Platforms

167 products

  • Robotis TurtleBot3 Burger (incl. Raspberry Pi 4) - Elektor

    Robotis Robotis TurtleBot3 Burger (incl. Raspberry Pi 4)

    Pre-order

    World’s Most Popular ROS Platform TurtleBot is the most popular open source robot for education and research. The new generation TurtleBot3 is a small, low cost, fully programmable, ROS based mobile robot. It is intended to be used for education, research, hobby and product prototyping. Affordable Cost TurtleBot was developed to meet the cost-conscious needs of schools, laboratories and companies. TurtleBot3 is the most affordable robot among the SLAM-able mobile robots equipped with a 360° Laser Distance Sensor LDS-01. Small Size The dimension of TurtleBot3 Burger is only 138 x 178 x 192 mm (L x W x H). Its size is about 1/4 of the size of the predecessor. Imagine keeping TurtleBot3 in your backpack and develop your program and test it anywhere you go. ROS Standard The TurtleBot brand is managed by Open Robotics, which develops and maintains ROS. Nowadays, ROS has become the go-to platform for all the roboticists around the world. TurtleBot can be integrated with existing ROS-based robot components, but TurtleBot3 can be an affordable platform for whom want to get started learning ROS. Extensibility TurtleBot3 encourages users to customize its mechanical structure with some alternative options: open source embedded board (as a control board), computer and sensors. TurtleBot3 Burger is a two-wheeled differential drive type platform but it is able to be structurally and mechanically customized in many ways: Cars, Bikes, Trailers and so on. Extend your ideas beyond imagination with various SBC, sensors and motors on a scalable structure. Modular Actuator for Mobile Robot TurtleBot3 is able to get a precise spatial data by using 2 DYNAMIXEL’s in the wheel joints. DYNAMIXEL XM series can be operated by one of 6 operating modes (XL series: 4 operating modes): Velocity control mode for wheels, Torque control mode or Position control mode for joint, etc. DYNAMIXEL can be used even to make a mobile manipulator which is light but can be precisely controlled with velocity, torque and position control. DYNAMIXEL is a core component that makes TurtleBot3 perfect. It is easy to assemble, maintain, replace and reconfigure. Open Control Board for ROS The control board is open-sourced in hardware wise and in software wise for ROS communication. The open source control board OpenCR1.0 is powerful enough to control not only DYNAMIXEL’s but also ROBOTIS sensors that are frequently being used for basic recognition tasks in cost effective way. Various sensors such as Touch sensor, Infrared sensor, Color sensor and a handful more are available. The OpenCR1.0 has an IMU sensor inside the board so that it can enhance precise control for countless applications. The board has 3.3 V, 5 V, 12 V power supplies to reinforce the available computer device lineups. Strong Sensor Lineups TurtleBot3 Burger uses enhanced 360° LiDAR, 9-Axis Inertial Measurement Unit and precise encoder for your research and development. Open Source The hardware, firmware and software of TurtleBot3 are open source which means that users are welcomed to download, modify and share source codes. All components of TurtleBot3 are manufactured with injection molded plastic to achieve low cost, however, the 3D CAD data is also available for 3D printing. Specifications Maximum translational velocity 0.22 m/s Maximum rotational velocity 2.84 rad/s (162.72 deg/s) Maximum payload 15 kg Size (L x W x H) 138 x 178 x 192 mm Weight (+ SBC + Battery + Sensors) 1 kg Threshold of climbing 10 mm or lower Expected operating time 2h 30m Expected charging time 2h 30m SBC (Single Board Computers) Raspberry Pi 4 (2 GB RAM) MCU 32-bit ARM Cortex-M7 with FPU (216 MHz, 462 DMIPS) Actuator XL430-W250 LDS (Laser Distance Sensor) 360 Laser Distance Sensor LDS-01 or LDS-02 IMU Gyroscope 3 AxisAccelerometer 3 Axis Power connectors 3.3 V/800 mA5 V/4 A12 V/1 A Expansion pins GPIO 18 pinsArduino 32 pin Peripheral 3x UART, 1x CAN, 1x SPI, 1x I²C, 5x ADC, 4x 5-pin OLLO DYNAMIXEL ports 3x RS485, 3x TTL Audio Several programmable beep sequences Programmable LEDs 4x User LED Status LEDs 1x Board status LED1x Arduino LED1x Power LED Buttons and Switches 2x Push buttons, 1x Reset button, 2x Dip switch Battery Lithium polymer 11.1 V 1800 mAh / 19.98 Wh 5C PC connection USB Firmware upgrade via USB / via JTAG Power adapter (SMPS) Input: 100-240 VAC 50/60 Hz, 1.5 A @maxOutput: 12 VDC, 5 A Downloads ROS Robot Programming GitHub E-Manual Community

    Pre-order

    € 739,00

    Members identical

  • LuckFox Pico Ultra Linux Micro Development Board - Elektor

    Luckfox LuckFox Pico Ultra Linux Micro Development Board

    The LuckFox Pico Ultra is a compact single-board computer (SBC) powered by the Rockchip RV1106G3 chipset, designed for AI processing, multimedia, and low-power embedded applications. It comes equipped with a built-in 1 TOPS NPU, making it ideal for edge AI workloads. With 256 MB RAM, 8 GB onboard eMMC storage, integrated WiFi, and support for the LuckFox PoE module, the board delivers both performance and versatility across a wide range of use cases. Running Linux, the LuckFox Pico Ultra supports a variety of interfaces – including MIPI CSI, RGB LCD, GPIO, UART, SPI, I²C, and USB – providing a simple and efficient development platform for applications in smart home, industrial control, and IoT. Specifications Chip Rockchip RV1106G3 Processor Cortex-A7 1.2 GHz Neural Network Processor (NPU) 1 TOPS, supports int4, int8, int16 Image Processor (ISP) Max input 5M @30fps Memory 256 MB DDR3L WiFi + Bluetooth 2.4GHz WiFi-6 Bluetooth 5.2/BLE Camera Interface MIPI CSI 2-lane DPI Interface RGB666 PoE Interface IEEE 802.3af PoE Speaker interface MX1.25 mm USB USB 2.0 Host/Device GPIO 30 GPIO pins Ethernet 10/100M Ethernet controller and embedded PHY Default Storage Medium eMMC (8 GB) Included 1x LuckFox Pico Ultra W 1x LuckFox PoE module 1x IPX 2.4G 2 db antenna 1x USB-A to USB-C cable 1x Screws pack Downloads Wiki

    € 39,95

    Members € 35,96

  •  -30% CubeCell HTCC - AB02S LoRa Development Board with GPS (EU868) - Elektor

    Heltec Automation CubeCell HTCC-AB02S LoRa Development Board with GPS (EU868)

    The CubeCell series is designed primarily for LoRa/LoRaWAN node applications. Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels. The HTCC-AB02S is a developer-friendly board with an integrated AIR530Z GPS module, ideal for quickly testing and validating communication solutions. Features Arduino compatible Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262 LoRaWAN 1.0.2 support Ultra low power design, 21 uA in deep sleep Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching) Good impendence matching and long communication distance Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information Using Air530 GPS module with GPS/Beidou Dual-mode position system support Specifications Main Chip ASR6502 (48 MHz ARM Cortex-M0+ MCU) LoRa Chipset SX1262 Frequency 863~870 MHz Max. TX Power 22 ±1 dBm Max. Receiving Sensitivity −135 dBm Hardware Resource 2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO Memory 128 Kb FLASH16 Kb SRAM Power consumption Deep sleep 21 uA Interfaces 1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header) Battery 3.7 V lithium battery (power supply and charging) Solar Energy VS pin can be connected to 5.5~7 V solar panel USB to Serial Chip CP2102 Display 0.96" OLED (128 x 64) Operating temperature −20~70°C Dimensions 55.9 x 27.9 x 9.5 mm Included 1x CubeCell HTCC-AB02S Development Board 1x Antenna 1x 2x SH1.25 battery connector Downloads Datasheet Schematic GPS module (Manual) Quick start GitHub

    € 49,95€ 34,95

    Members identical

  • CubeCell HTCC - AB01 (V2) LoRa Development Board (EU868) - Elektor

    Heltec Automation CubeCell HTCC-AB01 (V2) LoRa Development Board (EU868)

    Out of stock

    The CubeCell series is designed primarily for LoRa/LoRaWAN node applications. Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels. The HTCC-AB01 (V2) is an upgraded version of the HTCC-AB01 board. Features Arduino compatible Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex-M0+ Core) and SX1262 LoRaWAN 1.0.2 support Ultra low power design, 3.5 uA in deep sleep Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching) Good impendence matching and long communication distance. Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing Specifications Main Chip ASR6502 (48 MHz ARM Cortex-M0+ MCU) LoRa Chipset SX1262 Frequency 863~870 MHz Max. TX Power 21 ±1 dBm Max. Receiving Sensitivity −134 dBm Hardware Resource 1x UART1x SPI1x I²C1x SWD1x 12-bit ADC input8-channel DMA engine8x GPIO2x PWM Memory 128 Kb FLASH16 Kb SRAM Power consumption Deep Sleep 3.5 uA Interfaces 1x USB-C1x LoRa Antenna (IPEX 1.0)SH1.25; 11x 2x 2.54 Pin header1x (2x 2.54 Pin header) Solar Energy VS pin can be connected to 5.5~7 V solar panel Battery 3.7 V Lithium battery (power supply and charging) Operating temperature −20~70°C Dimensions 40.6 x 22.9 x 7.6 mm Included 1x CubeCell HTCC-AB01 (V2) Development Board 1x Antenna 1x 2x SH1.25 battery connector Downloads Datasheet Schematic Quick start GitHub

    Out of stock

    € 19,95

    Members € 17,96

  •  -28%Last Stock! Oxocard Connect Innovator Kit - Elektor

    Oxocard Oxocard Connect Innovator Kit

    1 in stock

    With this comprehensive complete set, you can now enter the fascinating world of electronics. In addition to an Oxocard Connect and a breadboard cartridge, it contains 96 electronic components with which you can build a variety of electronic circuits. Features Free and unlimited access to the nanopy.io editor with a variety of scripts that you can transfer to your Oxocard Connect at the touch of a button. Electronics course with 15 experiments that show you step by step how to switch LEDs, connect a servo, generate acoustic signals with a piezo and much more. Oxocard Connect High quality microcontroller device with TFT screen, glass cover, joystick, USB-C, as well as revolutionary 16-pin cartridge slot. The Oxocard Connect represents the next generation of small experimental computers. The universal cartridge slot allows ready-made or self-developed boards to be brought to life instantly by simply plugging them in. Each card comes with drivers and demo programs installed and automatically loaded and started when plugged in. Breadboard Cartridge With the Breadboard you can quickly plug in your own circuits. A plug-in board with 17 rows is available for this purpose. Connections: two analog inputs, five digital ports, I²C, SPI, GND/V3.3. access to the 5 V power source of the port. Red LEDs are attached to the digital pins. 5 V can also be injected to power the Oxocard Connect without USB. Included 1x Oxocard Connect 1x Breadboard Cartridge Electronic components 1x PIR-Sensor (Motion detector) 1x Thermistor 10 kΩ (Temperature sensor) 1x Photoresistor 10 kΩ (Light sensor) 1x Potentiometer 1x Mikroservo SG92R 1x Piezo (Acoustic signals) 3x LED (green, yellow, red) 2x Buttons 9x Resistances 75x Cables (angled) – various colors and lengths

    1 in stock

    € 89,95€ 64,95

    Members identical

  • Arduino MKR IoT Carrier - Elektor

    Arduino Arduino MKR IoT Carrier

    The MKR IoT Carrier comes equipped with 5 RGB LEDs, 5 capacitive touch buttons, a colored display, IMU and a variety of quality sensors. It also features a battery holder for a 18650 Li-Ion battery, SD card holder and Grove connectors. Data Capture: Map the environment around the carrier using the integrated temperature, humidity, and pressure sensors and collect data about movement using the 6 axis IMU and light, gesture, and proximity sensors. Easily add more external sensors to capture more data from more sources via the on-board Grove connectors (x3). Data Storage: Capture and store all the data locally on an SD card, or connect to the Arduino IoT Cloud for real-time data capture, storage, and visualization. Data Visualisation: Locally view real-time sensor readings on the built-in OLED Color Display and create visual or sound prompts using the embedded LEDs and buzzer. Total Control: Directly control small-voltage electronic appliances using the onboard relays and the five tactile buttons, with the integrated display providing a handy on-device interface for immediate control.

    € 59,95

    Members € 53,96

  •  -18% Arduino MKR IoT Bundle 1010 - Elektor

    Arduino Arduino MKR IoT Bundle 1010

    Out of stock

    The best way to start exploring the world of connected devices using the Arduino MKR WiFi 1010. The MKR IoT bundle contains all you need to build your first connected devices. Follow the 5 step by step tutorials we have prepared for you and combining the electronic components included in the bundle, you’ll quickly learn how to build devices that connect to the Arduino IoT cloud. All you need to start with IoT This bundle is contains all the hardware and software required to build your first IoT devices with no extra fees. Build 5 IoT projects All the components needed to start your journey into building your own IoT projects. Learn about the Arduino IoT cloud Not only learn about electronic but also about the possibilities the Arduino IoT cloud can offer. Included 1x Arduino MKR1000 WiFi (with mounted headers) 6x Phototransistors 1x Tilt Sensor 1x Temperature sensor (TMP36) 3x Potentiometer 1x Piezo capsule 10x Pushbuttons 1x DC Motor 1x Small servo motor 1x Alphanumeric LCD (16x2 characters) 1x Optocouplers (4N35) 1x H-bridge motor driver (L293D) 2x Mosfet transistors (IRF520) 5x Capacitors 100uF 70x Solid core jumper wires 1x Micro USB cable 1x Breadboard 1x LED (bright white) 3x LEDs (blue) 1x LED (RGB) 8x LED 5 mm (red) 8x LED 5 mm (green) 8x LED 5 mm (yellow) 1x Male pins strip (4x1) 1x Stranded jumper wires (red) 1x Stranded jumper wires (black) 5x Diode 20x 220 Ω resistors 5x 560 Ω resistors 5x 1 KΩ resistors 5x 4.7 KΩ resistors 20x 10 KΩ resistors 5x 1 MΩ resistors 5x 10 MΩ resistors

    Out of stock

    € 109,95€ 89,95

    Members identical

  • Whadda Madlab Electronic Kit (Junior Theremin) - Elektor

    Velleman Whadda Madlab Electronic Kit (Junior Theremin)

    The Theremin was the first music synthesizer. The Junior Theremin is our, smaller, version of that classic electronic musical instrument. As you move your hand towards and away from the wire aerial, the Theremin responds by changing the pitch of the note it is playing. It can play individual notes as well as varying the tone of a single note. How do you use the theremin? The wire aerial responds to the movement of your hand towards and away from it and changes the pitch of the note it plays, without actually being touched. Junior Theremin works in two modes – continuous and discrete. When you first connect the battery Junior Theremin is in continuous mode. Pressing both pushbuttons together switches between continuous and discrete modes. Discrete mode, as its name implies, plays individual or discrete notes rather than a continuously variable tone. Eight notes over a single octave are available. In discrete mode the two pushbuttons change the octave of the notes. The left-hand pushbutton (marked -) lowers the octave, and the right-hand pushbutton (marked +) raises the octave. The pushbuttons only change the octave so long as they are pressed. In continuous mode the pushbuttons have no effect. Downloads Manual

    € 12,95

    Members € 11,66

  • Holybro X500 V2 ARF Drone Kit - Elektor

    Holybro Holybro X500 V2 ARF Drone Kit

    Pre-order

    The X500 V2 ARF Kit is an affordable, lightweight, and robust carbon fiber professional drone kit that is easy to assemble (less than 15 minutes). It comes with the X500 V2 Frame Kit and motors, ESCs, power distribution boards and propellers preinstalled. It is perfectly compatible with various flight controllers such as the Holybro Pixhawk series, Durandal, Pix32 V5, etc. There are numerous improvements compared the previous model. Specifications Wheelbase: 500 mm Motor mount pattern: 16x16 mm Frame body: 144x144 mm, 2 mm thick Landing gear height: 215 mm Space between top and bottom plates: 28 mm Weight: 610 g Flight time: ~18 minutes hover with no additional payload. Tested with 5000 mAh battery. Payload: 1500 g (without battery, 70% throttle) Battery recommendation: 4S 3000-5000 mAh 20C+ with XT60 Lipo battery (not Included) Included X500 V2 Frame Kit With Preinstalled Items: 4x Motors: Holybro 2216 KV920 Motor (4 pcs) with XT30 Plug 4x ESCs (BLHeli S ESC 20A) 6x 1045 Propellers Power Distribution Board – XT60 plug for battery & XT30 plug for ESCs & peripherals Note: Depth camera mount is sold separately.

    Pre-order

    € 379,95

    Members identical

  • Arduino MKR WAN 1310 - Elektor

    Arduino Arduino MKR WAN 1310

    Ever wanted an automated house? Or a smart garden? Well, now it’s easy with the Arduino IoT Cloud compatible boards. It means: you can connect devices, visualize data, control and share your projects from anywhere in the world. Whether you’re a beginner or a pro, we have a wide range of plans to make sure you get the features you need. Connect your sensors and actuators over long distances harnessing the power of the LoRa wireless protocol or throughout LoRaWAN networks. The Arduino MKR WAN 1310 board provides a practical and cost effective solution to add LoRa connectivity to projects requiring low power. This open source board can be connected to the Arduino IoT Cloud. Better and More Efficient The MKR WAN 1310, brings in a series of improvements when compared to its predecessor, the MKR WAN 1300. While still based on the Microchip SAMD21 low power processor, the Murata CMWX1ZZABZ LoRa module, and the MKR family’s characteristic crypto chip (the ECC508), the MKR WAN 1310 includes a new battery charger, a 2 MByte SPI Flash, and improved control of the board’s power consumption. Improved Battery Power The latest modifications have considerably improved the battery life on the MKR WAN 1310. When properly configured, the power consumption is now as low as 104 uA! It is also possible to use the USB port to supply power (5 V) to the board; run the board with or without batteries – the choice is yours. On-board Storage Data logging and other OTA (Over The Air) functions are now possible since the inclusion of the on board 2 MByte Flash. This new exciting feature will let you transfer configuration files from the infrastructure onto the board, create your own scripting commands, or simply store data locally to send it whenever the connectivity is best. Whilst the MKR WAN 1310’s crypto chip adds further security by storing credentials & certificates in the embedded secure element. These features make it the perfect IoT node and building block for low-power wide-area IoT devices. Specifications The Arduino MKR WAN 1310 is based on the SAMD21 microcontroller. Microcontroller SAMD21 Cortex-M0+ 32-bit low power ARM MCU (datasheet) Radio module CMWX1ZZABZ (datasheet) Board power supply (USB/VIN) 5 V Secure element ATECC508 (datasheet) Supported batteries Rechargeable Li-Ion, or Li-Po, 1024 mAh minimum capacity Circuit operating voltage 3.3 V Digital I/O pins 8 PWM pins 13 (0 .. 8, 10, 12, 18 / A3, 19 / A4) UART 1 SPI 1 I²C 1 Analog input pins 7 (ADC 8/10/12 bit) Analog output pins 1 (DAC 10 bit) External interrupts 8 (0, 1, 4, 5, 6, 7, 8, 16 / A1, 17 / A2) DC current per I/O pin 7 mA CPU flash memory 256 KB (internal) QSPI flash memory 2 MByte (external) SRAM 32 KB EEPROM No Clock speed 32.768 kHz (RTC), 48 MHz LED_BUILTIN 6 USB Full-Speed USB Device and embedded Host Antenna gain 2 dB (bundled pentaband antenna) Carrier frequency 433/868/915 MHz Dimensions 67.64 x 25 mm Weight 32 g Downloads Eagle Files Schematics Fritzing Pinout

    € 59,95

    Members € 53,96

  • AxiDraw V3/A3 Writing and Drawing Machine - Elektor

    Evil Mad Science AxiDraw V3/A3 Writing and Drawing Machine

    Out of stock

    As compared to the (US Letter/A4 sized) AxiDraw V3, the AxiDraw V3/A3 has extended travel range, designed for use with paper sizes up to and including 11 × 17 inch ('tabloid' or 'ledger') and A3. It can work with any paper up to and including that size, including envelopes, regular US letter (8 1/2 × 11 inch) or A4 (297 × 210 mm) sized paper, note cards, business cards, or a whole array of smaller items. The AxiDraw comes with a mounting easel (board with clips) that can be used for holding paper, cards, and envelopes of various sizes. The AxiDraw V3/A3 also comes standard with AxiDraw Outrigger Feet pre-installed, for greater stance and stability while plotting. The unique design of the AxiDraw features a drawing head that extends beyond the body of the machine, making it possible to also draw on flat objects bigger than the machine itself. For example, you can set it right on top of a box to write an address or add decorations. You can even set it on top of a poster board, chalkboard, or whiteboard to draw graphics in place. The pen holder fits a wide variety of pens, including Sharpie fine and ultra-fine point markers, most rollerball and fountain pens, small-bodied whiteboard markers, and so forth. It can even hold a fountain pen at a proper angle of 45° to the paper. You can also use implements that aren't pens, such as pencils, chalk, charcoal, brushes, and many others. However, you'll get the best results with instruments such as fountain pens and rollerball pens, which do not require the user to apply pressure. Getting Started The AxiDraw comes fully assembled, tested, and ready to use, right out of the box. A universal-input plug-in power supply is included with the AxiDraw, as is a USB cable, and an optional paper-holding easel. Assuming that you've installed the software first, you can be up and plotting within minutes of opening the box. The comprehensive PDF user guide walks you through every step of the process. To operate AxiDraw, you will need a reasonably modern computer with an available USB port (Mac, Windows or Linux), plus internet access to download necessary software. Pens and paper are not included. (You can use your own! AxiDraw does not require proprietary pens or paper.) AxiDraw is normally controlled through a set of extensions to Inkscape, the excellent, popular and free vector graphics program. Basic operation is much like that of a printer driver: you import or make a drawing in Inkscape, and use the extensions to plot your text or artwork. It's all handled through a straightforward graphical user interface, and works cleanly on Mac, Windows and Linux. Specifications Performance Usable pen travel (inches): 16.93 × 11.69 inches Usable pen travel (millimeters): 430 × 297 mm Vertical pen travel: 0.7 inch (17 mm) Maximum XY travel speed: 15 inches (38 cm) per second Native XY resolution: 2032 steps per inch (80 steps per mm) Reproducibility (XY): Typically better than 0.005 inches (0.1 mm) at low speeds. Physical Major structural components are machined and/or folded aluminum. Holds pens and other drawing instruments up to 5/8' (16 mm) diameter. Overall dimensions: Approximately 26 × 18.5 × 4 inches (66 × 47 × 10 cm) Maximum height with cable guides: Approximately 11 inches (29 cm) Footprint: Approximately 26 × 5 inches (66 x 13 cm) Physical weight: 5.5 Lb (2.5 kg) Software Compatible with Mac, Windows, and Linux Drive directly from within Inkscape, using the AxiDraw extension. Comprehensive user guide available for download. Driver software software free to download and open source Internet access is required to download software. Additionally, AxiDraw Merge software available at no cost to AxiDraw owners. Programming interfaces Note: Programming is not required to use the AxiDraw. Stand-alone command line interface (CLI) Available AxiDraw Python API RESTful API available for full machine control, stand-alone or accessible by running RoboPaint in the background. Simplified 'GET-only' API available as well, for use in programming environments (such as Scratch, Snap) that permit only retrieval of URLs. Direct EiBotBoard (EBB) command protocol available for use in any programming environment that supports communication with USB-based serial ports. Code that generates SVG files can also be used to (indirectly) control the machine. Included AxiDraw V3/A3 writing and drawing machine (fully assembled, tested, and ready to use) Multi-plug power supply with EU adapter USB cable Easel (Board and clips) for paper holding Downloads User Guide

    Out of stock

    € 849,00

    Members € 764,10

  • Whadda Shaking Dice - Elektor

    Velleman Whadda Shaking Dice

    When playing a board game, do you find it annoying when you push away all the pawns with the dice? Or when friends try to cheat by manipulating the dice? With this soldering kit, this is a thing of the past. Instead of pressing a button, you activate this microprocessor-controlled dice by shaking. The 7 flashing LEDs run out slowly and the final combination is displayed flashing. The kit works with one CR2025 or one CR2032 button cell (not included). Downloads Manual

    € 14,95

    Members € 13,46

  • UFactory uArm Swift Pro - Elektor

    UFactory UFactory uArm Swift Pro

    Pre-order

    The uArm Swift Pro is a high quality robotic arm that can be used in a wide range of applications. The uArm Swift Pro was developed and optimized for use in education, which means that many packages are already available for open source platforms such as ROS. The uArm Swift Pro has a position repeatability of 0.2 mm and is also equipped with a stepper motor and a 12-bit encoder. These are just a few reasons that make the uArm Swift Pro an excellent choice for educational use. Another great feature is the 3D printing kit that converts the uArm Swift Pro into a 3D printer in less than 1 minute. The uArm supports the following development platforms/systems: UFACTORY SDK Arduino Python ROS GRABCAD OpenMV Smartphone App The smartphone app for iOS is already available in the App Store and enables easy control and monitoring of the robotic arm. The app for Android is in development and will be available soon. An example of the Machine Vision The following GIF shows the uArm in combination with the OpenMV Machine Vision Cam M7 and the facial recognition applications that can be implemented in MicroPython. Specifications Degrees of Freedom: 4 Repeatability: Up to 0.2 mm Payload: 500 g Working Range: 50-320 mm Positioning Speed: 100 m/s Position Feedback: 12-bit Encoder Dimensions: 150 x 140 x 281mm Weight: 2.2 kg Included UFactory uArm Swift Pro Body Bluetooth & Vacuum Gripper Downloads Datasheet

    Pre-order

    € 939,00

    Members identical

  • Dragino MS14N - S Linux IoT Appliance with Sensor Terminal - Elektor

    Dragino Dragino MS14N-S Linux IoT Appliance with Sensor Terminal

    Out of stock

    The Dragino MS14N-S supports generic OpenWrt Linux version or modified OpenWrt version such as Arduino Yun. It has USB host port and has full Ethernet and 802.11 b/g/n WiFi capabilities. Applications for MS14N include remote control of robots, data logging, web applications for data presentation, mesh networking over WiFi and many more. Hardware System CPU: AR9331 DDR RAM: 64 MB LASH: 16 MB Interfaces 2x 10 M/100 M RJ45 interface 1x power input: 9 ~ 12 VDC 1x USB Host Port 1x internet USB interface 14x screw terminal positions WiFi Specs Protocol: 802.11 b/g/n Frequency: 2,412 - 2,472 GHz Power: 100 mW

    Out of stock

    € 49,95

    Members € 44,96

  • Whadda Flashing LED Sweethearts - Elektor

    Velleman Whadda Flashing LED Sweethearts

    Valentine's Hearts, 28 blinking LEDs, romantic LED lighting Valentine's Hearts – 28 blinking LEDs for a romantic atmosphere. The perfect Valentine's gift to express your love. Battery-powered and portable, ideal for Valentine's Day. Downloads Manual

    € 11,95

    Members € 10,76

  •  -29% CubeCell HTCC - AB02 LoRa Development Board (EU868) - Elektor

    Heltec Automation CubeCell HTCC-AB02 LoRa Development Board (EU868)

    Out of stock

    The CubeCell series is designed primarily for LoRa/LoRaWAN node applications. Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels. The HTCC-AB02 is a developer-friendly board, ideal for quickly testing and validating communication solutions. Features Arduino compatible Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262 LoRaWAN 1.0.2 support Ultra low power design, 3.5 uA in deep sleep Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching) Good impendence matching and long communication distance Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information Specifications Main Chip ASR6502 (48 MHz ARM Cortex-M0+ MCU) LoRa Chipset SX1262 Frequency 863~870 MHz Max. TX Power 22 ±1 dBm Max. Receiving Sensitivity −135 dBm Hardware Resource 2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO Memory 128 Kb FLASH16 Kb SRAM Power consumption Deep sleep 3.5 uA Interfaces 1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header) Battery 3.7 V lithium battery (power supply and charging) Solar Energy VS pin can be connected to 5.5~7 V solar panel USB to Serial Chip CP2102 Display 0.96" OLED (128 x 64) Operating temperature −20~70°C Dimensions 51.9 x 25 x 8 mm Included 1x CubeCell HTCC-AB02 Development Board 1x Antenna 1x 2x SH1.25 battery connector Downloads Datasheet Schematic Quick start GitHub

    Out of stock

    € 34,95€ 24,95

    Members identical

  • Arduino Alvik - Elektor

    Arduino Arduino Alvik

    Out of stock

    Arduino Alvik is a powerful and versatile robot specifically designed for programming and robotics education. Powered by the Arduino Nano ESP32, Arduino Alvik offers diverse learning paths through different programming languages, including MicroPython, Arduino C, and block-based coding, enabling different possibilities to explore robotics, IoT and AI. Arduino Alvik simplifies coding and complex robot projects, enabling users of all levels to immerse themselves in the exciting world of programming and robotics. It’s also a cross-discipline tool that bridges the gap between education and the future of robotics with CSTA and NGSS-Aligned free courses. This innovative and versatile robot makes learning and creating more accessible and fun than ever before. Features Powered by the versatile Nano ESP32, Alvik streamlines the learning curve in robotics with its comprehensive programming suite that includes MicroPython and Arduino language. Designed to accommodate users of all skill levels, Alvik soon plans to introduce block-based coding, further enhancing accessibility for younger students and providing an engaging entry point into robotics design. Alvik’s Time of Flight, RGB color and line-following array sensors, along with its 6-axis gyroscope and accelerometer, allow users to tackle a range of innovative, real-world projects. From an obstacle avoidance robot to a smart warehouse automation robot car, the possibilities are endless! Alvik comes equipped with LEGO Technic connectors, allowing users to personalize the robot and expand its capabilities. Additionally, it features M3 screw connectors for custom 3D or laser-cutter designs. The Servo, I²C Grove, and I²C Qwiic connectors allow users to expand Alvik’s potential and take robotics projects to a whole new level. Add motors for controlling movement and robotic arms, or integrate extra sensors for data collection and analysis. Specifiations Alvik main controller Arduino Nano ESP32: 8 MB of RAM u-blox NORA-W106 (ESP32-S3) Processor up to 240 MHz ROM 384 kB + SRAM 512 kB 16 MB External FLASH Alvik on-board Core STM32 Arm Cortex-M4 32 Bit Power supply Nano ESP32 USB-C rechargeable and replaceable 18650 Li-Ion battery (included) Programming language MicroPython, Arduino & block-based programming Connectivity Wi-Fi, Bluetooth LE Inputs Time of Flight Distance Sensor (up to 350 cm)RGB Color Sensor6-axis Gyroscope-Accelerometer3x Line follower Array7x Touchable Buttons Outputs 2x RGB LEDs6 V Motors (No load speed 96 rpm, No load current 70 mA) Extensions 4x LEGO Technic connectors8x M3 screw connectorsServo motorI²C GroveI²C Qwiic Downloads Datasheet Documentation

    Out of stock

    € 169,95

    Members € 152,96

  •  -24% IoTize TapNLink WiFi, BLE, NFC - Elektor

    IoTize IoTize TapNLink WiFi, BLE, NFC

    TapNLink modules provide wireless interfaces for linking electronic systems to mobile devices and the Cloud. TapNLink connects directly to the target system's microcontroller. It integrates into and is powered by the target system. All TapNLink products are easily configured to control access by different types of users to data in the target system. TapNLink facilitates rapid creation of Human Machine Interfaces (HMI) that run on Android, iOS and Windows mobiles. HMI apps are easily customized for different users and can be deployed and updated to keep pace with evolving system requirements and user needs. TapNLink Wi-Fi modules can also be configured to connect the target system permanently to a wireless network and the Cloud. This enables permanent logging of target system data and alarms. Features Wireless Channels Wi-Fi 802.11b/g/n Bluetooth Low Energy (BLE 4.2) Near Field Communication (NFC) Type5 tag (ISO/IEC 15693) Supported Target Connections: Connects on 2 GPIO of the target microcontroller and supports: Serial interface with Software Secure Serial Port (S3P) protocol Serial interface with ARM SWD debug protocol. UART with Modbus protocol Mobile Platform Support HTML5 web apps (Android, iOS) API for Cordova (Android, iOS, Windows 10) Java (Android, iOS native) Auto-app generator for Android and iOS mobiles Security Configurable access profiles Configurable, encrypted passwords AES-128/256 module-level data encryption Configurable secure pairing with NFC Dimensions: 38 mm x 28 mm x 3 mm Electrical Characteristics Input voltage: 2.3V to 3.6 V Low power consumption: Standby: 100 µA NFC Tx/Rx: 7 mA Wi-Fi Rx: 110 mA Wi-Fi Tx : 280 mA (802.11b) Temperature Range: -20°C ~ +55°C Compliance CE (Europe), FCC (USA), IC (Canada) REACH RoHS WEEE Ordering Information Base Part Number: TnL-FIW103 MOQ: 20 modules TapNLink modules pre-qualified, pre-programmed and ready to configure. IoTize Studio configuration and testing software Software for HMI on mobile devices (iOS, Android, Windows 10) IoTize Cloud MQTT infrastructure (open source) For more information, check out the datasheet here.

    € 32,95€ 24,95

    Members identical

  •  -18% Arduino Pro Nicla Sense ME - Elektor

    Arduino Arduino Pro Nicla Sense ME

    The Nicla Sense ME is a tiny, low-power tool that sets a new standard for intelligent sensing solutions. With the simplicity of integration and scalability of the Arduino ecosystem, the board combines four state-of-the-art sensors from Bosch Sensortec: BHI260AP motion sensor system with integrated AI BMM150 magnetometer BMP390 pressure sensor BME688 4-in-1 gas sensor with AI and integrated high-linearity, as well as high-accuracy pressure, humidity and temperature sensors. The Arduino Nicla Sense ME is the smallest Arduino form factor yet, with a range of industrial grade sensors packed into a tiny footprint. Measure process parameters such as temperature, humidity and movement. Featuring a 9-axis inertial measurement unit and the possibility for Bluetooth Low Energy connectivity, it can help you to create your next Bluetooth Low Energy enabled project. Make your own industrial grade wireless sensing network with the onboard BHI260AP, BMP390, BMM150 and BME688 Bosch sensors. Features Tiny size, packed with features Low power consumption Add sensing capabilities to existing projects When battery-powered, becomes a complete standalone board Powerful processor, capable of hosting intelligence on the Edge Measures motion and environmental parameters Robust hardware including industrial-grade sensors with embedded AI BLE connectivity maximizes compatibility with professional and consumer equipment 24/7 always-on sensor data processing at ultra-low power consumption Specifications BHI260AP – Self-learning AI smart sensor with integrated accelerometer and gyroscope BMP390 – Digital pressure sensor BMM150 – Geomagnetic sensor BME688 – Digital low power gas, pressure, temperature & humidity sensor with AI Microcontroller 64 MHz ARM Cortex-M4 (nRF52832) Sensors I/O Castellated pins with the following features: 1x I²C bus (with ext. ESLOV connector) 1x Serial port 1x SPI 2x ADC, programmable I/O voltage from 1.8-3.3 V Connectivity Bluetooth 4.2 Power Micro USB (USB-B), Pin Header, 3.7 V Li-po battery with Integrated battery charger Memory 512 KB Flash / 64 KB RAM 2 MB SPI Flash for storage 2 MB QSPI dedicated for BHI260AP Interface USB interface with debug functionality Dimensions 22.86 x 22.86 mm Weight 2 g Downloads Datasheet

    € 84,95€ 69,95

    Members identical

  •  -25% Seeed Studio Grove Beginner Kit for Arduino (Education Add - on Pack) - Elektor

    Seeed Studio Seeed Studio Grove Beginner Kit for Arduino (Education Add-on Pack)

    This is an add-on kit for the Seeed Studio Grove Beginner Kit for Arduino. Applications Suitable for Arduino beginners Suitable for infrared control and motion detect Suitable for getting started with open-source hardware and Arduino coding Included 1x Grove Water Atomization 1x Grove Mini Fan 1x Grove Servo 1x Grove Ultrasonic Distance Sensor 1x Grove Infrared Receiver 1x Grove Mini PIR Motion Sensor 1x Grove Green Wrapper 1x Grove Blue Wrapper 5x Grove Cable 1x Infrared Remote Control Key 1x Ultrasonic Sensor Bracket Set 1x Motor Bracket Set 1x Servo Base

    € 52,95€ 39,95

    Members identical

  • Whadda Brain Game - Elektor

    Velleman Whadda Brain Game

    4 LEDs and 4 push buttons ensure hours of fun. Repeat the combination, harder and harder, faster and faster. The microprocessor-controlled game has 4 different difficulty levels and low consumption. The sound and/or LED indication are adjustable. To save the three 1.5 V AA batteries (not included), the kit automatically switches itself off when not in use. Downloads Manual

    € 11,95

    Members € 10,76

  • Whadda Electronic Christmas Tree - Elektor

    Velleman Whadda Electronic Christmas Tree

    The Christmas tree with flashing LEDs takes the coziness of Christmas to a new level! With 16 flashing LEDs, this green Christmas tree creates a warm atmosphere. With very low power consumption and the option to be powered by a 9-volt battery (not included), this Christmas decoration is easy to use. Enjoy the holidays with this atmospheric addition to your decoration collection. Downloads Manual

    € 9,95

    Members € 8,96

  • Unitree Go2 Spare Battery (15,000 mAh) - Elektor

    Unitree Unitree Go2 Spare Battery (15,000 mAh)

    Pre-order

    With a capacity of 15,000 mAh, the Unitree Go2 battery provides a robust power source that enables your robot to complete tasks with ease. Whether for complex exploration, research projects, or fun excursions, this powerful battery delivers the energy your robot needs. The runtime of the Unitree Go2 battery varies depending on the application and usage. Based on the functions and activities employed, the battery can offer between 2 to 4 hours of operation. This flexibility allows you to customize the robot as needed, enabling longer exploration missions or more extensive projects. The Unitree Go2 battery is a reliable companion for your robotics adventures. With its impressive capacity and adaptable runtime, it ensures your robot performs powerfully and with endurance, without frequent recharging. Whether you need the Unitree Go2 battery as a replacement or an upgrade for your robot, this powerful energy storage solution provides the perfect balance of performance and reliability. Specifications Rated voltage: DC 28.8 V Limited charging voltage: DC 33.6 V Charging current: 9 A Rated capacity: 15,000 mAh, 432 Wh Standard: IS 16046 (Part 2) / IEC 62133-2 Self-developed battery management system (BMS) Dimensions: 120 x 80 x 182 mm Functions: Power indicator Self-discharge protection of battery storage Equilibrium charge protection Overcharge protection Discharge protection Short circuit protection Battery charge detection protection

    Pre-order

    € 795,00

    Members identical

  •  -21% reComputer J3010 – Edge AI Device with NVIDIA Jetson Orin Nano (4 GB) - Elektor

    Seeed Studio reComputer J3010 – Edge AI Device with NVIDIA Jetson Orin Nano (4 GB)

    The reComputer J3010 is a compact and powerful edge AI device powered by the NVIDIA Jetson Orin Nano SoM, delivering an impressive 20 TOPS AI performance – up to 40 times faster than the Jetson Nano. Pre-installed with Jetpack 5.1.1, it features a 128 GB SSD, 4x USB 3.2 ports, HDMI, Gigabit Ethernet, and a versatile carrier board with M.2 Key E for WiFi, M.2 Key M for SSD, RTC, CAN, and a 40-pin GPIO header. Applications AI Video Analytics Machine Vision Robotics Specifications Jetson Orin Nano System-on-Module AI Performance reComputer J3010, Orin Nano 4 GB (20 TOPS) GPU 512-core NVIDIA Ampere architecture GPU with 16 Tensor Cores (Orin Nano 4 GB) CPU 6-core Arm Cortex-A78AE v8.2 64-bit CPU 1.5 MB L2 + 4 MB L3 Memory 4 GB 64-bit LPDDR5 34 GB/s (Orin Nano 4 GB) Video Encoder 1080p30 supported by 1-2 CPU cores Video Decoder 1x 4K60 (H.265) | 2x 4K30 (H.265) | 5x 1080p60 (H.265) | 11x 1080p30 (H.265) Carrier Board Storage M.2 Key M PCIe (M.2 NVMe 2280 SSD 128 GB included) Networking Ethernet 1x RJ-45 Gigabit Ethernet (10/100/1000M) M.2 Key E 1x M.2 Key E (pre-installed 1x Wi-Fi/Bluetooth combo module) I/O USB 4x USB 3.2 Type-A (10 Gbps)1x USB 2.0 Type-C (Device Mode) CSI Camera 2x CSI (2-lane 15-pin) Display 1x HDMI 2.1 Fan 1x 4-pin Fan Connector (5 V PWM) CAN 1x CAN Multifunctional Port 1x 40-Pin Expansion header 1x 12-Pin Control and UART header RTC RTC 2-pin, supports CR1220 (not included) Power Supply 9-19 V DC Mechanical Dimensions 130 x 120 x 58.5 mm (with Case) Installation Desktop, wall-mounting Operating Temperature −10°C~60°C Included 1x reComputer J3010 (system installed) 1x Power adapter (12 V / 5 A) Downloads reComputer J301x Datasheet NVIDIA Jetson Devices and carrier boards comparisions reComputer J401 schematic design file reComputer J3010 3D file

    € 699,00€ 549,00

    Members identical

This category offers a wide spectrum of platforms to choose from. They all have different features and you can choose the platform that best suits your needs or project.

Login

Forgot password?

Don't have an account yet?
Create account