Temporary Delay in the Delivery of Unitree Robots
Like many other suppliers, we are currently experiencing delays in the delivery of Unitree robots. A shipment from our supplier is currently held in customs, which has unfortunately led to later-than-planned deliveries for previously placed orders. We are actively working with our supplier to resolve this issue and expect more clarity soon, but at this time, we cannot provide any guarantees.
Additionally, a new shipment is already on its way, though it will take some time to arrive. Since other suppliers are facing similar challenges, switching to a different provider is unlikely to result in a faster solution. Our top priority remains fulfilling existing orders.
If you have any questions or would like to update your order, please do not hesitate to contact our customer service team. We will keep you informed of any further developments.
Unitree Go2 series consists of quadruped robots for the research & development of autonomous systems in the fields of human-robot interaction (HRI), SLAM & transportation. Due to the four legs, as well as the 12DOF, this robot can handle a variety of different terrains. The Go2 comes with a perfected drive & power management system, which enables a speed (depending on the version) of up to 3.7 m/s or 11.88 km/h with an operating time of up to 4 hours. Furthermore, the motors have a torque of 45 N.m at the body/thighs and at the knees, which also allow jumps or backflips.
Features
Super Recognition System: 4D LIDAR L1
Max Running Speed: approx. 5 m/s
Peak Joint Torque: approx. 45 N.m
Wireless Module: WiFi 6/Bluetooth/4G
Ultra-long battery Endurance: approx. 2-4 h (long battery life measured in real life)
Intelligent Side-follow System: ISS 2.0
Specifications
Tracking module: Remote-controlled or automatic tracking
Front camera: Image tansmission Resolution 1280x720, FOV 120°, Ultra wide angle lens deliver rich clarity
Front lamp: Brightly lights the way ahead
4D LiDAR L1: 360°x90° omnidirectional ultra-wide-angle scanning allows automatic avoidance with small blind spot and stable operation
12 knee joint motors: Strong and powerful, Beautiful and simple, Brandy new visual experience
Intercom microphone: Effective communication with no scenario restrictions
Self-retracting strap: Easy to carry and load things
More stable, more powerful with advanced devices: 3D LiDAR, 4G ESIM Card, WiFi 6 with Dual-band, Bluetooth 5.2 for stable connection and remote control
Powerful Computing Core: Motion controller, High-performance ARM processor, Improved Al algorithm processor, External ORIN NX/NANO
Smart battery: Standard 8000 mAh battery, Long-endurance 15000 mAh battery, Protection from over-temp, overcharge and short-circuit
Speaker for music play: Listen to music as your pleasure
Unitree Go2 Variants
The Go2 impresses not only with its technical capabilities, but also with a modern and slim design that gives it a futuristic look and makes it a real eye-catcher. The Go2 Air is specially designed for demos and presentations. With its basic features, it offers a solid basis for demonstrating the movement capabilities and functionality of a four-legged robot. Important: The Go2 Air is delivered without a controller. This can be purchased optionally.
With a powerful 8-core high-performance CPU, the Pro and Edu offer impressive computing power required for complex tasks and demanding calculations. This enables faster and more efficient data processing and makes the Pro and Edu a reliable partner for your projects.
From the Edu version onwards, the Go2 is programmable and opens up endless possibilities for developing and researching your own robotics applications. The Go2 is also able to handle a step height of up to 14 cm. This makes it an ideal tool for research, education and entry into the world of robotics.
The Go2 Edu comes with a remote controller that gives you easy and intuitive control. You also get a docking station with impressive computing power of 100 TOPS, which is equipped with powerful AI algorithms and offers you technical support.
Go2 Edu is equipped with a powerful 15000 mAh battery that gives it an impressive runtime of up to 4 hours. This long operating time allows the robot to carry out longer exploration missions and complete demanding tasks.
Model Comparison
Air
Pro
Edu/Edu Plus
Dimensions (standing)
70 x 31 x 40 cm
70 x 31 x 40 cm
70 x 31 x 40 cm
Dimensions (crouching)
76 x 31 x 20 cm
76 x 31 x 20 cm
76 x 31 x 20 cm
Material
Aluminium alloy + High strength engineering plastic
Aluminium alloy + High strength engineering plastic
Aluminium alloy + High strength engineering plastic
Weight (with battery)
about 15 kg
about 15 kg
about 15 kg
Voltage
28~33.6 V
28~33.6 V
28~33.6 V
Peaking capacity
about 3000 W
about 3000 W
about 3000 W
Payload
≈7 kg (MAX ~ 10 kg)
≈8 kg (MAX ~ 10 kg)
≈8 kg (MAX ~ 12 kg)
Speed
0~2.5 m/s
0~3.5 m/s
0~3.7 m/s (MAX ~ 5 m/s)
Max Climb Drop Height
about 15 cm
about 16 cm
about 16 cm
Max Climb Angle
30°
40°
40°
Basic Computing Power
N/A
8-core High-performance CPU
8-core High-performance CPU
Aluminum knee joint motor
12 set
12 set
12 set
Intra-joint circuit (knee)
✓
✓
✓
Joint Heat Pipe Cooler
✓
✓
✓
Range of Motion
Body: −48~48°
Body: −48~48°
Body: −48~48°
Thigh: −200°~90°
Thigh: −200°~90°
Thigh: −200°~90°
Shank: −156°~−48°
Shank: −156°~−48°
Shank: −156°~−48°
Max Torque
N/A
about 45 N.m
about 45 N.m
Super-wide-angle 3D LiDAR
✓
✓
✓
Wireless Vector Positioning Tracking Module
N/A
✓
✓
HD Wide-angle Camera
✓
✓
✓
Foot-end force sensor
N/A
N/A
✓
Basic Action
✓
✓
✓
Auto-scaling strap
N/A
✓
N/A
Upgraded Intelligent OTA
✓
✓
✓
RTT 2.0 Image Transmission
✓
✓
✓
App Basic Remote Control
✓
✓
✓
App Data Viewing
✓
✓
✓
App Graphical Programme
✓
✓
✓
Front Lamp (3 W)
✓
✓
✓
WiFi 6 with Dual-band
✓
✓
✓
Bluetooth 5.2/4.2/2.1
✓
✓
✓
4G Module
N/A
CN/GB
CN/GB
Voice Function
N/A
✓
✓
Music Playback
N/A
✓
✓
ISS 2.0 Intelligent side-follow system
N/A
✓
✓
Intelligent detection and avoidance
✓
✓
✓
Secondary development
N/A
N/A
✓
Manual controller
Optional
Optional
✓
High computing power module
N/A
N/A
Edu: 40 TOPS computing power
Edu Plus: 100 TOPS computing power
NVIDIA Jetson Orin (optional)
Smart Battery
Standard (8000 mAh)
Standard (8000 mAh)
Long endurance (15000 mAh)
Battery Life
1-2 h
1-2 h
2-4 h
Charger
Standard (33.6 V, 3.5 A)
Standard (33.6 V, 3.5 A)
Fast charge (33.6 V, 9 A)
Included
1x Unitree Go2 Pro
1x Unitree Go2 Battery (8000 mAh)
Downloads
Documentation
iOS/Android apps
GitHub
The Unitree Go2 Controller is a dedicated remote control device designed for seamless and precise operation of the Unitree Go2 Quadruped Robot. This bimanual remote features built-in data transmission and Bluetooth modules, facilitating reliable wireless communication with the robot. It offers an ultra-long control distance of over 100 meters in open environments, ensuring flexibility in various operational scenarios.
Specifications
Charging Voltage
5 V
Charging Current
2 A
Frequency
2.4 GHz
Communication Modes
Data transmission module and Bluetooth
Battery Capacity
2500 mAh
Operating Time
approx. 4.5 hours
Control Distance
Over 100 meters in open environments
With a capacity of 15,000 mAh, the Unitree Go2 battery provides a robust power source that enables your robot to complete tasks with ease. Whether for complex exploration, research projects, or fun excursions, this powerful battery delivers the energy your robot needs.
The runtime of the Unitree Go2 battery varies depending on the application and usage. Based on the functions and activities employed, the battery can offer between 2 to 4 hours of operation. This flexibility allows you to customize the robot as needed, enabling longer exploration missions or more extensive projects.
The Unitree Go2 battery is a reliable companion for your robotics adventures. With its impressive capacity and adaptable runtime, it ensures your robot performs powerfully and with endurance, without frequent recharging.
Whether you need the Unitree Go2 battery as a replacement or an upgrade for your robot, this powerful energy storage solution provides the perfect balance of performance and reliability.
Specifications
Rated voltage: DC 28.8 V
Limited charging voltage: DC 33.6 V
Charging current: 9 A
Rated capacity: 15,000 mAh, 432 Wh
Standard: IS 16046 (Part 2) / IEC 62133-2
Self-developed battery management system (BMS)
Dimensions: 120 x 80 x 182 mm
Functions:
Power indicator
Self-discharge protection of battery storage
Equilibrium charge protection
Overcharge protection
Discharge protection
Short circuit protection
Battery charge detection protection
The newcomer to Microchip’s PIC microcontrollers invariably gets an LED to flash as their first attempt to master this technology. You can use just a simple LED indicator in order to show that your initial attempt is working, which will give you confidence to move forward. This is how the book begins — simple programs to flash LEDs, and eventually by stages to use other display indicators such as the 7-segment display, alphanumeric liquid crystal displays and eventually a colour graphic LCD.
As the reader progresses through the book, bigger and upgraded PIC chips are introduced, with full circuit diagrams and source code, both in assembler and C.
In addition, a small tutorial is included using the MPLAB programming environment, together with the EAGLE schematic and PCB design package to enable readers to create their own designs using the book’s many case studies as working examples to work from.
Over 180 Projects with Raspberry Pi, Pico W, Arduino, and ESP32
This bundle contains the Universal Maker Sensor Kit, which consists of many sensors, actuators, displays, and motors. It’s perfect for environmental monitoring, smart home projects, robotics, and game controllers.
The new Elektor book describes the design of many projects using the kit together with the popular Raspberry Pi, Raspberry Pi Pico W, Arduino Uno, and the ESP32 family of development boards. You can choose any of these development boards for your projects and either use the provided programs as they are, or modify these programs to suit your applications.
This bundle contains:
NEW Book: Universal Maker Sensor Kit (normal price: €45)
Universal Maker Sensor Kit (for Raspberry Pi, Pico W, Arduino, ESP32) (normal price: €70)
Raspberry Pi Pico W (normal price: €8)
Book: Universal Maker Sensor Kit
Learn to use more than 35 Sensors and Actuators with C++, Python, and MicroPython
This book contains over 180 projects for all four major development boards (Arduino, Raspberry Pi, Pico W, and ESP32). Depending on the development board, projects are available in the C, Python, or MicroPython programming languages.
The project titles, brief descriptions, wiring diagrams, and full program listings together with their detailed descriptions are given in the guide.
Universal Maker Sensor Kit (for Raspberry Pi, Pico W, Arduino, ESP32)
Discover endless creativity with the Universal Maker Sensor Kit, designed for use with Raspberry Pi, Pico W, Arduino, and ESP32. This versatile kit offers compatibility across popular development platforms, including Arduino Uno R4 Minima/WiFi, Uno R3, Mega 2560, Raspberry Pi 5, 4, 3B+, 3B, Zero, Pico W, and ESP32.
Featuring over 35 sensors, actuators, and displays, it's perfect for projects ranging from environmental monitoring and smart home automation to robotics and interactive gaming. Step-by-step tutorials in C/C++, Python, and MicroPython guide beginners and experienced makers alike through 169 exciting projects.
Features
Wide Compatibility: Fully supports Arduino (Uno R3, Uno R4 Minima/WiFi, Mega 2560), Raspberry Pi (5, 4, 3B+, 3B, Zero, Pico W), and ESP32, enabling extensive flexibility across numerous development platforms. Includes instructions for building 169 projects.
Comprehensive Components: Features more than 35 sensors, actuators, and display modules suitable for diverse projects such as environmental monitoring, smart home automation, robotics, and interactive game controllers.
Detailed Tutorials: Provides clear, step-by-step tutorials covering Arduino, Raspberry Pi, Pico W, ESP32, and each included component. Tutorials are available in C/C++, Python, and MicroPython, catering effectively to both beginners and experienced makers.
Suitable for All Skill Levels: Offers structured projects designed to guide users seamlessly from beginner to advanced proficiency in electronics and programming, enhancing creativity and technical expertise.
Included
Breadboard
Button Module
Capacitive Soil Moisture Module
Flame Sensor Module
Gas/Smoke Sensor Module (MQ2)
Gyroscope & Accelerometer Module (MPU6050)
Hall Sensor Module
Infrared Speed Sensor Module
IR Obstacle Avoidance Sensor Module
Joystick Module
PCF8591 ADC DAC Converter Module
Photoresistor Module
PIR Motion Module (HC-SR501)
Potentiometer Module
Pulse Oximeter and Heart Rate Sensor Module (MAX30102)
Raindrop Detection Module
Real Time Clock Module (DS1302)
Rotary Encoder Module
Temperature Sensor Module (DS18B20)
Temperature and Humidity Sensor Module (DHT11)
Temperature, Humidity & Pressure Sensor (BMP280)
Time of Flight Micro-LIDAR Distance Sensor (VL53L0X)
Touch Sensor Module
Ultrasonic Sensor Module (HC-SR04)
Vibration Sensor Module (SW-420)
Water Level Sensor Module
I²C LCD 1602
OLED Display Module (SSD1306)
RGB LED Module
Traffic Light Module
5 V Relay Module
Centrifugal Pump
L9110 Motor Driver Module
Passive Buzzer Module
Servo Motor (SG90)
TT Motor
ESP8266 Module
JDY-31 Bluetooth Module
Power Supply Module
Documentation
Online Tutorial
Discover endless creativity with the Universal Maker Sensor Kit, designed for use with Raspberry Pi, Pico W, Arduino, and ESP32. This versatile kit offers compatibility across popular development platforms, including Arduino Uno R4 Minima/WiFi, Uno R3, Mega 2560, Raspberry Pi 5, 4, 3B+, 3B, Zero, Pico W, and ESP32.
Featuring over 35 sensors, actuators, and displays, it's perfect for projects ranging from environmental monitoring and smart home automation to robotics and interactive gaming. Step-by-step tutorials in C/C++, Python, and MicroPython guide beginners and experienced makers alike through 169 exciting projects.
Features
Wide Compatibility: Fully supports Arduino (Uno R3, Uno R4 Minima/WiFi, Mega 2560), Raspberry Pi (5, 4, 3B+, 3B, Zero, Pico W), and ESP32, enabling extensive flexibility across numerous development platforms. Includes instructions for building 169 projects.
Comprehensive Components: Features more than 35 sensors, actuators, and display modules suitable for diverse projects such as environmental monitoring, smart home automation, robotics, and interactive game controllers.
Detailed Tutorials: Provides clear, step-by-step tutorials covering Arduino, Raspberry Pi, Pico W, ESP32, and each included component. Tutorials are available in C/C++, Python, and MicroPython, catering effectively to both beginners and experienced makers.
Suitable for All Skill Levels: Offers structured projects designed to guide users seamlessly from beginner to advanced proficiency in electronics and programming, enhancing creativity and technical expertise.
Included
Breadboard
Button Module
Capacitive Soil Moisture Module
Flame Sensor Module
Gas/Smoke Sensor Module (MQ2)
Gyroscope & Accelerometer Module (MPU6050)
Hall Sensor Module
Infrared Speed Sensor Module
IR Obstacle Avoidance Sensor Module
Joystick Module
PCF8591 ADC DAC Converter Module
Photoresistor Module
PIR Motion Module (HC-SR501)
Potentiometer Module
Pulse Oximeter and Heart Rate Sensor Module (MAX30102)
Raindrop Detection Module
Real Time Clock Module (DS1302)
Rotary Encoder Module
Temperature Sensor Module (DS18B20)
Temperature and Humidity Sensor Module (DHT11)
Temperature, Humidity & Pressure Sensor (BMP280)
Time of Flight Micro-LIDAR Distance Sensor (VL53L0X)
Touch Sensor Module
Ultrasonic Sensor Module (HC-SR04)
Vibration Sensor Module (SW-420)
Water Level Sensor Module
I²C LCD 1602
OLED Display Module (SSD1306)
RGB LED Module
Traffic Light Module
5 V Relay Module
Centrifugal Pump
L9110 Motor Driver Module
Passive Buzzer Module
Servo Motor (SG90)
TT Motor
ESP8266 Module
JDY-31 Bluetooth Module
Power Supply Module
Documentation
Online Tutorial
The unPhone is an open-source IoT development platform powered by the ESP32S3 microcontroller. It features integrated LoRa, Wi-Fi, and Bluetooth connectivity, a touchscreen, and a LiPo battery, offering a robust and versatile solution for IoT development. Its compatibility with Adafruit's FeatherWing standard enables easy expansion, making it an ideal choice for educators, makers, and developers seeking a flexible and user-friendly platform.
Features
ESP32S3 microcontroller (with 8 MB flash and 8 MB PSRAM)
LoRaWAN licence-free radio communication (plus the ESP32's excellent wifi and bluetooth support)
3.5" (320 x 480) LCD capacitive touchscreen for easy debugging and UI creation
IR LEDs for surreptitiously switching the cafe TV off
1200 mAh LiPo battery with USB-C charging
Vibration motor for notifications
Compass/Accelorometer
A robust case
SD card slot
Power and reset buttons
Programmable in C++ or CircuitPython
Expander board that supports two Featherwing sockets and a prototyping area
Open source firmware compatible with the Arduino IDE, PlatformIO and Espressif's IDF development framework
Included
unPhone (assembled)
Expander board
FPC cable (to link the expander board to unPhone)
Self adhesive mounts for the expander board
Code Examples
C++ library
Kick the tyres on everything in the box
The main LVGL demo
CircuitPython
Support forum
Textbook (especially chapter 11)
This upgraded version 2.0 (available exclusively from Elektor) contains the following improvements:
Enhanced protective earthing (PE) for furnace chassis
Extra thermal insulation layer around furnace to reduce odors
Connection to a computer, allowing curve editing on a PC
Features such as constant temperature control and timing functions
The infrared IC heater T-962 v2.0 is a microprocessor-controlled reflow oven that you can use for effectively soldering various SMD and BGA components. The whole soldering process can be completed automatically and it is very easy to use. This machine uses a powerful infrared emission and circulation of the hot air flow, so the temperature is being kept very accurate and evenly distributed.
A windowed drawer is designed to hold the work-piece, and allows safe soldering techniques and the manipulation of SMDBGA and other small electronic parts mounted on a PCB assembly. The T-962 v2.0 may be used to automatically rework solder to correct bad solder joints, remove/replace bad components and complete small engineering models or prototypes.
Features
Large infrared soldering area
Effective soldering area: 180 x 235 mm; this increases the usage range of this machine drastically and makes it an economical investment.
Choice of different soldering cycles
Parameters of eight soldering cycles are pre defined and the entire soldering process can completed automatically from Preheat, Soak and Reflow through to cool down.
Special heat up and temperature equalization with all designs
Uses up to 800 Watts of energy efficient Infrared heating and air circulation to re-flow solder.
Ergonomic design, practical and easily operated
Good build quality but at the same time light weight and a small footprint allows the T-962 v2.0 to be easily bench positioned transported or stored.
Large number of available funtions
The T-962 v2.0 can solder most small parts of PCB boards, for example CHIP, SOP, PLCC, QFP, BGA etc. It is the ideal rework solution from single runs to on-demand small batch production.
Specifications
Soldering area (max)
180 x 235 mm (7.1 x 9.3")
Power (max)
800 W
Temperature range
0-280°C (32-536°F)
Heating method
Infrared
Processing time
1~8 minutes
Power supply
220 V AC/50 Hz
Display
LCD with Backlight
Control mode
8 intelligent temperature curves
Dimensions
310 x 290 x 170 mm (12.2 x 11.4 x 6.7")
Weight
6.2 kg
Included
1x T-962 v2.0 Reflow Soldering Oven (Elektor Version)
1x USB Stick (with Manual and Software)
2x Fuses
1x Power cord (EU)
Downloads
Manual
This USB Logic Analyzer is an 8-channel logic analyzer with each input dual purposed for analog data recording. It is perfect for debugging and analyzing signals like I²C, UART, SPI, CAN and 1-Wire. It operates by sampling a digital input connected to a device under test (DUT) at a high sample rate. The connection to the PC is via USB.
Specifications
Channels
8 digital channels
Maximum sampling rate
24 MHz
Maximum input voltage
0~5 V
Operating temperature
0~70°C
Input impedance
1 MΩ || 10 pF
Supported protocols
I²C, SPI, UART, CAN, 1-Wire, etc.
PC connection
USB
Dimensions
55 x 28 x 14 mm
Included
USB Logic Analyzer (8-ch, 24 MHz)
USB Cable
Jumper Wire Ribbon Cable
Downloads
Software
USB-A to Micro USB-B power cable (power supply only) 1.5 m length with ON/OFF switch Add the ability to control the power to your USB-powered project simply by plugging a cable with a switch between the USB power port and the USB cable. There's no more need to pull the cable to restart or reboot your devices, just press the button to turn on and off, which helps to prevent the USB connector from wear and tear due to frequent pulling and inserting the USB cable. It can be used as a power supply up to 2 A. Not applicable for data transfer.
Features Type C cable USB type C is suitable for new version Raspberry Pi 4 No need to pull the cable to restart or reboot your Pi, just press the button to turn your Pi on and off Can be used as power supply for the Pi up to 2 Amp Help prevent the Pi's USB connector from wear and tear due to frequently pulling and inserting the USB cable Specifications Interface: USB Type C Current: 3 A Length: 1.5 m Use for: Raspberry Pi 4 Model B Packing List: 1x USB Type C power cable
The Power Delivery Board is essentially a sink controller board. It negotiates with the USB PD charger to obtain the desired voltage and current according to the specified configuration.
The USB-C PD Power Delivery Board can be used in various applications where USB-C is utilized to power a product or project. It features a user-friendly DIP switch that allows you to select the desired output voltage or current from your USB PD charger.
Additionally, it has an on-board DC-DC converter capable of generating either 5 V or 3.3 V, depending on the jumper setting. It can easily provide around 3.3 W of power.Note: More power can be drawn from the DC-DC converter if the USB PD voltage is lower (e.g., 9 V, 12 V) or if an external heatsink is used.
Voltage and current selection or monitoring is possible through the I²C interface available on the 4-pin header.
Specifications
USB-C Input
Power delivery up to 65 W via DIP switch and 100 W via I²C command (I²C pullups are not on the board). Please note that the 3.25 A setting (via DIP Switch) may not work with many USB-C PD chargers. We have also observed this during testing.
An additional DC-DC Converter(TPS54302) is onboard to generate 3.3 V, 1 A/5 V, 0.65 A output so that you need fewer components on your application board.
4x Mounting holes for easy mounting
LED indication for USB-C input, USB PD output and DC-DC converter output
A 2-pin power terminal is provided for easy connection
A 4-pin 2.54 mm header connector is provided for the I²C connection
Both connectors will come unsoldered
Dimensions: 50 x 35 mm
USB-C to LoRa Dongle is a powerful and versatile LoRa device that lets you connect beyond boundaries. With its exceptional range and easy connectivity, it allows you to seamlessly communicate with devices up to 5 km away. LoRa Dongle is the perfect solution for anyone looking to establish long-range wireless communication in a variety of applications.
This dongle provides direct USB interface control, eliminating the need for a deep understanding of LoRa transmission concepts. They seamlessly connect with devices like Raspberry Pi, SBCs, PCs, and laptops, simplifying the creation of IoT LoRa gateways. The USB LoRa Dongles function as transmitters and receivers, accommodating various message formats, including text, hexadecimal, and decimal.
Features
Device with the most recent LoRa module, offering up to a 5-kilometer data transmission range and higher speeds.
Use new generation LoRa spread spectrum to ensure stable communication
Type C interface for LoRa configuration/Power
Status LED for power and data transmission
Serial TX/RX pin breakout in Header and Screw terminal form
Onboard jumper for operating mode selection
Specifications
Carrier Frequency (License Free ISM): 868 MHz
Chip: Based on SX1262 RF chip
Range: 5Km
Transmitting Power: 22 dBm
Receiving Sensitivity: -147 dbm
Data Rate: Up to 62.5 kbps
Interface: Type C
Communication Port: UART serial
Supply Voltage: 5 V
Operating Voltage: 3.3 V
Operating Temperature: -20 to 70°C
Included
1x USB-C to LoRa Dongle
1x Antenna (868 MHz)
In 2011 we published a small PCB, FT232R USB/Serial Bridge/BOB (110553) with a USB-UART IC from FTDI, the FT232RQ. Here we present its successor with a cheaper version, an FT231XQ.
But there are some other changes too. Instead of connectors, alongside the PCB, normal pin headers are used that are mounted on the bottom side and make the PCB a little smaller when mounted, compared to the old BoB. An ESD protection device (D1) is added in the USB data signal lines for extra safety.
Despite less room for all parts to fit on the PCB, it is only a little over 2 mm longer. The FT231 has four configurable CBUS I/O pins, one less now. More importantly, however, the power supply for the I/O's VCCIO is only specified for +1.8 V to +3.3 but is 5 V tolerant for external UART logic running on +5 V. The +3.3 V internal regulator of the FT231 can deliver 50 mA to external circuitry.
The manufacturer FTDI has a utility to configure several settings, FTPROG. Such as the function of the CBUS pins. By default, CBUS1 and CBUS 2 are low-level outputs to drive receive and transmit LEDs, indicating data transfer on the USB bus. So, when receiving data through the UART, the TX LED lights up. If you prefer this the other way around, FTPROG can be used to change this. But be careful the chip can become unresponsive when wrong settings are programmed.
Some of the more important properties of the new BoB:
Micro-USB connector USB 2.0
Full Speed capable
VCCIO +1.8...+3.3 V (max. 4 V, 5 V input from UART logic tolerant)
+3.3 V regulator output, max. 50 mA
Data transfer 300 baud to 3 Mbaud
UART Compatible with RS232, RS485, and RS422
I/O pin output drive 4 mA - 16 mA
4 configurable CBUS pins
Downloads
EEPROM Programming Utility
VCP Drivers
D2XX Drivers
What kind of device is this? And what can you do with it? Well, this device doesn't need much explanation.
The most useless device in the world!
The Useless Box literally serves no purpose, but at the same time it's so hilarious that you'll want to show it to everyone. With this kit you have the opportunity to build your own Useless Box and expand your technical knowledge. Ultimately, this device switches off every time it is switched on and therefore performs a completely pointless function.
Still curious? Then watch the video below. A must-have for every office: at home or at work!
Learn to program displays and GUIs with Python
This book is about Raspberry Pi 4 display projects. The book starts by explaining how to install the latest Raspbian operating system on an SD card, and how to configure and use the GPIO ports.
The core of the book explains the following topics in simple terms with fully tested and working example projects:
Simple LED projects
Bar graph LED projects
Matrix LED projects
Bitmap LED projects
LED strips
LCDs
OLED displays
E-paper displays
TFT displays
7-inch touch screen
GUI Programming with Tkinder
One unique feature of this book is that it covers almost all types of display that readers will need to use in their Raspberry Pi based projects. The operation of each project is fully given, including block diagrams, circuit diagrams, and commented full program listings. It is therefore an easy task to convert the given projects to run on other popular platforms, such as Arduino or PIC microcontrollers.
Python program listings of all Raspberry Pi projects developed in this book are available for download at Elektor.com. Readers can use these programs in their projects. Alternatively, they can modify the programs to suit their applications.
Menno van der Veen is well known for his research publications on tube amplifiers used in audio systems.
In this book he describes one of his research projects which focuses on the question of whether full compensation for distortion in tubes and output transformers is possible.
In the past, a variety of techniques have been developed. One of them has largely been forgotten: trans-conductance, which means converting current into voltage or voltage into current. Menno van der Veen has breathed new life into this technique with his research project titled “Trans”. This book discusses all aspects of this method and discusses its pitfalls. These pitfalls are addressed one by one. The end result is a set of stringent requirements for Trans amplifiers.
Armed with these requirements, Menno then develops new Trans amplifiers, starting with Transie 1 and Transie 2. These DC-coupled, single-ended tube amplifiers have unusually good characteristics and are suitable for hobbyist construction. Next the Trans principle is applied to amplifiers with higher output power.
A trial-and-error process ultimately leads to the Vanderveen Trans 30 amplifier, which optimizes the features of Trans. The characteristics of this amplifier are so special and unique that Menno believes he has struck gold. To ensure that variations in tube characteristics cannot interfere with optimal Trans behavior, Menno makes use of simulations and comparison with other amplifier types. This book reads like an adventure story, but it is much more – it is an account of solid research into new ways to achieve optimal audio reproduction.
Programmable Robot Kit with 344 Parts
variAnt runs and acts almost like its natural role model. Its patented walking mechanism was especially developed for the fine-boned anatomy of an insect and is driven by compact micro-geared motors.
The autonomous robot ant explores its entire environment with the help of 12 analogue sensors. This allows it to detect obstacles, markings, movements or light sources based on the slightest differences in brightness.
The control unit in the rear, which is equipped with a nano-board, offers a wide range of flexible connection options in combination with the breadboard in the head. After the exciting setup, ready-made and expandable code modules ensure an easy and quick introduction to Arduino programming up to the first experiments with artificial intelligence.
The kit already comes with a USB rechargeable 9 V Li-Ion battery, which supplies the robot ant with power for at least 5 hours.
Robot ant as a programmable kit
Compatible with Arduino IDE
Patented mechanics and sensors
Features of variAnt
24 high-quality acrylic parts
12 variable environmental sensors
2 reed sensors for step counting
2 freely programmable buttons
8 freely usable digital I/Os
15 pluggable status LEDs
Specifications
Content: 344 parts
Construction time: about 4-8 hours (no soldering required)
Dimensions: 25 x 22.5 x 9 cm (L x W x H)
Weight: 210/232 g (without/with battery)
Necessary tools
PC or tablet, micro-USB and USB-C cable, flat pliers, diagonal pliers, carpet knife, permanent marker
Downloads
Manual
Arduino library
Build your 3D led cube and create unlimited 3D effects. The unit comes standard loaded with effects. Connect to your computer (USB) and create your own!
Features
LEDs: 5 x 5 x 5 = 125 LEDs
User programmable via USB (creation of animation/scenes)
Large amount of user programmable frames
Frames are separately dimmable
4 transition speeds
Available frames: 3200
5 levels LED dimming available
No coding skills required
Software similar to (3 x 3 x 3)
Specifications
Regulated power supply: 9 VDC (not incl.)
Power consumption: 300 mA max.
Dimensions: 110 x 110 x 150 mm
Specifications Material: Conductive fastener tape: nylon Interior surface: conductive carbon Grounding cord: PU coil cord with resistor of 1 Mohm Band size: 2 x 23 cm Band resistivity: < 50 Ohm Color: blue
The ATmega328 Uno Development Board (Arduino Uno compatible) is a microcontroller board based on the ATmega328.
It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analogue inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP header and a reset button.
It contains everything needed to support the microcontroller; connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started.
Specifications
Microcontroller
ATmega328
Operating voltage
5 V DC
Input voltage (recommended)
7-12 V DC
Input voltage (limits)
6-20 V DC
Digital I/O pins
14 (of which 6 provide PWM output)
Analogue input pins
6
SRAM
2 kB (ATmega328)
EEPROM
1 kB (ATmega328)
Flash memory
32 kB (ATmega328) of which 0.5 kB used by bootloader
Clock speed
16 MHz
Downloads
Manual
Specifications Lens diameter: 90 mm / 3.54' Dioptre: lens Ø 90 mm: dioptre 3 – magnification: 1.75 Power supply: 3 x 1.5 V AAA battery Dimensions: 210 x 170 x 110 mm / 8.3 x 6.7 x 4.3' Weight: 615 g Material: Stand: stainless steel Lens: glass Connecting parts: copper
Bring your projects to life with this multifunctional precision drill, engineered for a wide range of applications including cutting, drilling, engraving, polishing, and more. Powered by a robust 135 W motor, it offers variable speed control with an impressive range of 10,000 to 32,000 rpm – ensuring precise and consistent performance across various materials and tasks.
The drill comes in a convenient carry case with a comprehensive 162-piece accessory set, providing the right tool for every job and enabling seamless transitions between different applications. Whether you're a hobbyist or a professional, this versatile tool delivers the power, control, and reliability you need for high-quality craftsmanship.
Multifunctional Versatility
This all-in-one precision drill comes with 162 accessories, making it perfect for a wide range of applications – from cutting and drilling to engraving and polishing. Effortlessly switch between projects and stay prepared for any task.
Powerful Performance
Featuring a 135 W motor and a variable speed range from 10,000 to 32,000 rpm, this drill delivers consistent, high-performance output. It ensures accuracy and efficiency, even for the most demanding jobs.
Comprehensive Accessory Set
Whether you're a dedicated hobbyist or a professional, the included accessories provide everything you need to get the job done right. Enjoy maximum flexibility and convenience in one complete package.
Ergonomic, User-Friendly Design
Designed for comfort and ease of use, the drill features intuitive controls and an ergonomic grip. It fits comfortably in your hand, allowing for precise work—even during extended use.
Built to Last
Crafted from high-quality materials, this precision drill is built for durability and long-term reliability. Whether you're just starting out or are an experienced maker, this tool is made to deliver outstanding results again and again. Let me know if you'd like a more technical, casual, or sales-focused version too!
Included
1x Electric drill (10000-32000 rpm with on/off switch)
1x Flexible shaft (ideal attachment for precise, detailed work or hard to reach places)
1x Collet nut
4x Collets
10x Diamond wheel points
5x Fiberglass cutting disc
62x Cut-off wheels
1x Rubber polishing disc
2x Sanding drums
22x Sanding bands
1x Sanding flap wheel
12x Polishing stones
9x Wire brushes
7x Polishing felts
1x Silicon carbide grindstone
10x Grinding discs
4x Mandrels
2x Polishing compound
6x Drills (2x 1.5 mm, 2x 2.3 mm, 2x 3.1 mm)
1x Tool
Downloads
Manual