The Raspberry Pi USB-C power supply is designed specifically to power the Raspberry Pi 4.
The power supply features a USB-C cable and is available in four different models to suit different international power sockets, and in two colors.
Specifications
Output
Output voltage
+5.1 V DC
Minimum load current
0 A
Nominal load current
3.0 A
Maximum power
15.3 W
Load regulation
±5%
Line regulation
±2%
Ripple & noise
120 mVp-p
Rise time
100 ms maximum to regulation limits for DC outputs
Turn-on delay
3000 ms maximum at nominal input AC voltage and full load
Protection
Short circuit protectionOvercurrent protectionOver temperature protection
Efficiency
81% minimum (output current from 100%, 75%, 50%, 25%)72% minimum at 10% load
Output cable
1.5 m 18AWG
Output connector
USB-C
Input
Voltage range
100-240 V AC (rated)96-264 V AC (operating)
Frequency
50/60 Hz ±3 Hz
Current
0.5 A maximum
Power consumption (no load)
0.075 W maximum
Inrush current
No damage shall occur, and the input fuse shall not blow
Operating ambient temperature
0-40°C
When you experiment with the Raspberry Pi on a regular basis and you connect a variety of external hardware to the GPIO port via the header you may well have caused some damage in the past. The Elektor Raspberry Pi Buffer Board is there to prevent this! The board is compatible with Raspberry Pi Zero, Zero 2 (W), 3, 4, 5, 400 and 500.
All 26 GPIOs are buffered with bi-directional voltage translators to protect the Raspberry Pi when experimenting with new circuits. The PCB is intended to be inserted in the back of Raspberry Pi 400/500. The connector to connect to the Raspberry Pi is a right angled 40-way receptacle (2x20). The PCB is only a fraction wider. A 40-way flat cable with appropriate 2x20 headers can be connected to the buffer output header to experiment for instance with a circuit on a breadboard or PCB.
The circuit uses 4x TXS0108E ICs by Texas Instruments. The PCB can also be put upright on a Raspberry Pi.
Downloads
Schematics
Layout
The official Raspberry Pi micro HDMI to HDMI (A/M) cable (black, 1 m) designed for the Raspberry Pi 4 and 5. 19-pin HDMI Type D(M) to 19-pin HDMI Type A(M) 1 m cable (black) Nickel-plated plugs 4Kp60 compliant RoHS compliant 3 Mohm 300 VDC insulation, withstands 300 VDC for 0.1s
The Raspberry Pi USB-C power supply is designed specifically to power the Raspberry Pi 4.
The power supply features a USB-C cable and is available in four different models to suit different international power sockets, and in two colors.
Specifications
Output
Output voltage
+5.1 V DC
Minimum load current
0 A
Nominal load current
3.0 A
Maximum power
15.3 W
Load regulation
±5%
Line regulation
±2%
Ripple & noise
120 mVp-p
Rise time
100 ms maximum to regulation limits for DC outputs
Turn-on delay
3000 ms maximum at nominal input AC voltage and full load
Protection
Short circuit protectionOvercurrent protectionOver temperature protection
Efficiency
81% minimum (output current from 100%, 75%, 50%, 25%)72% minimum at 10% load
Output cable
1.5 m 18AWG
Output connector
USB-C
Input
Voltage range
100-240 V AC (rated)96-264 V AC (operating)
Frequency
50/60 Hz ±3 Hz
Current
0.5 A maximum
Power consumption (no load)
0.075 W maximum
Inrush current
No damage shall occur, and the input fuse shall not blow
Operating ambient temperature
0-40°C
Designed for overclockers and other power users, this fan keeps your Raspberry Pi 4 at a comfortable operating temperature even under heavy load. The temperature-controlled fan delivers up to 1.4 CFM of airflow over the processor, memory, and power management IC. The bundled heatsink (18 x 8 x 10 mm) with self-adhesive pad improves heat transfer from the processor. The Raspberry Pi 4 Case Fan works with Raspberry Pi 4 and the official Raspberry Pi 4 case.
The official Raspberry Pi micro HDMI to HDMI (A/M) cable designed for the Raspberry Pi 4 and 5.
19-pin HDMI Type D(M) to 19-pin HDMI Type A(M)
1 m cable (white)
Nickel-plated plugs
4Kp60 compliant
RoHS compliant
3 Mohm 300 VDC insulation, withstands 300 VDC for 0.1s
The Waveshare 400 GPIO Header Extension is designed for Raspberry Pi 400 and provides a color-coded header and easy expansion.
Features
Designed for Raspberry Pi 400
Color-Coded Header
Easy Expansion
Included
1x PI400-GPIO-ADAPTER-B
1x Screws pack
The Raspberry Pi High Quality Camera offers higher resolution (12 megapixels, compared to 8 megapixels), and sensitivity (approximately 50% greater area per pixel for improved low-light performance) than the existing Camera Module v2, and is designed to work with interchangeable lenses in both C and CS Mount form factors. Other lens form factors can be accommodated using third-party lens adapters.
Specifications
Sensor
Sony IMX477R stacked, back-illuminated sensor12.3 megapixels7.9 mm sensor diagonal1.55 x 1.55 μm pixel size
Output
RAW12/10/8, COMP8
Back focus
Adjustable (12.5–22.4 mm)
Lens standards
CS MountC Mount (C/CS adapter included)
IR cut filter
Integrated
Ribbon cable length
200 mm
Tripod mount
1/4”-20
Included
1x Circuit board carrying a Sony IMX477 sensor
1x FPC cable for connection to a Raspberry Pi
1x Milled aluminium lens mount with integrated tripod mount and focus adjustment ring
1x C/CS Mount adapter
Required
C/CS Mount Lens
This aluminium case in a precious design is very robust and protects your Raspberry Pi 4 perfectly against outer influences. There are cut-outs for all interfaces to make them accessible. The channel milling at the top side serves as a heat sink and inside the housing the case is in direct contact with the CPU and the RAM to maximize cooling results. Features Color: Matt black (gun-metal black) Material: High-quality, cast aluminium Special Features: Channel milling which serves as a heatsink, cut outs for all interfaces, heatsink in contact with CPU and RAM of the Raspberry Pi for better cooling performance Dimensions: 91 x 65 x 34 mm Items delivered Aluminium case Screws Heat conduction pads
This PiCAN3 board provides CAN-Bus capability for the Raspberry Pi 4. It uses the Microchip MCP2515 CAN controller with MCP2551 CAN transceiver. Connection are made via DB9 or 3-way screw terminal. This board includes a switch mode power suppler that powers the Raspberry Pi is well.
Easy to install SocketCAN driver. Programming can be done in C or Python.
Features
CAN v2.0B at 1 Mb/s
High speed SPI Interface (10 MHz)
Standard and extended data and remote frames
CAN connection via standard 9-way sub-D connector or screw terminal
Compatible with OBDII cable
Solder bridge to set different configuration for DB9 connector
120Ω terminator ready
Serial LCD ready
LED indicator
Four fixing holes, comply with Pi Hat standard
SocketCAN driver, appears as can0 to application
Interrupt RX on GPIO25
5 V/3 A SMPS to power Raspberry Pi and accessories from DB9 or screw terminal
Reverse polarity protection
High efficiency switch mode design
6-24 V input range
Optional fixing screws – select at bottom of this webpage
RTC with battery backup (battery not included, requires CR1225 cell)
Downloads
User guide
Schematic
Driver installation
Writing your own program in Python
Python3 examples
This color-coded pin header is ideal for use with Raspberry Pi. All pins are color-coded with corresponding functions making prototyping and hacking easier.
Specifications
Suitable for all Raspberry Pi models with GPIO
2 pin rows with 20 pins each
2.54 mm pin spacing (pitch)
Pin height: 3/6 mm
Total height: approx. 11 mm
Colors/Functions
Orange = 3.3 V
Red = 5 V
Pink = I²C
Purple = UART
Blue = SPI
Yellow = DNC
Green = GPIO
Black = GND (Ground)
The official Raspberry Pi mini-HDMI to HDMI (A/M) cable designed for all Raspberry Pi Zero models. 19-pin HDMI Type D(M) to 19-pin HDMI Type A(M) 1 m cable (white) Nickel-plated plugs 4Kp60 compliant RoHS compliant 3 Mohm 300 VDC insulation, withstands 300 VDC for 0.1s
3rd Edition – Fully updated for Raspberry Pi 4
The Raspberry Pi is a very cheap but complete computer system that allows all sorts of electronics parts and extensions to be connected. This book addresses one of the strongest aspects of the Raspberry Pi: the ability to combine hands-on electronics and programming.
Combine hands-on electronics and programming
After a short introduction to the Raspberry Pi you proceed with installing the required software. The SD card that can be purchased in conjunction with this book contains everything to get started with the Raspberry Pi. At the side of the (optional) Windows PC, software is used which is free for downloading. The book continues with a concise introduction to the Linux operating system, after which you start programming in Bash, Python 3 and Javascript. Although the emphasis is on Python, the coverage is brief and to the point in all cases – just enabling you to grasp the essence of all projects and start adapting them to your requirements. All set, you can carry on with fun projects.
The book is ideal for self-study
No fewer than 45 exciting and compelling projects are discussed and elaborated in detail. From a flashing lights to driving an electromotor; from processing and generating analog signals to a lux meter and a temperature control. We also move to more complex projects like a motor speed controller, a web server with CGI, client-server applications and Xwindows programs.
Each project has details of the way it got designed that way
The process of reading, building, and programming not only provides insight into the Raspberry Pi, Python, and the electronic parts used, but also enables you to modify or extend the projects any way you like. Also, feel free to combine several projects into a larger design.
The 16 mm lens provides a higher quality image than the 6 mm lens. It has a narrow angle of view which is more suited to viewing distant objects.
Specifications
Resolution
10 MegaPixel
Image format
1'
Focal length
16 mm
Aperture
F1.4-16
Mount
C
Field Angle 1'Field Angle 2/3'Field Angle 1/1.8'Field Angle 1/2'
44.6° × 33.6°30.0° × 23.2°24.7° × 18.6°21.8° × 16.4°
Back Focal Length
17.53 mm
Optical Length
67.53 mm
Distortion
1'(-0.7%) 1/2'(-0.5%) 1/3'(-0.15%)
M.O.D.
0.2 m
Dimension
39 × 50 mm
Weight
133.7 g
SD card quality is crucial for a good Raspberry Pi experience. Raspberry Pi's A2 microSD cards support higher bus speeds and command queuing, improving random read performance and narrowing the gap with NVMe SSDs. These cards are rigorously tested for optimal performance with Raspberry Pi models.
Features
Capacity: 64 GB
Support for DDR50 and SDR104 bus speeds and command queueing (CQ) extension
Speed Class: C10, U3, V30, A2
Random 4 KB read performance: 3,200 IOPS (Raspberry Pi 4, DDR50) 5,000 IOPS (Raspberry Pi 5, SDR104)
Random 4 K write performance: 1,200 IOPS (Raspberry Pi 4, DDR50) 2,000 IOPS (Raspberry Pi 5, SDR104)
Shock-proof, X-ray–proof, and magnet-proof
microSDHC/microSDXC formats
Downloads
Datasheets
The default configuration holds a mini breadboard (included), an SD card adapter, 2x micro SD cards, 2x USB devices, a micro-USB shim and of course the Raspberry Pi Zero itself.
Users can decide to use the micro-USB shim slot to hold a micro-HDMI adapter, or you may want to hold a Portsplus or similar GPIO reference card in the SD adapter slot. You can choose to store your USB micro-SD card reader or even other larger USB devices such as the USBDoctor. Use it in whatever way works best for you.
All of the Raspberry Pi Zero ports are accessible from the ZeroDock, including the camera port and reset/composite pin header. pHATs are also not obstructed, so you’re free to prototype with your favourite add-on boards.
The case is a stylish mix of clear and black acrylic layers, black fixings and a clear breadboard, fitting in well alongside most desktop PCs/monitors.
Assembly guide available here.
Kit includes
4 layer laser-cut acrylic case
Case and Raspberry Pi fixings
Mini breadboard