The VL53L1X from STMicroelectronics uses a VCSEL (Vertical Cavity Surface Emitting Laser) to emit an Infrared laser to time the reflection to the target. That means that you will be able to measure the distance to an object from 40mm to 4m away with millimeter resolution! To make it even easier to get your readings, all communication is enacted exclusively via I²C, utilizing our handy Qwiic system, so no soldering is required to connect it to the rest of your system. However, we still have broken out 0.1”-spaced pins in case you prefer to use a breadboard. Each VL53L1X sensor features a precision to be 1mm with an accuracy around +/-5mm, and a minimum read distance of this sensor is 4cm. The field of view for this little breakout is fairly narrow at 15°-27° with a read rate of up to 50Hz. Make sure to power this board appropriately since it will need 2.6V-3.5V to operate. Lastly, please be sure to remove the protective sticker on the VL53L1X before use otherwise it will, most assuredly, throw off your readings. Features Operating Voltage: 2.6V-3.5V Power Consumption: 20 mW @10Hz Measurement Range: ~40mm to 4,000mm Resolution: +/-1mm Light Source: Class 1 940nm VCSEL 7-bit unshifted I²C Address: 0x29 Field of View: 15° - 27° Max Read Rate: 50Hz
This Grove CAN-BUS Module based on GD32E103 adopts a brand-new design, uses the cost-effective and high-performance GD32E103 microcontroller as the main control and cooperates with a firmware we wrote to complete the function of the serial port to CAN FD. Features
Support CAN communication: Implements CAN FD at up to 5 Mb/s
Easy to program: Support AT command which enables simple serial port programming
Grove ecosystem: 20 x 40 x 10 mm small size, 4-pin Grove connector to plug and play, Arduino compatible This Grove CAN-BUS Module supports CAN FD(CAN with Flexible Data-Rate) communication, which is an extension to the original CAN protocol as specified in ISO 11898-1 that responds to increased bandwidth requirements in automotive networks. In CAN FD, the data rate (i.e. number of bits transmitted per second) is increased to be 5 times faster than the classic CAN (5 Mbit/s for the data payload only, the arbitration bit rate is still limited to 1Mbit/s for compatibility). It supports AT command which enables simple serial port programming. This Grove CAN-BUS Module is based on GD32E103 with a frequency up to 120 MHz. It has a flash size from 64 KB to 128 KB and an SRAM size from 20 KB to 32 KB. Applications Car hacking: allows different parts of the vehicle to talk to each other, including the engine, the transmission, and the brakes. Windows, doors, and mirror adjustment. 3D Printers Building automation Lighting control systems Medical instruments and equipment Specifications MCU GD32E103 UART baud rate Up to 115200 (default 9600) CAN FD baud rate Up to 5 Mb/s Indicator TX and RX led Working voltage 3.3 V Grove connector 4-pin Grove connector to plug and play Size 20 x 40 x 10 mm Downloads Datasheet GitHub
ESP32-S2-Saola-1M is a small-sized ESP32-S2 based development board. Most of the I/O pins are broken out to the pin headers on both sides for easy interfacing. Developers can either connect peripherals with jumper wires or mount ESP32-S2-Saola-1M on a breadboard.
ESP32-S2-Saola-1M is equipped with the ESP32-S2-WROOM module, a powerful, generic Wi-Fi MCU module that has a rich set of peripherals. It is an ideal choice for a wide variety of application scenarios relating to Internet of Things (IoT), wearable electronics and smart home. The board a PCB antenna and features a 4 MB external SPI flash.
Features
MCU
ESP32-S2 embedded, Xtensa® single-core 32-bit LX7 microprocessor, up to 240 MHz
128 KB ROM
320 KB SRAM
16 KB SRAM in RTC
WiFi
802.11 b/g/n
Bit rate: 802.11n up to 150 Mbps
A-MPDU and A-MSDU aggregation
0.4 µs guard interval support
Center frequency range of operating channel: 2412 ~ 2484 MHz
Hardware
Interfaces: GPIO, SPI, LCD, UART, I²C, I²S, Camera interface, IR, pulse counter, LED PWM, TWAI (compatible with ISO 11898-1), USB OTG 1.1, ADC, DAC, touch sensor, temperature sensor
40 MHz crystal oscillator
4 MB SPI flash
Operating voltage/Power supply: 3.0 ~ 3.6 V
Operating temperature range: –40 ~ 85 °C
Dimensions: 18 × 31 × 3.3 mm
Applications
Generic Low-power IoT Sensor Hub
Generic Low-power IoT Data Loggers
Cameras for Video Streaming
Over-the-top (OTT) Devices
USB Devices
Speech Recognition
Image Recognition
Mesh Network
Home Automation
Smart Home Control Panel
Smart Building
Industrial Automation
Smart Agriculture
Audio Applications
Health Care Applications
Wi-Fi-enabled Toys
Wearable Electronics
Retail & Catering Applications
Smart POS Machines
The T-Journal is a cheap ESP32 Camera Development Board that features an OV2640 camera, an antenna, a 0.91-inch OLED display, some exposed GPIOs, and a micro-USB interface. It makes it easy and quick to upload code to the board. Specifications Chipset Expressif-ESP32-PCIO-D4 240 MHz Xtensa single-/dual-core 32-bit LX6 microprocessor FLASH QSPI flash/SRAM, up to 4x 16 MB SRAM 520 kB SRAM KEY reset, IO32 Display 0.91' SSD1306 Power indicator lamp red USB to TTL CP2104 Camera OV2640, 2 Megapixel Steering engine analog servo On-board clock 40 MHz crystal oscillator Working voltage 2.3-3.6 V Working current about 160 mA Working temperature range -40℃ ~ +85℃ Size 64.57 x 23.98 mm Power Supply USB 5 V/1 A Charging current 1 A Battery 3.7 V lithium battery WiFi Standard FCC/CE/TELEC/KCC/SRRC/NCC (ESP32-chip) Protocol 802.11 b/g/n/e/i (802.11n, speed up to 150 Mbps) A-MPDU and A-MSDU polymerization, support 0.4 μS Protection interval Frequency range 2.4 GHz~2.5 GHz (2400 M ~ 2483.5 M) Transmit Power 22 dBm Communication distance 300m Bluetooth Protocol meet bluetooth v4.2BR/EDR and BLE standard Radio frequency with -98 dBm sensitivity NZIF receiver Class-1, Class-2 & Class-3 emitter AFH Audio frequency CVSD & SBC audio frequency Software Wifi Mode Station/SoftAP/SoftAP+Station/P2P Security mechanism WPA/WPA2/WPA2-Enterprise/WPS Encryption Type AES/RSA/ECC/SHA Firmware upgrade UART download/OTA(Through network/host to download and write firmware) Software Development Support cloud server development /SDK for user firmware development Networking protocol IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT User Configuration AT + Instruction set, cloud server, Android/iOS app OS FreeRTOS Included 1x ESP32 Camera Module (Normal Lens) 1x Wi-Fi Antenna 1x Power Line Downloads Camera library for Arduino
Wouldn't it be cool to drive a tiny OLED display, read a color sensor, or even just flash some LEDs directly from your computer? Sure you can program an Arduino or Trinket to talk to these devices and your computer, but why can't your computer just talk to those devices and sensors itself? Well, now your computer can talk to devices using the Adafruit FT232H breakout board! What can the FT232H chip do? This chip from FTDI is similar to their USB to serial converter chips but adds a 'multi-protocol synchronous serial engine' which allows it to speak many common protocols like SPI, I²C, serial UART, JTAG, and more! There's even a handful of digital GPIO pins that you can read and write to do things like flash LEDs, read switches or buttons, and more. The FT232H breakout is like adding a little swiss army knife for serial protocols to your computer! This chip is powerful and useful to have when you want to use Python (for example) to quickly iterate and test a device that uses I²C, SPI or plain general purpose I/O. There's no firmware to deal with, so you don't have to deal with how to 'send data to and from an Arduino which is then sent to and from' an electronic sensor or display or part. This breakout has an FT232H chip and an EEPROM for onboard configuration. Specifications Dimensions: 23 x 38 x 4 mm (0.9 x 1.5 x 0.2') Weight: 3.4 g Downloads CAD Files
Features
Four fully independent sensor elements on one package.
The ability to detect a variety of gases, besides Carbon monoxide (CO), Nitrogen dioxide (NO2), Ethyl alcohol(C2H5CH), Volatile Organic Compounds (VOC), etc.
Qualitative detecting, rather than quantitative.
Compact size for easy deployment.
Included
1x Multichannel gas sensor board
1x Grove cable
The MotoPi is an extension-board to control and use up to 16 PWM-controlled 5 V servo motors. The board can be additional powered by a voltage between 4.8 V and 6 V so a perfect supply is always guaranteed and even larger projects can be powered. With the additional power supply and the integrated Analog-Digital-Converter, new possibilities can be reached. An additional power supply per motor is not required anymore because all connections (Voltage, Ground, Control) are directly connected to the board. The control and the programing can be directly done, as usual, on the Raspberry Pi. Special features 16 Channels, own clock generator, Inkl. Analog Digital Converter Input 1 Coaxial power connector 5.5 / 2.1 mm, 5 V / 6 A max Input 2 Screw terminal, 4.8-6 V / 6 A max Compatible with Raspberry Pi A+, B+, 2B, 3B Dimensions 65 x 56 x 24 mm Scope of supply Board, manual, fixing material
This 7' touch display convinces with its variety of different application possibilities. The display can be connected via HDMI as well as via VGA. It has a 3.5 mm audio connector and a 4-pin JST-connector, to which headphones or two 2 W / 5 Ω speakers can be connected. The integrated software allows you to configure settings such as contrast and brightness using the buttons on the side. Specifications LCD type IPS Resolution 1024 x 600 Contrast 800:1 Brightness 350 CD/m² Multitouch Capacitive, 5 Points Connections Connections HDMI, VGA, Audio 3.5 mm, JST connector for two 2 W / 5 Ω speaker Power supply 5 V/2 A Viewing angle 175° Colors 16,7 M Further special features Additional solder pads to lead the buttons to the Dimensions 165 x 124 x 13 mm Included 1x 7' Display 1x microUSB-cable 1x VGA-cable 1x HDMI-cable 1x HDMI-microHDMI-cable Downloads Datasheet Manual
The ATuMan LI1 Laser Line Projection Angle Gauge is a versatile tool designed for precise angle measurements. It combines the functionalities of an inclinometer, protractor, and laser level, making it suitable for various applications in construction, decoration, and DIY projects.
Features
Real-time angle measurement
Double-sided HD LED color screen
Frosted aluminum body
USB-C fast charging
Angle levelling
Laser line projection
Adjustable bracket for easy fixation
IP54 waterproof and dustproof
Specifications
Indoor Distance
≤10 m
Measurement Accuracy
±0.5°
Measurement Modes
Absolute angle and relative angle
Laser Wavelength
660 nm
Laser Class
Class II
Protection Level
IP54 (dustproof and splash-resistant)
Battery
730 mAh Lithium battery (built-in)
Charging Interface
USB-C
Operating Temperature
−10~50°C
Dimensions
120 x 20 x 35 mm (Projector)103 x 95 mm (Bracket)
Weight
95 g
Included
1x LI1 Laser Projection Angle Meter (Dual Laser)
1x Bracket
The 741SE is an easy-to-build surface-mount soldering kit. It includes the circuit board, resistors, and transistors that make up the electrical circuit as well as printed assembly instructions. The kit also comes complete with the 'IC Leg' stand, and 8 color coded thumbscrew terminal posts. To build the 741SE, basic electronic soldering skill and tools are required, but no additional knowledge of electronics is presumed or required. You provide standard surface-mount soldering tools: a soldering iron, solder (wire or paste), small metal tweezers, as well as a Phillips head screwdriver. The kit features relatively large surface mount components (1206 and SOT-23), and is a great first surface-mount soldering kit if you're just getting started. However, if you are experienced at surface mount soldering and have tools like a hot air rework station or other equipment, you're welcome to use them for assembling this kit. Features Anodized aluminium stand 8x 4-40 surface-mount threaded inserts Stainless steel thumbscrews with colour-coded plastic caps (1 red, 1 black, 6 grey) All materials (including the circuit board and stand) are RoHS compliant (lead-free) Dimensions: 6.5 cm × 5.2 cm x 1.6 mm Dimensions assembled: 6.5 cm × 7.8 cm × 2.0 cm
The OKdo E1 is an ultra-low-cost Development Board based on the NXP LPC55S69JBD100 dual-core Arm Cortex-M33 microcontroller. The E1 board is perfect for Industrial IoT, building control and automation, consumer electronics, general embedded and secure applications.
Features
Processor with Arm TrustZone, Floating Point Unit (FPU) and Memory Protection Unit (MPU)
CASPER Crypto co-processor to enable hardware acceleration for certain asymmetric cryptographic algorithms
PowerQuad Hardware Accelerator for fixed and floating point DSP functions
SRAM Physical Unclonable Function (PUF) for key generation, storage and reconstruction
PRINCE module for real-time encryption and decryption of flash data
AES-256 and SHA2 engines
Up to Nine Flexcomm interfaces. Each Flexcomm interface can be selected by software to be a USART, SPI, I²C, and I²S interface
USB 2.0 High-Speed Host/Device controller with on-chip PHY
USB 2.0 Full-Speed Host/Device controller with on-chip PHY
Up to 64 GPIOs
Secure digital input/output (SD/MMC and SDIO) card interface
Specifications
LPC55S69JBD100 640kbyte flash microcontroller
In-built CMSIS-DAP v1.0.7 debugger based on LPC11U35
Internal PLL support up to 100MHz operation, 16MHz can be mounted for full 150MHz operation.
SRAM 320kB
32kHz crystal for real-time clock
4 user switches
3-colour LED
User USB connector
2-off 16-way expansion connectors
UART over USB virtual COM port
The LILYGO T-Panel S3 is a versatile development board designed for IoT applications, featuring a 4-inch IPS LCD with a 480x480 resolution.
Powered by the ESP32-S3 microcontroller, it offers 2.4 GHz Wi-Fi and Bluetooth 5 (LE) connectivity, with 16 MB of flash memory and 8 MB of PSRAM. The board supports development environments such as Arduino, PlatformIO-IDE, and MicroPython. Notably, it includes a capacitive touch interface, enhancing user interaction capabilities. Onboard functions comprise Boot (IO00), Reset, and two additional keys, providing flexibility for various applications. This combination of features makes the T-Panel S3 suitable for a wide range of IoT projects and smart device control interfaces.
Specifications
MCU1
ESP32-S3
Flash
16 MB
PSRAM
8 MB
Wireless Connectivity
2.4 GHz Wi-Fi + Bluetooth 5 (LE)
MCU2
ESP32-H2
Flash
4 MB
Wireless Connectivity
IEEE 802.15.4 + Bluetooth 5 (LE)
Developing
Arduino, PlatformIO-IDE, Micropython
Display
4.0" 480x480 IPS ST7701S LCD
Resolution
480 x 480 (RGB)
Interface
SPI + RGB
Compatibility library
Arduino_ GFX, LVGL
Onboard functions
QWiiCx2 + TF Card + AntennaESP32 4x Button= S3(Boot + RST) + H2(Boot + RST)
Transceiver Module
RS485
Using bus communication protocol
UART
Included
1x T-Panel S3
1x Female pin (2x 8x1.27)
Downloads
GitHub
This mini IPS 7-inch HD monitor supports a resolution of 1024x600. IPS monitors help keep colors consistent at a wide viewing angle. The 2 removable speakers enhance your audio-visual experiences. Features Four corner holes let you mount the small monitor onto your DIY IoT projects that you’re working on. This Raspberry Pi display also comes with 2 stands, is easy to install and remove, great for on-the-go use. With a capacitive USB touchscreen, simply power the USB touch port to achieve touch function and no need to install the driver, just plug and play! Signal via HDMI-compatible port, power&touch via micro USB port, drive free. No cable solution to Raspberry Pi 4, just using 2 simple adapters to connect your Raspberry Pi 4 directly. You can use it with your Raspberry Pi 4/3/2, Laptop, TV, video game console like Nintendo Switch/Xbox/PS4, and security camera. 170-degree wide view angle 5-point capacitive HD touch display Specifications Display size 7 inch (154 x 86 mm) Resolution 1024 x 600 Display type IPS Touch Capacitive Touchscreen Frame rate 60 fps Brightness 260 cd/m² Speaker Support Interface HD & USB Working temperature −20 to +60°C Dimensions 164 x 99 mm Weight 235 g Included 1x 7-inch Monitor 1x USB to Micro USB Connector 1x HD to Micro HD Connector 1x USB to Micro USB Cable 1x HD to HD Cable 4x M2.5 Screws 4x Small Copper Pillars 2x Pro Stand 2x M3 Screws 2x Speakers 1x User Manual Downloads User Manual
If you are looking for a simple way to learn soldering, or just want to make a small gadget that you can carry, this set is a great opportunity. Reaction game is an educational kit which teaches you how to solder, and in the end, you get to have your own small game. The goal of the game is to press the button next to the LED as soon as it turns on. With every correct answer, the game gets a bit harder – the time you have to press the button shortens. How many correct answers can you get?
It’s based on ATtiny404 microcontroller, programmed in Arduino. At its back, you’ll find CR2032 battery which makes the kit portable. There’s keychain holder as well. Soldering process is easy enough based on the mark on the PCB.
Included
1x PCB
1x ATtiny404 microcontroller
4x LEDs
4x Pushbuttons
1x Switch
4x Resistors (330 ohm)
1x CR2032 battery holder
1x Battery CR2032
1x Keychain holder
The Qwiic Mux also has eight configurable addresses of its own, allowing for up to 64 I²C buses on a connection. To make it even easier to use this multiplexer, all communication is enacted exclusively via I²C, utilizing our handy Qwiic system. The Qwiic Mux also allows you to change the last three bits of the address byte, allowing for eight jumper selectable addresses if you happen to need to put more than one Qwiic Mux Breakout on the same I²C port. The address can be changed by adding solder to any of the three ADR jumpers. Each SparkFun Qwiic Mux Breakout operates between 1.65 V and 5.5 V, making it ideal for all of the Qwiic boards we produce in house.
The Unicorn Pack fits nicely on the back of your Pico - with a tidy 7x16 matrix (that's 112 RGB LEDs!) it's surely the fanciest backpack going. The four tactile buttons can be used to switch between modes, as controls for simple games, or adjusting brightness. It's possible to control the colour and brightness of each LED individually so you can use it to display animations, text, simple images, and more. Make a mini photo FX lamp, a smart status light for Zoom, use it to display colourful scrolling messages on your fridge, or just enjoy some pretty animations. Features 16x7 matrix of RGB LEDs (112 total) Individual colour/brightness control of each LED 4 x tactile buttons Pre-soldered female headers for attaching to Pico Compatible with Raspberry Pi Pico. Fully assembled No soldering required (as long as your Pico has header pins attached). Dimensions: approx 62mm x 25mm x 10mm (L x W x H, including headers and buttons) C/C++ and MicroPython libraries
Build your 3D led cube and create unlimited 3D effects. The unit comes standard loaded with effects. Connect to your computer (USB) and create your own!
Features
LEDs: 5 x 5 x 5 = 125 LEDs
User programmable via USB (creation of animation/scenes)
Large amount of user programmable frames
Frames are separately dimmable
4 transition speeds
Available frames: 3200
5 levels LED dimming available
No coding skills required
Software similar to (3 x 3 x 3)
Specifications
Regulated power supply: 9 VDC (not incl.)
Power consumption: 300 mA max.
Dimensions: 110 x 110 x 150 mm
Pico Cube is a 4x4x4 LED cube HAT for Raspberry Pi Pico with 5 VDC operating voltage. Pico cube, a monochromatic Green with 64 LEDs, is a fun way to learn programming. It is designed to perform incandescent operations with low energy consumptions, robust outlook, and easy installation that make people/kids/users learn the effects of LED lights with a different pattern of colors via the combination of software and hardware i.e. Raspberry Pi Pico.
Features
Standard 40 Pins Raspberry Pi Pico Header
GPIO Based Communication
64 High-Intensity Monochromatic LEDs
Individual LED access
Each Layer Access
Specifications
Operating Voltage: 5 V
Color: Green
Communication: GPIO
LEDs: 64
Included
1x Pico Cube Base PCB
4x Layer PCB
8x Pillar PCB
2x Male Berg (1 x 20)
2x Female Berg (1 x 20)
70 LEDs
Note: Raspberry Pi Pico is not included.
Downloads
GitHub
Wiki
Take control of your smart environment with the compact and powerful 4-inch ESP32-S3 IPS Touchscreen Control Panel. Designed for high performance and versatility, this sleek 86-box format panel integrates advanced connectivity, intuitive touch control, and real-time environmental sensing.
Features
Powerful Core Module WT32-S3-WROVER-N16R8
4-inch IPS full-screen display
Resolution: 480 x 480 pixels (RGB565 format)
Screen Driver IC: GC9503V
Touch Controller IC: FT6336U
Equipped with an SHT20 Temperature and Humidity Sensor for real-time monitoring of environmental conditions.
RS485 Interface using an automatic transceiver circuit
Built-in WiFi and Bluetooth
Applications
Smart Home Control Panels
Industrial Automation Interfaces
Environmental Monitoring Systems
IoT Projects and Custom Smart Solutions
The T-Deck is a pocket-sized gadget featuring a 2.8-inch IPS LCD display (320 x 240), a mini keyboard, and an ESP32 dual-core processor. While it’s not quite a smartphone, it offers plenty of potential for tech enthusiasts. With some programming know-how, you can transform it into a standalone messaging device or a portable coding platform.
Specifications
Microcontroller
ESP32-S3FN16R8 Dual-core LX7 microprocessor
Wireless Connectivity
2.4 GHz Wi-Fi & Bluetooth 5 (LE)
Development
Arduino, PlatformlO, MicroPython
Flash
16 MB
PSRAM
8 MB
Battery ADC Pin
IO04
Onboard functions
Trackball, Microphone, Speaker
Display
2.8" ST7789 SPI Interface IPS
Resolution
320 x 240 (Full viewing angle)
Transmit power
+22 dBm
SX1262 LoRa Transceiver (Frequency)
868 Mhz
Dimensions
100 x 68 x 11 mm
Included
1x T-Deck ESP32-S3 LoRa
1x FPC antenna (868 MHz)
1x Male pin (6-pin)
1x Power cable
Downloads
GitHub
This FeatherWing will make it easy to add data logging to any Feather Board you might have. You get both an I²C real-time clock (PCF8523) with 32 KHz crystal and battery backup, and a microSD socket that connects to the SPI port pins (+ extra pin for CS). Note: FeatherWing doesn't come with a microSD card. A CR1220 coin cell is required to use the RTC battery-backup capabilities. If you're not using the RTC part of the FeatherWing, a battery is not required. To talk to the microSD card socket Arduino's default SD library is recommended. Some light soldering is required to attach the headers onto the Wing. Pinouts Power pins On the bottom row, the 3.3 V (second from left) and GND (fourth from left) pin are used to power the SD card and RTC (to take a load off the coin cell battery when main power is available) RTC & I²C Pins In the top right, SDA (rightmost) and SCL (to the left of SDA) are used to talk to the RTC chip.
SCL - I²C clock pin to connect to your microcontroller's I2C clock line. This pin has a 10 kΩ pull-up resistor to 3.3 V
SDA - I²C data pin to connect to your microcontroller's I2C data line. This pin has a 10 kΩ pull-up resistor to 3.3 V There's also a breakout for INT which is the output pin from the RTC. It can be used as an interrupt output or it could also be used to generate a square wave. Note that this pin is an open drain - you must enable the internal pull-up on whatever digital pin it is connected to. SD & SPI Pins Starting from the left you've got SPI Clock (SCK) - output from feather to wing SPI Master Out Slave In (MOSI) - output from feather to wing SPI Master In Slave Out (MISO) - input from wing to feather These pins are in the same location on every Feather. They are used for communicating with the SD card. When the SD card is not inserted, these pins are completely free. MISO is tri-stated whenever the SD CS (chip select) pin is pulled high
This carrier board combines a 2.4" TFT display, six addressable LEDs, onboard voltage regulator, a 6-pin IO connector, and microSD slot with the M.2 pin connector slot so that it can be used with compatible processor boards in our MicroMod ecosystem. We've also populated this carrier board with Atmel's ATtiny84 with 8kb of programmable flash. This little guy is preprogrammed to communicate with the processor over I²C to read button presses.
Features
M.2 MicroMod Connector
240 x 320 pixel, 2.4" TFT display
6 Addressable APA102 LEDs
Magnetic Buzzer
USB-C Connector
3.3 V 1 A Voltage Regulator
Qwiic Connector
Boot/Reset Buttons
RTC Backup Battery & Charge Circuit
microSD
Phillips #0 M2.5 x 3 mm screw included
The NEO-M8U module is a 72-channel u-blox M8 engine GNSS receiver, meaning it can receive signals from the GPS, GLONASS, Galileo, and BeiDou constellations with ~2.5-meter accuracy. The module supports the concurrent reception of three GNSS systems. The combination of GNSS and integrated 3D sensor measurements on the NEO-M8U provide accurate, real-time positioning rates of up to 30Hz.
Compared to other GPS modules, this breakout maximizes position accuracy in dense cities or covered areas. Even under poor signal conditions, continuous positioning is provided in urban environments and is also available during complete signal loss (e.g. short tunnels and parking garages). With UDR, position begins as soon as power is applied to the board, even before the first GNSS fix is available! Lock time is further reduced with an on-board rechargeable battery; you'll have backup power enabling the GPS to get a hot lock within seconds!
Additionally, this u-blox receiver supports I²C (u-blox calls this Display Data Channel), making it perfect for the Qwiic compatibility, so we don't have to use up our precious UART ports. Utilizing our handy Qwiic system, no soldering is required to connect it to the rest of your system. However, we still have broken out 0.1'-spaced pins if you prefer to use a breadboard.
U-blox based GPS products are configurable using the popular but dense, windows program called u-centre. Plenty of different functions can be configured on the NEO-M8U: baud rates, update rates, geofencing, spoofing detection, external interrupts, SBAS/D-GPS, etc. All of this can be done within the SparkFun Arduino Library!
The SparkFun NEO-M8U GPS Breakout is also equipped with an on-board rechargeable battery that provides power to the RTC on the NEO-M8U. This reduces the time-to-first fix from a cold start (~26s) to a hot start (~1.5s). The battery will maintain RTC and GNSS orbit data without being connected to power for plenty of time.
Features
Integrated U.FL connector for use with an antenna of your choice
72-Channel GNSS Receiver
2.5 m Horizontal Accuracy
30 Hz Max Update Rate
Time-To-First-Fix:
Cold: 26 s
Hot: 1.5 s
Max Altitude: 50,000 m
Max G: ≤4
Max Velocity: 500 m/s
Velocity Accuracy: 0.5m/s
Heading Accuracy: 1 degree
Built-In Accelerometer and Gyroscope
Time Pulse Accuracy: 30 ns
3.3 V VCC and I/O
Current Consumption: ~29 mA Continuous Tracking, Default Concurrent Mode
Software Configurable
Geofencing
Odometer
Spoofing Detection
External Interrupt
Pin Control
Low Power Mode
Many others!
Supports NMEA, UBX, and RTCM protocols over UART or I²C interfaces
The SparkFun DataLogger IoT (9DoF) is a data logger that comes preprogrammed to automatically log IMU, GPS, and various pressure, humidity, and distance sensors. All without writing a single line of code! The DataLogger automatically detects, configures, and logs Qwiic sensors. It was specifically designed for users who just need to capture a lot of data to a CSV or JSON file and get back to their larger project. Save the data to a microSD card or send it wirelessly to your preferred Internet of Things (IoT) service!
Included on every DataLogger IoT is an IMU for built-in logging of a triple-axis accelerometer, gyro, and magnetometer. Whereas the original 9DOF Razor used the old MPU-9250, the DataLogger IoT uses the ISM330DHCX from STMicroelectronics and MMC5983MA from MEMSIC. Simply power up the DataLogger IoT, configure the board to record readings from supported devices, and begin logging! Data can be time-stamped when the time is synced to NTP, GNSS, or RTC.
The DataLogger IoT is highly configurable over an easy-to-use serial interface. Simply plug in a USB-C cable and open a serial terminal at 115200 baud. The logging output is automatically streamed to both the terminal and the microSD card. Pressing any key in the terminal window will open the configuration menu.
The DataLogger IoT (9DoF) automatically scans, detects, configures, and logs various Qwiic sensors plugged into the board (no soldering, no programming!).
Specifications
ESP32-WROOM-32E Module
Integrated 802.11b/g/n WiFi 2.4 GHz transceiver
Configurable via CH340C
Operating voltage range
3.3 V to 6.0 V (via VIN)
5 V with USB (via 5 V or USB type C)
3.6 V to 4.2 V with LiPo battery (via BATT or 2-pin JST)
Built-in MCP73831 single cell LiPo charger
Minimum 500 mA charge rate
3.3 V (via 3V3)
MAX17048 LiPo Fuel Gauge
Ports
1x USB-C
1x JST style connector for LiPo battery
2x Qwiic enabled I²C
1x microSD socket
Support for 4-bit SDIO and microSD cards formatted to FAT32
9-axis IMU
Accelerometer & Gyro (ISM330DHCX)
Magnetometer (MMC5983MA)
LEDs
Charge (CHG)
Status (STAT)
WS2812-2020 Addressable RGB
Jumpers
IMU interrupt
Magnetometer interrupt
RGB LED
Status LED
Charge LED
I²C pull-up resistors
USB Shield
Buttons
Reset
Boot
Dimensions: 1.66 x 2.0' (4.2 x 5.1 cm)
Weight: 10.7 g
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
CH340 Drivers
Firmware
GitHub Hardware Repo
Here you will find all kinds of parts, components and accessories you will need in various projects, starting from simple wires, sensors and displays to already pre-assembled modules and kits.