The Raspberry Pi USB-C power supply is designed specifically to power the latest Raspberry Pi 4 Model B computers.
The power supply features a USB-C cable and is available in four different models to suit different international power sockets, and in two colors.
Specifications
Output
Output voltage
+5.1 V DC
Minimum load current
0 A
Nominal load current
3.0 A
Maximum power
15.3 W
Load regulation
±5 %
Line regulation
±2 %
Ripple & noise
120 mVp-p
Rise time
100 ms maximum to regulation limits for DC outputs
Turn-on delay
3000 ms maximum at nominal input AC voltage and full load
Protection
Short circuit protectionOvercurrent protectionOver temperature protection
Efficiency
81% minimum (output current from 100%, 75%, 50%, 25%)72% minimum at 10% load
Output cable
1.5 m 18AWG
Output connector
USB Type-C
Input
Voltage range
100-240 VAC (rated)96-264 VAC (operating)
Frequency
50/60 Hz ±3 Hz
Current
0.5 A maximum
Power consumption (no load)
0.075 W maximum
Inrush current
No damage shall occur, and the input fuse shall not blow
Operating ambient temperature
0-40°C
If you are looking for an easy way to get started with soldering or simply want to make a small portable gadget, this set is a great opportunity. "LED cube" is an educational set for learning the soldering skill, with which you get a small electronic game at the end. After you turn on and shake this board, certain leds will light up randomly and symbolize the number, as if a real die had been thrown.
It is based on the Attiny404 microcontroller, programmed in Arduino, and there is a battery on the back which makes this gadget portable. There is also a keychain so you can always carry your new game with you! Soldering is easy according to the markings on the board.
Included
1x PCB
1x ATtiny404 microcontroller
7x LEDs
7x Resistors (330 ohm)
1x Resistor (10 kohm)
1x Battery holder
1x CR2032 battery
1x Switch
1x Vibration sensor SW-18020P
1x Keychain ring
Pico Cube is a 4x4x4 LED cube HAT for Raspberry Pi Pico with 5 VDC operating voltage. Pico cube, a monochromatic Red with 64 LEDs, is a fun way to learn programming. It is designed to perform incandescent operations with low energy consumptions, robust outlook, and easy installation that make people/kids/users learn the effects of LED lights with a different pattern of colors via the combination of software and hardware i.e. Raspberry Pi Pico.
Features
Standard 40 Pins Raspberry Pi Pico Header
GPIO Based Communication
64 High-Intensity Monochromatic LEDs
Individual LED access
Each Layer Access
Specifications
Operating Voltage: 5 V
Color: Red
Communication: GPIO
LEDs: 64
Included
1x Pico Cube Base PCB
4x Layer PCB
8x Pillar PCB
2x Male Berg (1 x 20)
2x Female Berg (1 x 20)
70 LEDs
Note: Raspberry Pi Pico is not included.
Downloads
GitHub
Wiki
The Challenger RP2040 NFC is a small embedded computer, equipped with an advanced on-board NFC controller (NXP PN7150), in the popular Adafruit Feather form factor. It is based on an RP2040 microcontroller chip from the Raspberry Pi Foundation which is a dual-core Cortex-M0 that can run on a clock up to 133 MHz.
NFC
The PN7150 is a full featured NFC controller solution with integrated firmware and NCI interface designed for contactless communication at 13.56 MHz. It is fully compatible with NFC forum requirements and is greatly designed based on learnings from previous NXP NFC device generation. It is the ideal solution for rapidly integrating NFC technology in any application, especially small embedded systems reducing Bill of Material (BOM).
The integrated design with full NFC forum compliancy gives the user all the following features:
Embedded NFC firmware providing all NFC protocols as pre-integrated feature.
Direct connection to the main host or microcontroller, by I²C-bus physical and NCI protocol.
Ultra-low power consumption in polling loop mode.
Highly efficient integrated power management unit (PMU) allowing direct supply from a battery.
Specifications
Microcontroller
RP2040 from Raspberry Pi (133 MHz dual-core Cortex-M0)
SPI
One SPI channels configured
I²C
Two I²C channel configured (dedicated I²C for the PN7150)
UART
One UART channel configured
Analog inputs
4 analog input channels
NFC module
PN7150 from NXP
Flash memory
8 MB, 133 MHz
SRAM memory
264 KB (divided into 6 banks)
USB 2.0 controller
Up to 12 MBit/s full speed (integrated USB 1.1 PHY)
JST Battery connector
2.0 mm pitch
On board LiPo charger
450 mA standard charge current
Dimensions
51 x 23 x 3,2 mm
Weight
9 g
Note: Antenna is not included.
Downloads
Datasheet
Quick start example
The DiP-Pi WiFi Master is an Advanced WiFi connectivity System with sensors embedded interfaces that cover most of possible needs for IoT application based on Raspberry Pi Pico. It is powered directly from the Raspberry Pi Pico VBUS. The DiP-Pi WiFi Master contains Raspberry Pi Pico embedded RESET button as also ON/OFF Slide Switch that is acting on Raspberry Pi Pico Power Sources.
The DiP-Pi WiFi Master is equipped with WiFi ESP8266 Clone module with embedded antenna. This feature open a wide range of IoT applications based on it.
In Addition to all above features DiP-Pi WiFi Master is equipped with embedded 1-wire, DHT11/22 sensors, and micro–SD Card interfaces. Combination of the extended powering, battery, and sensors interfaces make the DiP-Pi WiFi Master ideal for IoT applications like data logger, plants monitoring, refrigerators monitoring etc.
DiP-Pi WiFi Master is supported with plenty of ready to use examples written in Micro Python or C/C++.
Specifications
General
Dimensions 21 x 51 mm
Raspberry Pi Pico pinout compatible
Independent Informative LEDs (VBUS, VSYS, V3V3)
Raspberry Pi Pico RESET Button
ON/OFF Slide Switch acting on Raspberry Pi Pico Powering Source
Embedded 3.3 V @ 600 mA LDO
ESP8266 Clone WiFi Connectivity
ESP8266 Firmware Upload Switch
Embedded 1-wire Interface
Embedded DHT-11/22 Interface
Powering Options
Raspberry Pi Pico micro-USB (via VBUS)
Embedded Peripherals and Interfaces
Embedded 1-wire interface
Embedded DHT-11/22 Interface
Micro SD Card Socket
Programmer Interface
Standard Raspberry Pi Pico C/C++
Standard Raspberry Pi Pico Micro Python
Case Compatibility
DiP-Pi Plexi-Cut Case
Informative LEDs
VB (VUSB)
VS (VSYS)
V3 (V3V3)
System Protection
Direct Raspberry Pi Pico Hardware Reset Button
PPTC 500 mA @ 18 V fuse on EPR
EPR/LDO Over Temperature protection
EPR/LDO Over Current protection
System Design
Designed and Simulated with PDA Analyzer with one of the most advanced CAD/CAM Tools – Altium Designer
Industrial Originated
PCB Construction
2 ozcopper PCB manufactured for proper high current supply and cooling
6 mils track/6 mils gap technology 2 layers PCB
PCB Surface Finishing – Immersion Gold
Multi-layer Copper Thermal Pipes for increased System Thermal Response and better passive cooling
Downloads
Datasheet
Manual
The board's main processor is a low-power ARM Cortex-M0 32-bit SAMD21, like in the other boards within the Arduino MKR family. The WiFi and Bluetooth connectivity is performed with a module from u-blox, the NINA-W10, a low-power chipset operating in the 2.4 GHz range. On top of that, secure communication is ensured through the Microchip ECC508 crypto chip. Besides that, you can find a battery charger, and an RGB LED on-board.
Official Arduino WiFi Library
You can get your board to connect to any kind of existing WiFi network, or use it to create your own Arduino Access Point. The specific set of examples we provide for the MKR WiFi 1010 can be consulted at the WiFiNINA library reference page.
Compatible with other Cloud Services
It is also possible to connect your board to different Cloud services, Arduino's own among others. Here are some examples of how to get the MKR WiFi 1010 to connect to:
Blynk: a simple project from the Arduino community connecting to Blynk to operate your board from a phone with little code
IFTTT: in-depth case of building a smart plug connected to IFTTT
AWS IoT Core: Arduino made this example on how to connect to Amazon Web Services
Azure: visit this GitHub repository explaining how to connect a temperature sensor to Azure's Cloud
Firebase: you want to connect to Google's Firebase, this Arduino library will show you how
Specifications
Microcontroller
SAMD21 Cortex-M0+ 32bit low power ARM MCU
Radio Module
u-blox NINA-W102
Power Supply
5 V
Secure Element
ATECC508
Supported Battery
Li-Po Single Cell, 3.7 V, 1024 mAh Minimum
Operating Voltage
3.3 V
Digital I/O Pins
8
PWM Pins
13
UART
1
SPI
1
I2C
1
Analog Input Pins
7
Analog Output Pins
1
External Interrupts
10
Flash Memory
256 KB
SRAM
32 KB
EEPROM
no
Clock Speed
32.768 kHz, 48 MHz
LED_Builtin
6
USB
Full-Speed USB Device and embedded Host
Length
61.5 mm
Width
25 mm
Weight
32 g
Pico Breakout Garden Base sits underneath your Pico and lets you connect up to six of our extensive selection of Pimoroni breakouts to it. Whether it's environmental sensors so you can keep track of the temperature and humidity in your office, a whole host of little screens for important notifications and readouts, and, of course, LEDs. Scroll down for a list of breakouts that are currently compatible with our C++/MicroPython libraries!As well as a labelled landing area for your Pico, there's also a full set of broken out Pico connections, in case you need to attach even more sensors, wires, and circuitry. We've thrown in some rubber feet to keep the base nice and stable and to stop it from scratching your desk, or there are M2.5 mounting holes at the corners so that you can bolt it onto a solid surface if you prefer.The six sturdy black slots are edge connectors that connect the breakouts to the pins on your Pico. There's two slots for SPI breakouts, and four slots for I²C breakouts. Because I²C is a bus, you can use multiple I²C devices at the same time, providing they don't have the same I²C address (we've made sure that all of our breakouts have different addresses, and we print them on the back of the breakouts so they're easy to find).As well as being a handy way to add functionality to your Pico, Breakout Garden is also very useful for prototyping projects without the need for complicated wiring, soldering, or breadboards, and you can grow or change up your setup at any time.Features
Six sturdy edge-connector slots for breakouts
4x I²C slots (5 pins)
2x SPI slot (7 pins)
Landing area with female headers for Raspberry Pi Pico
0.1” pitch, 5 or 7 pin connectors
Broken-out pins
Reverse polarity protection (built into breakouts)
99% assembled – just need to stick on the feet!
Compatible with Raspberry Pi Pico
Grove is a modular electronic platform for quick prototyping. Every module has one function, such as touch sensing, creating audio effect and so on. Just plug the modules you need to the base shield, then you are ready to test your idea buds.
This Grove Starter Kit for Arduino is upgraded version of our Grove Starter Kit plus. Frequently used modules have been included in this kit to help you create your concept.
The changes
Optimize the internal slot structure, using technology to make our products inside plastic boxes more regularized, more protective.
Upgrade Instructions for creative poster form, more streamlined and intuitive description for each Grove-Sensor.
Grove-LED increased from three separate PCBA into a. But will still provide three different colors of LED light bulbs for you.
To consider the overall playability of the product experience, we optimized the two Grove-Sensors. Grove-Sound Sensor upgrade to V1.2; Grove-Temperature Sensor upgrade to the new SMD V1.1.
Data line upgrade from 24AWG Grove Cable is 26 AWG Grove Cable, wire length is adjusted to the length of 200mm unified model, the number was adjusted to 10.
Screen perfect upgrade for the Grove-LCD RGB Backlight, color screen makes further enhanced playability experience.
Included
1x Base Shield
1x Grove LCD RGB Backlight
1x Grove Smart Relay
1x Grove Buzzer
1x Grove Sound Sensor
1x Grove Touch Sensor
1x Grove Rotary Angle Sensor
1x Grove Temperature Sensor
1x Grove LED
1x Grove Light Sensor
1x Grove Button
1x DIP LED Blue-Blue
1x DIP LED Green-Green
1x DIP LED Red-Red
1x Mini Servo
10x Grove Cables
1x 9 V to Barrel Jack Adapter
1x Grove starter kit Manual
1x Green Plastic Box
Downloads
Schematic (PDF)
Schematic (Eagle)
Grove Button Source File
Grove LED Source File
Grove Buzzer Source File
Grove Rotary Angle Sensor Source File
Grove Relay Source File
Base Shield Source File
Grove Sound Sensor Source File
Grove Buzzer Source File
Elektor GREEN and GOLD members can download their digital edition here.
Not a member yet? Click here.
USB Measurement AdapterTesting Current and Signal Quality of USB Ports
4...20 mA Current Output for Arduino UnoA Reliable, EMI-Insensitive Current Loop Interface
Vacuum Cleaner Automatic ControlKeep Your Tools’ Work Area Clean
DDS Generator with ATtiny
Opamp-Tester V2New PCB – Now Also Suitable for SMDs
550-mW “Lamp” Audio AmplifierGet the Warm Sound of Vacuum Tubes With Ease
Fuse GuardMonitoring a Fuse with a Flashing LED
HQ RIAA PreamplifierGet the Most Out of Your Vinyl Records!
Turntable Speed CalibratorAn Arduino-Based 100–120 Hz Strobe Light Generator
Elektor Classics: video buffer/repeater
Infrared Remote-Controlled DimmerControl Your Halogen or LED Floor Lamp Effortlessly and With Style
How to Use switch…case on Strings in C++/Arduino IDE
Magnet FinderWith a Simple Hall-Effect Sensor
Raspberry Pi Smart Power ButtonA Solution for Raspberry Pi Up to Model 4
Essential Maker TipsProfessional Insights for Everyday Making
Practical Projects with the 555 TimerDC Motor Control and Fast Reaction Challenges
Basic AC-Load-On MonitorSave Energy with a Simple Device
Power Banks in ParallelA Three-Day Continuous Power Solution
VFO Up to 15 MHzAn Implementation With Raspberry Pi Pico
Violin Tuner with ATtiny202
Elektor Classics: video amplifier for B/W television sets
Capacitance Meter20 pF to 600 nF
Quasi-Analog Clockwork Mk IITwo LED Rings for Hours and Minutes
You Can Do Anything You Want(with the Arduino Ecosystem at Your Side)
Neon Lamp Dice
Elektor Classics: RTTY calibrator indicator
Inspiring Hardware Designs for Your ESPs
Elektor Classics: variable 3 A power supply
RGB LEDs with Integrated Control CircuitLight with Precision: ICLEDs Set Standards
Experiment: Towards a Mixed-Signal Theremin?Blending Modern Time-of-Flight Sensors With the Timeless XR2206 Analog Generator
ESP32 Audio Transceiver Board (Part 1)SD Card WAV File Player Demo
Infographics: Circuits and Circuit Design 2025
Small Audio MixerA Simple and Versatile Scalable Design
Smart Staircase Light TimerSave More Money on the Energy Bill!
Smarten Up Your ShuttersControlling Velux Hardware With an ESP32 and MQTT
Solid-State Foot WarmerEnergy-Efficient Comfort
Is the M5Stamp Fly Quadcopter the Next Tello?
Boosting Wi-Fi Range of the ESP32-C3 SuperMiniA Simple and Effective Antenna Mod
ZD-8968 Hot-Air Soldering StationA Budget-Friendly Workhorse or Just Hot Air?
Parking Sensor TesterFinding Defects in the PDC System of a Car
The AD584 4-ch Voltage Reference Module is designed to provide stable and accurate reference voltages of 2.5 V, 5 V, 7.5 V, and 10 V. It incorporates the AD584 integrated circuit, known for its high accuracy and stability.
Features
Multiple Output Voltages: The module can output four different reference voltages (2.5 V, 5 V, 7.5 V, and 10 V) accessible through a single port.
Microcontroller-based Switching: An onboard microcontroller facilitates switching between the four voltage outputs, with LED indicators displaying the active selection.
User-Friendly Operation: A single button allows for easy cycling through the available reference voltages.
Transparent Housing: The module is encased in a transparent housing, offering protection while allowing users to view the internal components.
Power Supply Options: It can be powered via a built-in lithium battery (not included) or through a 5 V DC input. A charging indicator provides status updates during charging.
Output Interface: Equipped with 4mm banana sockets for secure and reliable connections.
Included
1x AD584 4-ch Voltage Reference Module with Housing
Downloads
Datasheet
The JOY-iT JDS2960 is a 2-channel signal generator capable of producing signals up to 60 MHz. Its compact design and the option to operate it with a power bank make it ideal for mobile use.
With a variety of waveforms, including sine, square, triangle, pulse, half-wave, and more, it is suitable for various measurement technology applications.
Additionally, the JDS2960 features a 1-channel frequency allocation. Its high frequency accuracy of ±20 ppm and stability of ±1 ppm/3 h ensure excellent signal quality and great flexibility.
The 2.4-inch TFT color display provides user-friendly operation and enables a wide range of applications.
Features
2 Channels
Up to 60 MHz
Robust aluminum housing
1-channel frequency counter
Up to 20 Vpp
Many different pre-programmed waveforms and up to 60 user-defined waveforms
Pulse function
Specifications
Channels
2-channel Signal Generator1-channel Frequency meter
Frequency range
Sine: 0-60 MHzSquare, triangle: 0-25 MHzTTL, Pulse: 0-6 MHz
Signal forms
Sine, square, triangle, pulse, half/solid wave, exponential rise/fall, etc.
Measuring range frequency counter
1-100 MHz
Frequency accuracy
±20 ppm
Frequency stability
±1 ppm/3 h
Sampling rate
266 MSa/s
Display
2,4" TFT color LCD
Vertical shaft resolution
14 bits
Amplitude range
<10 MHz: 0-20 Vpp>10 MHz: 0-10 Vpp
Amplitude resolution
1 mV
Amplitude stability
±5%/5h
Amplitude flatness
<10 MHz: ±5%>10 MHz: ±10%
Impedance of output
50 Ω ±10%
Distortion factor
<0.8% (20 Hz-20 KHz, 0 dBm)
Dimensions
145 x 95 x 55 mm
Weight
900 g
Included
1x JOY-iT JDS2960 2-ch Signal Generator
1x Power supply unit
1x BNC-BNC cable
2x BNC crocodile clip cables
1x USB-DC power cable
1x USB data cable
Downloads
Datasheet
Manual
Software
This book is about the Raspberry Pi 3 computer and its use in various control and monitoring applications. The book explains in simple terms and with tested and working example projects, how to configure the Raspberry Pi 3 computer, how to install and use the Linux operating system, and how to write hardware based applications programs using the Python programming language.
The nice feature of this book is that it covers many Raspberry Pi 3 based hardware projects using the latest hardware modules such as the Sense HAT, Swiss Pi, MotoPi, Camera module, and many other state of the art analog and digital sensors. An important feature of the Raspberry Pi 3 is that it contains on-board Bluetooth and Wi-Fi modules. Example projects are given in the book on using the Wi-Fi and the Bluetooth modules to show how real-data can be sent to the Cloud using the Wi-Fi module, and also how to communicate with an Android based mobile phone using the Bluetooth module.
The book is ideal for self-study, and is intended for electronic/electrical engineering students, practising engineers, research students, and for hobbyists. It is recommended that the book should be followed in the given Chapter order.
Over 30 projects are given in the book. All the projects in the book are based on the Python programming language and they have been fully tested. Full program listings of every project are given in the book with comments and full descriptions. Experienced programmers should find it easy to modify and update the programs to suit their needs.
The following sub-headings are given for each project to make it as easy as possible for the readers to follow the projects:
Project title
Description
Aim of the project
Raspberry Pi type
Block diagram
Circuit diagram
Program listing
If you want to push the resolution limits of the V-One, these dispensing tips will help enable your experimental projects. This pack contains 4 extra fine nozzles with an internal diameter of 0.150 mm (6 mil).
Do not use with solder paste! It will clog!
The SparkFun RP2350 Pro Micro provides a powerful development platform, built around the RP2350 microcontroller. This board uses the updated Pro Micro form factor. It includes a USB-C connector, Qwiic connector, WS2812B addressable RGB LED, Boot and Reset buttons, resettable PTC fuse, and PTH and castellated solder pads.
The RP2350 is a unique dual-core microcontroller with two ARM Cortex-M33 processors and two Hazard3 RISC-V processors, all running at up to 150 MHz! Now, this doesn't mean the RP2350 is a quad-core microcontroller. Instead, users can select which two processors to run on boot instead. You can run two processors of the same type or one of each. The RP2350 also features 520 kB SRAM in ten banks, a host of peripherals including two UARTs, two SPI and two I²C controllers, and a USB 1.1 controller for host and device support.
The Pro Micro also includes two expanded memory options: 16 MB of external Flash and 8 MB PSRAM connected to the RP2350's QSPI controller. The RP2350 Pro Micro works with C/C++ using the Pico SDK, MicroPython, and Arduino development environments.
Features
RP2350 Microcontroller
8 MB PSRAM
16 MB Flash
Supply Voltage
USB: 5 V
RAW: 5.3 V (max.)
Pro Micro Pinout
2x UART
1x SPI
10x GPIO (4 used for UART1 and UART0)
4x Analog
USB-C Connector
USB 1.1 Host/Device Support
Qwiic Connector
Buttons
Reset
Boot
LEDs
WS2812 Addressable RGB LED
Red Power LED
Dimensions: 33 x 17.8 mm
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
RP2350 MicroPython Firmware (Beta 04)
SparkFun Pico SDK Library
Arduino Pico Arduino Core
Datasheet (RP2350)
Datasheet (APS6404L PSRAM)
RP2350 Product Brief
Raspberry Pi RP2350 Microcontroller Documentation
Qwiic Info Page
GitHub Repository
Features Integrated Cold-Junction Compensation Supported Types (designated by NIST ITS-90): Type K, J, T, N, S, E, B and R Four Programmable Temperature Alert Outputs: Monitor Hot- or Cold-Junction Temperatures Detect rising or falling temperatures Up to 255°C of Programmable Hysteresis Programmable Digital Filter for Temperature Low Power Dimensions: 20 mm x 40 mm x 18 mm Weight: 18 g Application Petrochemical Thermal Management Hand-Held Measurement Equipment Industrial Equipment Thermal Management Ovens Industrial Engine Thermal Monitor Temperature Detection Racks Downloads Eagle Files Github library Datasheet
ArdiPi is the ultimate Arduino Uno alternative packed with powerful specs and exciting features in the Arduino Uno form factor. You can enjoy a low-cost solution with access to the largest support communities for Raspberry Pi.
ArdiPi variant is powered by Raspberry Pi Pico W. The built-in Wi-Fi and Bluetooth connectivity makes the board ideal for IoT projects or projects requiring wireless communication.
Features
Arduino Uno form factor, so you can connect 3.3 V compatible Arduino shields
SD card slot for storage and data transfer
Drag-and-drop programming using mass storage over USB
Multifunction GPIO breakout supporting general I/O, UART, I²C, SPI, ADC & PWM functions.
Multi-tune Buzzer to add audio alert into the project
SWD pins breakout for serial debugging
Multi-platform support like Arduino IDE, MicroPython, and CircuitPython.
Comes with HID support, so the device can simulate a mouse or keyboard
Specifications
Powered by RP2040 microcontroller which is a dual-core Arm Cortex-M0+ processor, 2 MB of onboard flash storage, 264 kB of RAM
On-board single-band 2.4 GHz wireless interfaces (802.11n) for WiFi and Bluetooth 5 (LE)
WPA3 & Soft access point supporting up to four clients
Operating voltage of pins 3.3 V and board supply 5 V
25 Multipurpose GPIOs breakout in Arduino style for easy peripheral interfacing
I²C, SPI, and UART communications protocol support
2 MB of onboard Flash memory
Cross-platform development and multiple programming language support
Lo-Fi (ESP32 + LoRa combination) is the perfect solution for anyone looking to establish long-range wireless communication in a variety of applications with WiFi capabilities. LoRa offers exceptional range and easy connectivity, it allows you to seamlessly communicate with devices up to 5 km away.
Devices provide an efficient and trustworthy choice for long-range wireless communication in addition to WiFi access to link internet clouds best suited for Internet of Things applications, enabling connectivity in remote and challenging settings.
Features
Device powered by powerful ESP32 S3 WROOM-1 which is having Xtensa dual-core 32-bit LX7 microprocessor, up to 240 MHz
Inbuilt Wi-Fi & Bluetooth LE for wireless connectivity
Type C interface for Programming/Power
1.14" TFT display for visual interactions
GPIO breakouts for interfacing additional peripherals
Breadboard compatible for easy DIY breadboarding projects
2 separate user programmable buttons along with Reset and Boot buttons
3.7 V Lithium Battery connector for a portable use case with an onboard charging option
Use new generation LoRa spread spectrum to ensure stable communication
For LoRa, faster speed and a longer data transmission range of up to 5 km
Applications
Internet of Things (IoT)
Smart Home Automation
Agricultural Automation
Emergency Services
Environmental Monitoring
Industrial Automation
Specifications
Microcontroller: ESP32 S3 WROOM-1
Wireless Interface: WiFi, BLE, LoRa
Protocol: 802.11b/g/n, Bluetooth 5.0
Memory Size: 16 MB Flash, 384 kB ROM, 8 MB SRAM
Supply Voltage: 5 V
Operating Voltage: 3.3 V
Display Size: 1.14”
Display Type: TFT
Display resolution: 135 x 240 pixels
Display driver: ST7789V
Display Appearance: RGB
Display color: 4k/65k/252k
Display Luminance: 400 Cd/m²
Operating Temperature: -20 to 70°C
Storage Temperature: -30 to 80°C
LoRa Module Specs:
Carrier Frequency (License Free ISM): 868 MHz
Chip: Based on SX1262 RF chip
Range: 5Km
Transmitting Power: 22 dBm
Receiving Sensitivity: -147 dbm
Data Rate: Up to 62.5 kbps
Communication Port: UART serial
Downloads
Getting started guide
Hardware design files
Included
1x Lo-Fi Board
1x Antenna (868 MHz)
The Arduino Nano 33 BLE Sense Rev2 with headers is Arduino’s 3.3 V AI enabled board in the smallest available form factor with a set of sensors that will allow you without any external hardware to start programming your next project, right away.
With the Arduino Nano 33 BLE Sense Rev2, you can:
Build wearable devices that using AI can recognize movements.
Build a room temperature monitoring device that can suggest or modify changes in the thermostat.
Build a gesture or voice recognition device using the microphone or the gesture sensor together with the AI capabilities of the board.
Differences between Rev1 and Rev2
Replacement of IMU from LSM9DS1 (9 axis) for a combination of two IMUs (BMI270 – 6 axis IMU and BMM150 – 3 axis IMU)
Replacement of temperature and humidity sensor from HTS221 for HS3003
Replacement of microphone from MP34DT05 to MP34DT06JTR
Replacement of power supply MPM3610 for MP2322
Addition of VUSB soldering jumper on the top side of the board
New test point for USB, SWDIO and SWCLK
Specifications
Microcontroller
nRF52840 (datasheet)
Operating Voltage
3.3 V
Input Voltage (limit)
21 V
DC Current per I/O Pin
15 mA
Clock Speed
64 MHz
CPU Flash Memory
1 MB (nRF52840)
SRAM
256 KB (nRF52840)
EEPROM
None
Digital Input / Output Pins
14
PWM Pins
All digital pins
UART
1
SPI
1
I²C
1
Analog Input Pins
8 (ADC 12 bit 200 k samples)
Analog Output Pins
Only through PWM (no DAC)
External Interrupts
All digital pins
LED_BUILTIN
13
USB
Native in the nRF52840 Processor
IMU
BMI270 (datasheet) and BMM150 (datasheet)
Microphone
MP34DT06JTR (datasheet)
Gesture, light, proximity, color
APDS9960 (datasheet)
Barometric pressure
LPS22HB (datasheet)
Temperature, humidity
HS3003 (datasheet)
Downloads
Datasheet
Schematics
Inventor 2040 W is a multi-talented board that does (almost) everything you might want a robot, prop or other mechanical thing to do. Drive a couple of fancy motors with encoders attached? Yep! Add up to six servos? Sure? Attach a little speaker so you can make noise? No problem! It's also got a battery connector so you can power your inventions from AA/AAA or LiPo batteries and carry your miniature automaton/animated top hat/treasure chest that growls at your enemies around with you untethered.You also get a ton of options for hooking up sensors and other gubbins – there's two Qw/ST connectors (and an unpopulated Breakout Garden slot) for attaching breakouts, three ADC pins for analog sensors, photoresistors and such, and three spare digital GPIO you could use for LEDs, buttons or digital sensors. Speaking of LEDs, the board features 12 addressable LEDs (AKA Neopixels) – one for each servo and GPIO/ADC channel.Features
Raspberry Pi Pico W Aboard
Dual Arm Cortex M0+ running at up to 133 Mhz with 264 kB of SRAM
2 MB of QSPI flash supporting XiP
Powered and programmable by USB micro-B
2.4 GHz wireless
2 JST-SH connectors (6 pin) for attaching motors
Dual H-Bridge motor driver (DRV8833)
Per motor current limiting (425 mA)
Per motor direction indicator LEDs
2 pin (Picoblade-compatible) connector for attaching speaker
JST-PH (2 pin) connector for attaching battery (input voltage 2.5-5.5 V)
6 sets of header pins for connecting 3 pin hobby servos
6 sets of header pins for GPIO (3 of which are ADC capable)
12x addressable RGB LEDs/Neopixels
User button
Reset button
2x Qw/ST connectors for attaching breakouts
Unpopulated headers for adding a Breakout Garden slot
Fully assembled
No soldering required (unless you want to add the Breakout Garden slot).
C/C++ and MicroPython libraries
Schematic
Downloads
Download pirate-brand MicroPython
Getting Started with Raspberry Pi Pico
Motor function reference
Servo function reference
MicroPython examples
C++ examples
The SparkFun MicroMod mikroBUS Carrier Board takes advantage of the MicroMod, Qwiic, and mikroBUS ecosystems making it easy to rapidly prototype with each of them, combined. The MicroMod M.2 socket and mikroBUS 8-pin header provide users the freedom to experiment with any Processor Board in the MicroMod ecosystem and any Click board in the mikroBUS ecosystem, respectively. This board also features two Qwiic connectors to seamlessly integrate hundreds of Qwiic sensors and accessories into your project. The mikroBUS socket comprises a pair of 8-pin female headers with a standardized pin configuration. The pins consist of three groups of communications pins (SPI, UART and I²C), six additional pins (PWM, Interrupt, Analog input, Reset and Chip select), and two power groups (3.3 V and 5 V). While a modern USB-C connector makes programming easy, the Carrier Board is also equipped with a MCP73831 Single-Cell Lithium-Ion/Lithium-Polymer Charge IC so you can charge an attached single-cell LiPo battery. The charge IC receives power from the USB connection and can source up to 450 mA to charge an attached battery. Features M.2 MicroMod (Processor Board) Connector USB-C Connector 3.3 V 1 A Voltage Regulator 2x Qwiic Connectors mikroBUS Socket Boot/Reset Buttons Charge Circuit JTAG/SWD PTH Pins Downloads Schematic Eagle Files Board Dimensions Hookup Guide Getting Started with Necto Studio mikroBUS Standard Qwiic Info Page GitHub Hardware Repo
Ever wanted an automated house? Or a smart garden? The Arduino IoT Cloud compatible board Nicla Vision allows you to build your next smart project. You can connect devices, visualize data, control and share your projects from anywhere in the world.
Nicla Vision combines a powerful STM32H747AII6 Dual ARM Cortex M7/M4 IC processor with a 2 MP color camera that supports TinyML, as well as a smart 6-axis motion sensor, integrated microphone and distance sensor. You can easily include it into any project because it’s designed to be compatible with all Arduino Portenta and MKR products, fully integrates with OpenMV, supports MicroPython and also offers both WiFi and Bluetooth Low Energy connectivity. It’s so compact – with its 22.86 x 22.86 mm form factor – it can physically fit into most scenarios, and requires so little energy it can be powered by battery for standalone applications.
All of this makes Nicla Vision the ideal solution to develop or prototype with on-device image processing and machine vision at the edge, for asset tracking, object recognition, predictive maintenance and more – easier and faster than ever. Train it to spot details, so you can focus on the big picture.
Automate anything
Check every product is labeled before it leaves the production line; unlock doors only for authorized personnel, and only if they are wearing PPE correctly; use AI to train Nicla Vision to regularly check analog meters and beam readings to the Cloud; teach it to recognize thirsty crops and turn the irrigation on when needed.Anytime you need to act or make a decision depending on what you see, let Nicla Vision watch, decide and act for you.
Feel seen
Interact with kiosks with simple gestures, create immersive experiences, work with cobots at your side. Nicla Vision allows computers and smart devices to see you, recognize you, understand your movements and make your life easier, safer, more efficient, better.
Keep an eye out
Let Nicla Vision be your eyes: detecting animals on the other side of the farm, letting you answer your doorbell from the beach, constantly checking on the vibrations or wear of your industrial machinery. It’s your always-on, always precise lookout, anywhere you need it to be.
Downloads
Schematics
Datasheet
Features Implements CAN V2.0B at up to 1 Mb/s Industrial standard 9 pin sub-D connector OBD-II and CAN standard pinout selectable. Changeable chip select pin Changeable CS pin for TF card slot Changeable INT pin Screw terminal that easily to connect CAN_H and CAN_L Arduino Uno pin headers Micro SD card holder 2 Grove connectors (I2C and UART) SPI Interface up to 10 MHz Standard (11 bit) and extended (29 bit) data and remote frames Two receive buffers with prioritized message storage
This Grove - PIR Motion Sensor(Passive Infrared Sensor) can detect infrared signals caused by motion. If the PIR sensor notices the infrared energy, the motion detector is triggered and the sensor outputs HIGH on its SIG pin. The detecting range and response speed can be adjusted by 2 potentiometers soldered on its circuit board, The response speed is from 0.3s - 25s, and max 6 meters of detecting range. The Grove - PIR Motion Sensor(Passive Infrared Sensor) is an easy-to-use motion sensor with Grove compatible interface. Simply connecting it to Base Shield and programming it, it can be used as a suitable motion detector for Arduino projects. For example, the PIR Motion Sensor is commonly used in security alarm systems and automatic lighting applications. Features Grove compatible interface Voltage range: 3 V – 5 V Size: 20 mm x 40 mm Detecting angle: 120 degree Detecting Max distance: 6m (3m by default) Adjustable detecting distance and holding time Applications Motion Sensor Motion Detector Security Alarm System Human Detection System Technical Specifications Dimensions 40 mm x 20 mm x 15 mm Weight 12 g Battery Exclude Voltage range 3 V – 5 V Detecting angle 120 degree Detecting distance max 6m (3m by default)