protected batteries with max discharge current allowed of 2 A. The embedded battery charger is set to charge battery with 240 mA current. This current is set by resistor so if user need more/less can himself to change it.
In Addition to all above features DiP-Pi Power Master is equipped with embedded 1-wire and DHT11/22 sensors interfaces. Combination of the extended powering, battery, and sensors interfaces make the DiP-Pi Power Master ideal for applications like data logger, plants monitoring, refrigerators monitoring etc.
DiP-Pi Power Master is supported with plenty of ready to use examples written in Micro Python or C/C++.
Specifications
General
Dimensions 21 x 51 mm
Raspberry Pi Pico pinout compatible
Independent Informative LEDs (VBUS, VSYS, VEPR, CHGR, V3V3)
Raspberry Pi Pico RESET Button
ON/OFF Slide Switch acting on all powering sources (USB, EPR, Battery)
External Powering 6-18 V DC (Cars, Industrial Applications etc.)
External Power (6-18 VDC) Level Monitoring
Battery Level Monitoring
Inverse Polarity Protection
PPTC Fuse Protection
ESD Protection
Automatic Battery Charger (for PCB protected LiPo, Li-Ion – 2 A Max) Automatic/User Control
Automatic Switch from Cable Powering to Battery Powering and reverse (UPS Functionality)
Various powering schemes can be used at the same time with USB Powering, External Powering and Battery Powering
1.5 A @ 4.8 V Buck Converter on EPR
Embedded 3.3 V @ 600mA LDO
Embedded 1-wire Interface
Embedded DHT-11/22 Interface
Powering Options
Raspberry Pi Pico micro-USB (via VBUS)
External Powering 6-18 V (via dedicated Socket – 3.4/1.3 mm)
External Battery
Supported Battery Types
LiPo with protection PCB max current 2A
Li-Ion with protection PCB max current 2A
Embedded Peripherals and Interfaces
Embedded 1-wire interface
Embedded DHT-11/22 Interface
Programmer Interface
Standard Raspberry Pi Pico C/C++
Standard Raspberry Pi Pico Micro Python
Case Compatibility
DiP-Pi Plexi-Cut Case
System Monitoring
Battery Level via Raspberry Pi Pico ADC0 (GP26)
EPR Level via Raspberry Pi Pico ADC1 (GP27)
Informative LEDs
VB (VUSB)
VS (VSYS)
VE (VEPR)
CH (VCHR)
V3 (V3V3)
System Protection
Direct Raspberry Pi Pico Hardware Reset Button
ESD Protection on EPR
Reverse Polarity Protection on EPR
PPTC 500 mA @ 18 V fuse on EPR
EPR/LDO Over Temperature protection
EPR/LDO Over Current protection
System Design
Designed and Simulated with PDA Analyzer with one of the most advanced CAD/CAM Tools – Altium Designer
Industrial Originated
PCB Construction
2 ozcopper PCB manufactured for proper high current supply and cooling
6 mils track/6 mils gap technology 2 layers PCB
PCB Surface Finishing – Immersion Gold
Multi-layer Copper Thermal Pipes for increased System Thermal Response and better passive cooling
Downloads
Datasheet
Datasheet
Are you tired of all the different Arduino boards, and having to choose which features you need? Wouldn't it be much simpler to have all the best features on the same board and not have to compromise? That is precisely what the people at SparkFun thought and delivered the fantastic SparkFun RedBoard Programmed with Arduino. Features ATmega328 microcontroller with Optiboot (UNO) Bootloader Input voltage: 7-15 V 0-5 V outputs with 3.3 V compatible inputs 6 Analog Inputs 14 Digital I/O Pins (6 PWM outputs) ISP Header 16 MHz Clock Spee 32 k Flash Memory R3 Shield Compatible All SMD Construction USB Programming Facilitated by the Ubiquitous FTDI FT231X Red PCB The SparkFun RedBoard combines the stability of the FTDI, the simplicity of the Uno's Optiboot bootloader, and the R3 shield compatibility of the Uno R3. RedBoard has the hardware peripherals you are used to: 6 Analog Inputs 14 Digital I/O pins (6 PWM pins) SPI UART External interrupts Downloads Drivers GitHub
Features Pitch spacing is 2.54 mm (1 to 36 contacts per row) with vertical orientation Number of contacts: 40 Number of rows: 2 Gender: receptacle Contact termination type: Through hole Contact Plating: Tin plated contacts High operating temperature range of -55°C to 105°C for matte tin plated contacts Contact material is phosphor bronze Black glass filled polyester insulator material Tiger Buy contact system Complies with UL E111594 and CSA 090871_0_000 standards
Solder Paste Dispensing and Reflow All-in-One
The Voltera V-One creates two-layer prototype circuit boards on your desk. Gerber files go in, printed circuit boards come out. The dispenser lays down a silver-based conductive ink to print your circuit right before your eyes. Assembling traditional and additive boards is easy with the V-One’s solder paste dispensing and reflow features. Simply mount your board on the print bed and import your Gerber file into Voltera’s software.
No more stencils required
Voltera’s software is designed to be understood easily. From importing your Gerber files to the moment you press print, the software safely walks you through each step.
Compatible with EAGLE, Altium, KiCad, Mentor Graphics, Cadence, DipTrace, Upverter.
The V-One Desktop PCB Printer includes all accessories and consumables needed to get started:
Consumables
1 Conductor 2 cartridge
1 Solder Paste cartridge
10 2"x3" FR4 substrates
6 3"x4" FR4 substrates
10 2"x3" FR1 substrates
6 3"x4" FR1 substrates
25 Disposable 230 micron nozzles
1 Burnishing pad
1 Solder wire spool
1 Drill bit set
200 0.4 mm rivets
200 1.0 mm rivets
2 Rivet tools
1 Sacrificial layer
1 Hello World starter kit
1 Punk Console starter kit
Accessories
2 Substrate clamps and thumbscrews
2 Dispensers with caps
1 Probe
1 Drill
1 Set of safety glasses
1 Voltera anti-static tweezers
Downloads
Specifications
V-One Software
Manuals
Safety Datasheets
Technical Datasheets
Voltera CAM file for EAGLE
Substrates and Templates
More Info
Frequently Asked Questions
More from the Voltera community
Technical Specifications
Printing Specifications
Minimum trace width
0.2 mm
Minimum passive size
1005
Minimum pin-to-pin pitch (conductive ink)
0.8 mml
Minimum pin-to-pin pitch (solder paste)
0.5 mml
Resistivity
12 mΩ/sq @ 70 um height
Substrate material
FR4
Maximum board thickness
3 mm
Soldering Specifications
Solder paste alloy
Sn42/Bi57.6/Ag0.4
Solder wire alloy
SnBiAg1
Soldering iron temperature
180-210°C
Print Bed
Print area
135 x 113.5 mm
Max. heated bed temperature
240°C
Heated bed ramp rate
~2°C/s
Footprint
Dimensions
390 x 257 x 207 mm (L x W x H)
Weight
7 kg
Computing Requirements
Compatible operating systems
Windows 7 or higher, MacOS 10.11 or higher
Compatible file format
Gerber
Connection type
Wired USB
Certification
EN 61326-1:2013
EMC requirements
IEC 61010-1
Safety requirements
CE Marking
Affixed to the Voltera V-One printers delivered to European customers
Designed and assembled in Canada.
More technical information
Quickstart
Explore Flexible Printed Electronics on the V-One
Voltera V-One Capabilities Reel
Voltera V-One PCB Printer Walkthrough
Unpacking the V-One
V-One: Solder Paste Dispensing and Reflow All-in-One
Voltera @ Stanford University's Bao Research Group: Robotic Skin and Stretchable Sensors
Voltera @ Princeton: The Future of Aerospace Innovation
The Mr. Pulsar Violent Turbo Fan X3 Pro delivers powerful airflow with its impressive 140,000 RPM motor, offering exceptional performance in a compact, portable design.
Featuring an 8,000 mAh battery for extended wireless operation, adjustable airflow speeds, and weighing just 277 grams, it's perfect for quick tasks like computer cleaning, drying pets, inflating air mattresses, removing dust, or even blowing snow from your car.
Specifications
Motor speed
140,000 RPM
Battery
8,000 mAh Lithium battery
Dimensions
160 x 60 x 90 mm
Weight
277 g
Included
1x Mr. Pulsar Violent Turbo Fan X3 Pro
1x Short nozzle
1x Storage bag
1x USB-C cable
Elektor GREEN and GOLD members can download their digital edition here.
Not a member yet? Click here.
The RISC-V Open-Source Processor Architecture16 Boards and MCUs You Should Know
An FPGA-Based Audio Player with Equalizer (1)Mixing Digital Audio with an Arduino MKR Vidor 4000
Laser Head for Pico-Based Sand ClockDrawing with Light
Enter the STM32 Edge AI Contest
A Multi-Sensor Environmental Monitoring System for PlantsWireless Measurement of Water Supply and Light Conditions
Maixduino AI-Powered Automatic DoormanFace Detection with a Camera
Embedded Electronics 2024AI Is Set to Redefine the Industry
Charge-Based In-Memory Compute at EnCharge AI
AI Inferencing at 10 Times Lower Power and 20 Fold Lower Cost
Click Board Helps Develop and Train ML Models for Vibration Analysis
The Elektor Mini-WheelieA Self-Balancing Robot Kit
MCU, I See YouMCUViewer Open-Source Multiplatform Debugging Tool
USB 2.0 IsolatorElectrically Isolated Connections for USB Devices
Intervention Before DamagePredictive Maintenance in Practice
SPoE – Electromagnetic CompatibilitySingle-Pair with Power-Over-Ethernet Through the Eyes of EMC
Color TV: A Wonder of Its TimeCreating a New World
ECG Graph MonitoringAn Implementation with Hexabitz Modules and an STM32CubeMonitor
The Battle for AI at the Edge
HaLow Hits Record 16-km Wi-Fi Distance at 900 MHz
First CHERI RISC-V Embedded Chip and Early Access Programme
Third-Generation Wildfire Detection Uses Satellite Links
From Life’s ExperienceChoice Overload
Starting Out in Electronics……Continues Filtering and Controls Tone
Quasi-Analog ClockworkA Remake of an Elektor Classic
A Modular Approach to Sensor TestingThe ESP32-S3-Based Sensor Evaluation Board
2025: An AI OdysseyThe Rise of Foundation Models and Their Role in Democratizing AI
Raspberry Pi Standalone MIDI Synthesizer (1)Preparing a Platform for Some Edge AI Experiments
Err-lectronicsCorrections, Updates, and Readers’ Letters
Universal AI RISC-V Processor Does It All — CPU, GPU, DSP, FPGA
CEO Interview: Ventiva’s Thin and Cool Tech
Dual-Core Programming with a Raspberry Pi PicoVenture Into the World of Parallel Programming
The T-Deck is a pocket-sized gadget featuring a 2.8-inch IPS LCD display (320 x 240), a mini keyboard, and an ESP32 dual-core processor. While it’s not quite a smartphone, it offers plenty of potential for tech enthusiasts. With some programming know-how, you can transform it into a standalone messaging device or a portable coding platform.
Specifications
Microcontroller
ESP32-S3FN16R8 Dual-core LX7 microprocessor
Wireless Connectivity
2.4 GHz Wi-Fi & Bluetooth 5 (LE)
Development
Arduino, PlatformlO, MicroPython
Flash
16 MB
PSRAM
8 MB
Battery ADC Pin
IO04
Onboard functions
Trackball, Microphone, Speaker
Display
2.8" ST7789 SPI Interface IPS
Resolution
320 x 240 (Full viewing angle)
Transmit power
+22 dBm
SX1262 LoRa Transceiver (Frequency)
868 Mhz
Dimensions
100 x 68 x 11 mm
Included
1x T-Deck ESP32-S3 LoRa
1x FPC antenna (868 MHz)
1x Male pin (6-pin)
1x Power cable
Downloads
GitHub
The MicroMod DIY Carrier Kit includes five M.2 connectors (4.2mm height), screws, and standoffs so that you can get all the special parts you may need to make your own carrier board. MicroMod uses the standard M.2 connector. This is the same connector found on modern motherboards and laptops. There are various locations for the plastic ‘key’ on the M.2 connector to prevent a user from inserting an incompatible device. The MicroMod standard uses the ‘E’ key and further modifies the M.2 standard by moving the mounting screw 4mm to the side. The ‘E’ key is fairly common so a user could insert an M.2 compatible Wifi module. Still, because the screw mount doesn’t align, the user would not secure an incompatible device into a MicroMod carrier board. Features 5x Machine Screws Phillips Head #0 (but #00 to #1 works) Thread: M2.5 Length: 3 mm 5x SMD Reflow Compatible Standoffs Thread: M2.5 x 0.4 Height: 2.5 mm 5x M.2 MicroMod Connectors Key: E Height: 4.2 mm Pin count: 67 Pitch: 0.5 mm
The iCEBreaker FPGA board is an open-source educational FPGA development board.
The iCEBreaker is great for classes and workshops teaching the use of the open source FPGA design flow through Yosys, nextpnr, IceStorm, Icarus Verilog, Amaranth HDL and others. This means the board is low cost and has a nice set of features to allow for the design of interesting classes and workshop exercises. At the same time it allows the user to use the proprietary vendor tools if they choose to.
After the workshop the boards can be easily used as a development board as most GPIO are exposed, broken out and configurable through jumpers on the back of the board. There is only a minimal amount of buttons and LED that can't be disconnected and used for your own purposes.
Documentation
Workshop
Onboard each moto:bit are multiple I/O pins, as well as a vertical Qwiic connector, capable of hooking up servos, sensors and other circuits. At the flip of the switch, you can get your micro:bit moving! The moto:bit connects to the micro:bit via an updated SMD, edge connector at the top of the board, making setup easy. This creates a handy way to swap out micro:bits for programming while still providing reliable connections to all of the different pins on the micro:bit. We have also included a basic barrel jack on the moto:bit that is capable of providing power to anything you connect to the carrier board. Features More reliable Edge connector for easy use with the micro:bit Full H-Bridge for control of two motors Control servo motors Vertical Qwiic Connector I²C port for extending functionality Power and battery management onboard for the micro:bit
The SparkFun Thing Plus Matter is the first easily accessible board of its kind that combines Matter and SparkFun’s Qwiic ecosystem for agile development and prototyping of Matter-based IoT devices. The MGM240P wireless module from Silicon Labs provides secure connectivity for both 802.15.4 with Mesh communication (Thread) and Bluetooth Low Energy 5.3 protocols. The module comes ready for integration into Silicon Labs' Matter IoT protocol for home automation.
What is Matter? Simply put, Matter allows for consistent operation between smart home devices and IoT platforms without an Internet connection, even from different providers. In doing so, Matter is able to communicate between major IoT ecosystems in order to create a single wireless protocol that is easy, reliable, and secure to use.
The Thing Plus Matter (MGM240P) includes Qwiic and LiPo battery connectors, and multiple GPIO pins capable of complete multiplexing through software. The board also features the MCP73831 single-cell LiPo charger as well as the MAX17048 fuel gauge to charge and monitor a connected battery. Lastly, a µSD card slot for any external memory needs is integrated.
The MGM240P wireless module is built around the EFR32MG24 Wireless SoC with a 32-bit ARM Cortext-M33 core processor running at 39 MHz with 1536 kb Flash memory and 256 kb RAM. The MGM240P works with common 802.15.4 wireless protocols (Matter, ZigBee, and OpenThread) as well as Bluetooth Low Energy 5.3. The MGM240P supports Silicon Labs' Secure Vault for Thread applications.
Specifications
MGM240P Wireless Module
Built around the EFR32MG24 Wireless SoC
32-bit ARM-M33 Core Processor (@ 39 MHz)
1536 kB Flash Memory
256 kB RAM
Supports Multiple 802.15.4 Wireless Protocols (ZigBee and OpenThread)
Bluetooth Low Energy 5.3
Matter-ready
Secure Vault Support
Built-in Antenna
Thing Plus Form-Factor (Feather-compatible):
Dimensions: 5.8 x 2.3 cm (2.30 x 0.9')
2 Mounting Holes:
4-40 screw compatible
21 GPIO PTH Breakouts
All pins have complete multiplexing capability through software
SPI, I²C and UART interfaces mapped by default to labeled pins
13 GPIO (6 labeled as Analog, 7 labeled for GPIO)
All function as either GPIO or Analog
Built-in-Digital to Analog Converter (DAC)
USB-C Connector
2-Pin JST LiPo Battery Connector for a LiPo Battery (not included)
4-Pin JST Qwiic Connector
MC73831 Single-Cell LiPo Charger
Configurable charge rate (500 mA Default, 100 mA Alternate)
MAX17048 Single-Cell LiPo Fuel Gauge
µSD Card Slot
Low Power Consumption (15 µA when MGM240P is in Low Power Mode)
LEDs:
PWR – Red Power LED
CHG – Yellow battery charging status LED
STAT – Blue status LED
Reset Button:
Physical push-button
Reset signal can be tied to A0 to enable use as a peripheral device
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Datasheet (MGM240P)
Fritzing Part
Thing+ Comparison Guide
Qwiic Info Page
GitHub Hardware Repo
This kit is based on ESP32 and LoRa. The ESP32 3.5" display is the console for the system, it receives the LoRa message from LoRa moisture sensors (support up to 8 sensors in the default firmware), and send control commands to LoRa 4-channel MOSFET (2 4-channel MOSFET supported, with totally 8 channels), to control the connected valves open/close, and thus to control the irrigation for multiple points.
Features
Ready to use: Firmware are pre-programmed for all the modules before shipping, the user can only power them up and set the ID to the console, and start to use. Suitable for none-programmers, in 3 minutes to create filed application.
With Lora wireless connection: The monitor & control range can be up to few kilometer, suitable for garden/small farm.
Soil moisture sensor with good corrosion resistance, can be used at least half an year with 2 AAA battery.
Easy to install: Compares to cheap solution with wires, which is hard to implement in files application, there the connection wires do not needed, the whole installation clean and easy; The valves can be connected Lora MOSFET easily.
Hardware & Software Open: To study Lora & FreeRTOS. The ESP32 display console/Lora Soil Moisture Sensor/LoRa MOSFE are all programmed with Arduino. For programmers/engineers, can development further more specialized application.
Based on ESP32, with WiFi connection, the console can also access to internet, the create much more applications including the moisture data updating to internet for remote monitor, and remote control with MQTT.
Included
1x ESP32 3.5' Display (without camera)
1x Lora Expansion for ESP32 Display
2x Lora Moisture Sensor
1x Lora 4-channel MOSFET
1x 12 V Power Supply
Water Pipe (5 m)
1x 1-input & 4-output Pipe Joint
Downloads
Instructable: Soil Monitoring & Irrigation with LoRa
GitHub
This kit contains everything needed to start learning about connecting electronics to the micro:bit in an accessible and easy manner. Everything is connected using the supplied alligator clips, so no soldering required.
Included
MonkMakes Speaker for micro:bit
MonkMakes Switch for micro:bit
MonkMakes Sensor Board for micro:bit
Set of alligator clip leads (10 leads)
Small motor with fan
Single AA battery box (battery not included)
Light bulb and holder
Booklet (A5)
Downloads
Instructions
Datasheet
Lesson Plans
Features Plug & Play (No driver required), compatible with Windows 10/8/7, Mac, Linux and Android that support OTG. Voice Pick-up device, Far-field voice pick-up up to 5m and supports 360° pick-up pattern Acoustic algorithms implemented: DOA(Direction of Arrival), AEC(Automatic Echo Cancellation), AGC(Automatic Gain Control), NS(Noise Suppression) Built-in audio jack, which allows for plugging in headphones or speakers (speaker not included) Applications Voice pick-up device Home/Office automation device In-car voice assistant Healthcare device Voice interaction robot Other applications Technical Specifications XVF-3000 from XMOS 4 High-Performance Digital Microphones Supports Far-field Voice Capture Speech Algorithms On-Chip 12 Programmable RGB LED Indicators Microphones: MEMS MSM261D4030H1CPM Sensitivity: -26 dBFS (Omnidirectional) Acoustic Overload Point: 120 dB SPL SNR: 63 dB Power Supply: 5V DC from Micro USB or Expansion Header Dimensions: 77mm (Diameter) 3.5mm Audio Jack Output Socket
Want to make a UV detector to know the UV index when you are under the sun? Grove Sunlight Sensor is a multi-channel digital light sensor, which has the ability to detect UV-light, visible light and infrared light. This device is based on SI1151, a new sensor from SiLabs. The Si1151 is a low-power, reflectance-based, infrared proximity, UV index and ambient light sensor with I²C digital interface and programmable-event interrupt output. This device offers excellent performance under a wide dynamic range and a variety of light sources including direct sunlight. Grove Sunlight Sensor includes an on-board Grove connector, which helps you to connect it to your Arduino easily. You can use this device for making some projects which need to detect the light, such as a simple UV detector for your Raspberry Pi weather station, or a smart irrigation system using Arduino if you need to monitor the visible spectrum. Features Multi-channel digital light sensor: can detect UV-light, visible light and infrared light Wide spectrum detection range: 280-950 nm Easy to use: I²C Interface (7-bit), compatible with Grove port, just plug-and-play Programmable configuration: Versatile for various applications 3.3/5 V Supply, suitable for many microcontrollers and SBCs Applications Light detection
Smart irrigation system DIY weather station Included 1x Grove Sunlight Sensor 1x Grove Cable Downloads Schematic in PDF Schematic in Eagle File Si1145 Datasheet GitHub Repositoriy for Grove Sunlight Sensor Spectrum Lumen (unit) Ultraviolet index
Grove is an open-source, modulated, and ready-to-use toolset and takes a building block approach to assemble electronics. This Kit includes a Base Shield to which the various Grove modules can be connected both individually, or together in various combinations to create fun and exciting projects. All of the modules use a Grove connector, which connects each of the components to a Base Shield in just a few seconds. The Base Shield can then be mounted onto an Arduino UNO board and can be programmed using the Arduino IDE. Instructions for connecting and programming the different modules are also included in this kit. This kit was elaborated in collaboration with Seeed Studio and provides the Arduino community with the opportunity to build projects with minimal effort of both wiring and coding. This kit acts as a bridge to the world of Grove and provides a flexible way for Makers to extend their projects to include other complex Grove modules. The Kit comes includes access to an online platform with all the instructions required to plug, sketch and play with the different Grove Modules. Please note: This kit does not include the Arduino Uno board. Included 1 Base Shield that is designed to fit on top of an Arduino UNO board. It comes equipped with 16 grove connectors, which, when placed on top of the UNO, provides the functionality to various pins. It includes: 7x digital connections 4x analog connections 4x I²C connections 1x UART connection 10 Grove modules included can be connected to the base shield, either through the digital, analog, or I2C connectors on the shield. Let's take a quick look at them: The LED - a simple LED that can be turned ON or OFF, or dimmed. The button - pushbutton can either be in a HIGH or LOW state. The potentiometer - a variable resistor that increases or decreases resistance when turning its knob. The buzzer - a piezo speaker that is used to produce binary sounds. The light sensor - a photoresistor that reads light intensity. The sound sensor - a tiny microphone that measures sound vibrations. The air pressure sensor - reads air pressure, using the I²C protocol. The temperature sensor - reads temperature and humidity at the same time. The accelerometer - a sensor used for orientation, used for detecting movement. The OLED screen - a screen that values or messages can be printed to. 6 Grove cables allow you to easily connect the modules to the Base Shield without any soldering required. The Arduino Sensor Kit Library is a wrapper that contains links to other libraries related to certain modules such as the accelerometer, air pressure sensor, temperature sensor, and OLED display. This library provides easy-to-use APIs that will help you build a clear mental model of the concepts you will be using.
Quickly and easily get started with learning electronics using the Arduino Uno Starter Kit, which have a universal appeal to fans at home, businesses, and schools alike.
No prior experience is required, as the kits introduce both coding and electronics through fun, engaging, and hands-on projects. You can use the starter kit to teach students about current, voltage, and digital logic as well as the fundamentals of programming.
There’s an introduction to sensors and actuators and how to understand both digital and analog signals. Within all this, you’ll be teaching students how to think critically, learn collaboratively, and solve problems.
Projects Book
GET TO KNOW YOUR TOOLS an introduction to the basics
SPACESHIP INTERFACE design the control panel for your starship
LOVE-O-METER measure how hot-blooded you are
COLOR MIXING LAMP produce any colour with a lamp that uses light as an input
MOOD CUE clue people into how you're doing
LIGHT THEREMIN create a musical instrument you play by waving your hands
KEYBOARD INSTRUMENT play music and make some noise with this keyboard
DIGITAL HOURGLASS a light-up hourglass that can stop you from working too much
MOTORIZED PINWHEEL a coloured wheel that will make your head spin
ZOETROPE create a mechanical animation you can play forward or reverse
CRYSTAL BALL a mystical tour to answer all your tough questions
KNOCK LOCK tap out the secret code to open the door
TOUCHY-FEEL LAMP a lamp that responds to your touch
TWEAK THE ARDUINO LOGO control your personal computer from your Arduino
HACKING BUTTONS create a master control for all your devices!
Included
1x Projects Book (170 pages)
1x Arduino Uno
1x USB cable
1x Breadboard 400 points
70x Solid core jumper wires
1x Easy-to-assemble wooden base
1x 9 V battery snap
1x Stranded jumper wires (black)
1x Stranded jumper wires (red)
6x Phototransistor
3x Potentiometer 10 kΩ
10x Pushbuttons
1x Temperature sensor [TMP36]
1x Tilt sensor
1x alphanumeric LCD (16x2 characters)
1x LED (bright white)
1x LED (RGB)
8x LEDs (red)
8x LEDs (green)
8x LEDs (yellow)
3x LEDs (blue)
1x Small DC motor 6/9 V
1x Small servo motor
1x Piezo capsule
1x H-bridge motor driver
1x Optocouplers
2x Mosfet transistors
3x Capacitors 100 uF
5x Diodes
3x Transparent gels
1x Male pins strip (40x1)
20x Resistors 220 Ω
5x Resistors 560 Ω
5x Resistors 1 kΩ
5x Resistors 4.7 kΩ
20x Resistors 10 kΩ
5x Resistors 1 MΩ
5x Resistors 10 MΩ
Take control of your smart environment with the compact and powerful 4-inch ESP32-S3 IPS Touchscreen Control Panel. Designed for high performance and versatility, this sleek 86-box format panel integrates advanced connectivity, intuitive touch control, and real-time environmental sensing.
Features
Powerful Core Module WT32-S3-WROVER-N16R8
4-inch IPS full-screen display
Resolution: 480 x 480 pixels (RGB565 format)
Screen Driver IC: GC9503V
Touch Controller IC: FT6336U
Equipped with an SHT20 Temperature and Humidity Sensor for real-time monitoring of environmental conditions.
RS485 Interface using an automatic transceiver circuit
Built-in WiFi and Bluetooth
Applications
Smart Home Control Panels
Industrial Automation Interfaces
Environmental Monitoring Systems
IoT Projects and Custom Smart Solutions
Elektor GREEN en GOLD leden kunnen deze uitgave hier downloaden.Nog geen lid? Klik hier om een lidmaatschap af te sluiten.
Mini-zonnevoedingzon in, 3,3 V uit
Solid-state stereo-audioschakelaarklikvrij en zonder bewegende onderdelen
Grote RGB-digitmet through-hole WS2812 LED’s
Microfoon-voorversterker met 48V-fantoomvoedingvoor podcasting en pro-audio
Blokgolfgeneratoren met regelbare duty cycle en frequentiesimpele schakelingen met CMOS- en TTL-IC’s
Eenvoudige dynamiekcompressorsofte aansturing, warm geluid
Simpel elektronisch slot
Actieve gelijkrichtervoor 2...40 V bij maximaal 3 A met tegenstroomonderdrukking
Actieve boxen in- en uitschakelen
Ongebalanceerd/gebalanceerd-convertermet RF-filter en DC-bescherming
2023: een AI-odysseewaar komt het vandaan en waar gaat het naar toe?
Snelheidsregelaar voor ventilatormet handmatige en thermostaatmodus
Laatste nieuwtjes van Arduino Project Hubnieuwe projecten uit de community
Overbelastingsmonitorbewaakt netsnoeren
Transistorloos knipperlicht in het donkeroscillator met alleen tweedraads onderdelen
Morsecode-generatorvoor gebruik als baken of leermiddel!
Programmeerbare video-DACvoor elk formaat tot RGB888
Kleintje klavierzonder bewegende onderdelen
Dubbel-dobbel zonder microprocessordubbele dobbelsteen op een enkele print – plus enkele ontwerptrucs
Elektronische vogelverschrikker
Amusante, inspirerende en verbazingwekkende schakelingen
LC/LP/HA-thermometernauwkeurige metingen en een binair display
THD-generatorvervorming, maar dan opzettelijk
Overtemperatuur-indicator met thyristorelektronische onderdelen ongebruikelijk gebruikt
Een PTC-flipflop
Sociale vogeleen tsjilpende Elektor Klassieker
Neonlamp plus microcontroller
Temperatuurgestabiliseerde IC-stroombronneutraliseer de temperatuurdrift van deze driebeners
Regelbare tweede-orde hogetonen-boostergehoorsteuntje voor ouderen
Edwin komt naar huisherinneringen na 53 jaar
Eénarmige bandieteen eenvoudige, leuke, nostalgische en leerzame Elektor-klassieker!
Eenvoudige digitaal gestuurde variabele weerstand
Lekdetectorbeveiligt en alarmeert bij lekkages
Eco-timer met automatische uitschakelingverbruikt niets in uitgeschakelde toestand!
ChatGPT en Arduino
Zenermetermeet de Z-spanning van Z-diodes ≤ 100 V
Servotester
ESP32 Windows-controller met gratis software
Analoge en mixed-signal IC’s van Microchipzuinige signaalverwerking
Interfacenormenfilter en overspanningsbeveiliging voor de I²C-bus
Li-Ion accumonitorrestlading-indicator geeft visuele feedback
PS/2-muis als draai-encoder (en meer...)
Simpele schemerschakelaarvoor bestaande lampen of installaties
Controller voor waterpompbereid je voor op hoogwater
Kerstbal met FM-zonneradiomeer heb je voor de kerst niet nodig
Trillingssensor met relaistik of schud om in te schakelen
Doorgangstestergevoelig en niet storend
In- en uitschakelen met een drukknop
Regeling voor mini-boor (2023)een ontwerp uit 1980 herzien
Digitale trillingssensorzet trillingen om in nauwkeurig getimede pulsen
Ompoolbeveiliging met kleine spanningsval
Goedkope frequentiestandaard
Kleine DCF77-simulatornauwkeurige fake-tijdstandaard
De Lilygo T-PicoC3combineert RP2040 en ESP32-C3 met een full-color TFT-display
Hexadoku
The Raspberry Pi AI HAT+ is an expansion board designed for the Raspberry Pi 5, featuring an integrated Hailo AI accelerator. This add-on offers a cost-effective, efficient, and accessible approach to incorporating high-performance AI capabilities, with applications spanning process control, security, home automation, and robotics.
Available in models offering 13 or 26 tera-operations per second (TOPS), the AI HAT+ is based on the Hailo-8L and Hailo-8 neural network accelerators. This 13 TOPS model efficiently supports neural networks for tasks like object detection, semantic and instance segmentation, pose estimation, and more. The 26 TOPS variant accommodates larger networks, enables faster processing, and is optimized for running multiple networks simultaneously.
The AI HAT+ connects via the Raspberry Pi 5’s PCIe Gen3 interface. When the Raspberry Pi 5 is running a current version of the Raspberry Pi OS, it automatically detects the onboard Hailo accelerator, making the neural processing unit (NPU) available for AI tasks. Additionally, the rpicam-apps camera applications included in Raspberry Pi OS seamlessly support the AI module, automatically using the NPU for compatible post-processing functions.
Included
Raspberry Pi AI HAT+ (13 TOPS)
Mounting hardware kit (spacers, screws)
16 mm GPIO stacking header
Downloads
Datasheet
This programmer is specifically designed for burning bootloaders (without a computer) on Arduino-compatible ATmega328 development boards.
Simply plug the programmer into the ICSP interface to re-burn the bootloader. It’s also compatible with new chips, provided the IC is functional.
Note: Burning a bootloader erases all previous chip data.
Features
Working voltage: 3.1-5.3 V
Working current: 10 mA
Compatible with Arduino Nano based boards (ATmega328)
Dimensions: 39.6 x 15.5 x 7.8 mm
The Cytron Motion 2350 Pro is a robust 4-channel DC motor driver (3 A per channel, 3.6-16 V) ideal for building powerful robots, including mecanum wheel designs. It features 8-channel 5 V servo ports, 8-channel GPIO breakouts, 3 Maker Ports, and a USB host for plug-and-play joystick/gamepad support.
Powered by Raspberry Pi Pico 2, it integrates seamlessly with the Pico ecosystem, supporting Python (MicroPython, CircuitPython), C/C++, and Arduino IDE. Pre-installed with CircuitPython, it comes with a demo program and quick test buttons for immediate use. Simply connect via USB-C, and start exploring!
Included
1x Cytron Motion 2350 Pro Robotics Controller
1x STEMMA QT/Qwiic JST SH 4-pin Cable with Female Sockets (150 mm)
2x Grove to JST-SH Cable (200 mm)
1x Set of Silicone Bumper
4x Building Block Friction Pin
1x Mini Screwdriver