The Qwiic pHAT connects the I²C bus (GND, 3.3V, SDA, and SCL) on your Raspberry Pi to an array of Qwiic connectors on the HAT. Since the Qwiic system allows for daisy-chaining boards with different addresses, you can stack as many sensors as you’d like to create a tower of sensing power! The Qwiic pHAT V2.0 has four Qwiic connect ports (two on its side and two vertical), all on the same I²C bus. We've also made sure to add a simple 5V screw terminal to power boards that may need more than 3.3V and a general-purpose button (with the option to shut down the Pi with a script). Also updated, the mounting holes found on the board are now spaced to accommodate the typical Qwiic board dimension of 1.0' x 1.0'. This HAT is compatible with any Raspberry Pi that utilizes the standard 2x20 GPIO header and the NVIDIA Jetson Nano and Google Coral. Features 4 x Qwiic Connection Ports 1 x 5V Tolerant Screw Terminal 1 x General Purpose Button HAT-compatible 40-pin Female Header
Are you tired of all the different Arduino boards, and having to choose which features you need? Wouldn't it be much simpler to have all the best features on the same board and not have to compromise? That is precisely what the people at SparkFun thought and delivered the fantastic SparkFun RedBoard Programmed with Arduino. Features ATmega328 microcontroller with Optiboot (UNO) Bootloader Input voltage: 7-15 V 0-5 V outputs with 3.3 V compatible inputs 6 Analog Inputs 14 Digital I/O Pins (6 PWM outputs) ISP Header 16 MHz Clock Spee 32 k Flash Memory R3 Shield Compatible All SMD Construction USB Programming Facilitated by the Ubiquitous FTDI FT231X Red PCB The SparkFun RedBoard combines the stability of the FTDI, the simplicity of the Uno's Optiboot bootloader, and the R3 shield compatibility of the Uno R3. RedBoard has the hardware peripherals you are used to: 6 Analog Inputs 14 Digital I/O pins (6 PWM pins) SPI UART External interrupts Downloads Drivers GitHub
The RedBoard Artemis has the improved power conditioning and USB to serial that we've refined over the years on our RedBoard line of products. A modern USB-C connector makes programming easy. A Qwiic connector makes I²C easy. The RedBoard Artemis is fully compatible with SparkFun's Arduino core and can be programmed easily under the Arduino IDE. We've exposed the JTAG connector for more advanced users who prefer to use professional tools' power and speed. We've added a digital MEMS microphone for folks wanting to experiment with always-on voice commands with TensorFlow and machine learning. We've even added a convenient jumper to measure current consumption for low power testing. With 1MB flash and 384k RAM, you'll have plenty of room for your sketches. The on-board Artemis module runs at 48MHz with a 96MHz turbo mode available and with Bluetooth to boot! Features Arduino Uno R3 Footprint 1M Flash / 384k RAM 48MHz / 96MHz turbo available 24 GPIO - all interrupt capable 21 PWM channels Built-in BLE radio 10 ADC channels with 14-bit precision 2 UARTs 6 I²C buses 4 SPI buses PDM Interface I²S Interface Qwiic Connector
What's with the silkscreen labels? They're all over the place. We decided to label the pins as they are assigned on the Apollo3 IC itself. This makes finding the pin with the function you desire a lot easier. Have a look at the full pin map from the Apollo3 datasheet. If you really need to test out the 4-bit SPI functionality of the Artemis, you're going to need to access pins 4, 22, 23, and 26. Need to try out the differential ADC port 1? Pins 14 and 15. The RedBoard Artemis ATP will allow you to flex the impressive capabilities of the Artemis module.
The RedBoard Artemis ATP has the improved power conditioning and USB to serial that we've refined over the years on our RedBoard line of products. A modern USB-C connector makes programming easy. A Qwiic connector makes I²C easy. The ATP is fully compatible with SparkFun's Arduino core and can be programmed easily under the Arduino IDE. We've exposed the JTAG connector for more advanced users who prefer to use the power and speed of professional tools. If you need a lot of a GPIO with a simple program, ready to go to the market module, the ATP is the fix you need. We've added a digital MEMS microphone for folks wanting to experiment with always-on voice commands with TensorFlow and machine learning. We've even added a convenient jumper to measure current consumption for low power testing.
With 1 MB flash and 384k RAM, you'll have plenty of room for your sketches. The Artemis module runs at 48 MHz with a 96 MHz turbo mode available and with Bluetooth to boot!
Features
Arduino Mega Footprint
1M Flash / 384k RAM
48MHz / 96MHz turbo available
6uA/MHz (operates less than 5mW at full operation)
48 GPIO - all interrupt capable
31 PWM channels
Built-in BLE radio
10 ADC channels with 14-bit precision with up to 2.67 million samples per second effective continuous, multi-slot sampling rate
2 channel differential ADC
2 UARTs
6 I²C buses
6 SPI buses
2/4/8-bit SPI bus
PDM interface
I²S Interface
Secure 'Smart Card' interface
Qwiic Connector
The SparkFun RedBoard Qwiic is an Arduino-compatible board that combines features of different Arduinos with the Qwiic Connect System.
Features
ATmega328 microcontroller with Optiboot Bootloader
R3 Shield Compatible
CH340C Serial-USB Converter
3.3 V to 5 V Voltage Level Jumper
A4 / A5 Jumpers
AP2112 Voltage Regulator
ISP Header
Input voltage: 7 V - 15 V
1 Qwiic Connector
16 MHz Clock Speed
32 k Flash Memory
All SMD Construction
Improved Reset Button
Plug a reader into the headers, use a Qwiic cable, scan your 125kHz ID tag, and the unique 32-bit ID will be shown on the screen. The unit comes with a read LED and buzzer, but don't worry, there is a jumper you can cut to disable the buzzer if you want. Utilizing SparkFun's handy Qwiic system, no soldering is required to connect it to the rest of your system. However, we still have broken out 0.1"-spaced pins if you prefer to use a breadboard.
Utilizing the onboard ATtiny84A, the Qwiic RFID takes the six byte ID tag of your 125kHz RFID card, attaches a timestamp to it, and puts it onto a stack that holds up to 20 unique RFID scans at a time. This information is easy to get at with some simple I²C commands.
The SparkFun RP2040 mikroBUS Development Board is a low-cost, high performance platform with flexible digital interfaces featuring the Raspberry Pi Foundation's RP2040 microcontroller. Besides the Thing Plus or Feather PTH pin layout, the board also includes a microSD card slot, 16 MB (128 Mbit) flash memory, a JST single cell battery connector (with a charging circuit and fuel gauge sensor), an addressable WS2812 RGB LED, JTAG PTH pins, four (4-40 screw) mounting holes, our signature Qwiic connectors, and a mikroBUS socket. The mikroBUS standard was developed by MikroElektronika. Similar to Qwiic and MicroMod interfaces, the mikroBUS socket provides a standardized connection for add-on Click boards to be attached to a development board and is comprised of a pair of 8-pin female headers with a standardized pin configuration. The pins consist of three groups of communications pins (SPI, UART and I²C), six additional pins (PWM, Interrupt, Analog input, Reset and Chip select), and two power groups (3.3 V and 5 V). The RP2040 is supported with both C/C++ and MicroPython cross-platform development environments, including easy access to runtime debugging. It has UF2 boot and floating-point routines baked into the chip. While the chip has a large amount of internal RAM, the board includes an additional 16 MB of external QSPI flash memory to store program code. The RP2040 contains two ARM Cortex-M0+ processors (up to 133 MHz) and features: 264 kB of embedded SRAM in six banks 6 dedicated IO for SPI Flash (supporting XIP) 30 multifunction GPIO: Dedicated hardware for commonly used peripherals Programmable IO for extended peripheral support Four 12-bit ADC channels with internal temperature sensor (up to 0.5 MSa/s) USB 1.1 Host/Device functionality Features (SparkFun RP2040 mikroBUS Dev. Board) Raspberry Pi Foundation's RP2040 microcontroller 18 Multifunctional GPIO Pins Four available 12-bit ADC channels with internal temperature sensor (500kSa/s) Up to eight 2-channel PWM Up to two UARTs Up to two I²C buses Up to two SPI buses Thing Plus (or Feather) Pin Layout: 28 PTH Pins USB-C Connector: USB 1.1 Host/Device functionality 2-pin JST Connector for a LiPo Battery (not included): 500mA charging circuit 4-pin JST Qwiic Connector LEDs:
PWR - Red 3.3V power indicator
CHG - Yellow battery charging indicator
25 - Blue status/test LED (GPIO 25)
WS2812 - Addressable RGB LED (GPIO 08) Buttons: Boot Reset JTAG PTH Pins 16MB QSPI Flash Memory µSD Card Slot mikroBUS Socket Dimensions: 3.7' x 1.2' Four Mounting Holes: 4-40 screw compatible Downloads Schematic Eagle Files Board Dimensions Hookup Guide Qwiic Info Page GitHub Hardware Repository
These are some of our favourite sensors from each category. But wait, there's more! The SparkFun Sensor Kit now includes several of our sensor boards that feature the Qwiic Connect System for rapid prototyping!
This version of the kit has received a complete overhaul!
This huge assortment of sensors makes an amazing gift for that exceptional electronics enthusiast in your life!
Included
Large Piezo Vibration Sensor (With Mass): A flexible film able to sense for vibration, touch, shock, etc. When the film moves back and forth an AC wave is created, with a voltage of up to ±90.
Reed Switch: Senses magnetic fields, makes for a great non-contact switch.
0.25' Magnet Square: Plays nicely with the reed switch. Embed the magnet into stuffed animals or inside a box to create a hidden actuator to the reed switch.
0.5' Force Sensitive Resistor: A force-sensing resistor with a 0.5' diameter sensing area. Great for sensing pressure (i.e., if it's being squeezed).
Flex Sensor (2.2'): As the sensor is flexed, the resistance across the sensor increases. Useful for sensing motion or positioning.
SoftPot: These are very thin variable potentiometers. By pressing on various positions along the strip, you vary the resistance.
Mini Photocell: The photocell will vary its resistance based on how much light it's exposed to. Will vary from 1kΩ in the light to 10kΩ in the dark.
PIR Motion Sensor: Easy-to-use motion detector with an analog interface. Power it with 5-12VDC, and you'll be alerted of any movement.
QRD1114 Optical Detector/Phototransistor: An all-in-one infrared emitter and detector. Ideal for sensing black-to-white transitions or can be used to detect nearby objects.
IR Diode: This LED can handle up to 50mA of current and outputs in the 940-950nm IR spectrum. Use to send signal to talk to the included IR receiver diode or just turn off your neighbor's TV.
IR Receiver Diode: This simple IR receiver will detect an IR signal coming from a standard IR remote control or the IR diode included in the kit.
Resistor 1.0M Ohm 1/4 Watt PTH: Two 1/4 Watt, +/- 5% tolerance PTH resistors. Commonly used in breadboards and perf boards. The large resistor helps dampen any voltage spikes when using the large piezo vibration sensor with a microcontroller.
Resistor 10K Ohm 1/4 Watt PTH – 20 pack (Thick Leads): 1/4 Watt, +/- 5% tolerance PTH resistors. Commonly used in breadboards and perf boards, these 10KΩ resistors make excellent pullups, pulldowns, and current limiters.
Resistor 330 Ohm 1/4 Watt PTH – 20 pack (Thick Leads): 1/4 Watt +/- 5% tolerance PTH resistors. Commonly used in breadboards and perf boards, these 330Ω resistors make excellent current-limiting resistors for LEDs.
SparkFun 9DoF IMU Breakout – ISM330DHCX, MMC5983MA (Qwiic): This breakout board includes a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. Connect this board over I2C using a Qwiic cable or solder wires or headers to the SPI pins to get started using one of the three sensors or using all three together to determine 3D orientation.
SparkFun Atmospheric Sensor Breakout – BME280 (Qwiic): The SparkFun BME280 Atmospheric Sensor Breakout is an easy way to measure barometric pressure, humidity, and temperature readings, all without taking up too much space.
SparkFun Indoor Air Quality Sensor – ENS160 (Qwiic): The SparkFun ENS160 Indoor Air Quality Sensor is a digital multi-gas sensor solution with four sensor elements that can be used in a wide range of applications including building automation, smart home, and HVAC.
SparkFun Capacitive Touch Slider – CAP1203 (Qwiic): This little board acts great as a non-mechanical button. Use the three pads on the board or connect your own input for a great touch button or slider with no moving parts.
Flexible Qwiic Cable (100 mm): Use these to connect up to four Qwiic boards in your kit.
RGB and Gesture Sensor (APDS-9960): This board does a little bit of everything. You can measure ambient light or color as well as detect proximity and do gesture sensing all over I2C.
Soil Moisture Sensor (with screw terminals): Ever wonder if your plant needs water? This sensor outputs an analog signal based on the resistance of the soil. Since water is conductive, the soil water content will be reflected in the soil resistance.
Sound Detector: Ever need to know if there is noise in an area? This board will not only tell you, but it will also output amplitude as well as the full audio signal.
Break Away Headers (Straight): Solder these pins to any of the breakouts to prototype on a breadboard. You'll want to solder these to boards that do not have Qwiic connectors such as the gesture sensor and sound detector.
Thanks to its I²C capabilities, this PWM HAT saves the Raspberry Pi's GPIO pins, allowing you to use them for other purposes. The Servo pHAT also adds a serial terminal connection, which will allow you to bring up a Raspberry Pi without having to hook it up to a monitor and keyboard. We have provided a Qwiic connector for easy interfacing with the I²C bus using the Qwiic system and a 4-pin header to connect to the Sphero RVR. Power to the SparkFun Servo pHAT can be supplied through a USB-C connector. This will power either the servo motors only or power the servo motors and the Raspberry Pi that is connected to the HAT. We switched to USB-C to allow you to bring more current to your servos than ever before. This USB-C connector can also hook up the Pi via serial port connection to avoid having to use a monitor and keyboard for setting up the Pi. To supply power only to the servo power rail (and not the Pi's 5V power rail), you need to cut a small trace on the isolation jumper. Doing this allows you to drive heavier loads coming from multiple or larger servos. We've even added power protection circuits to the design to avoid damage to power sources. Each of this pHAT's 16 servo motor pin headers has been spaced out to the standard 3-pin servo pinout (ground, 5V, signal) to make it easier to attach your servo motors. The Servo pHAT is the same size and form factor as a Raspberry Pi Zero and Zero W, but it can also operate with a regular Raspberry Pi. Features 16 PWM channels, controllable over I²C Qwiic connector 4-pin RVR header for connection to Sphero RVR USB-C connector 40-pin GPIO header for connection to Raspberry Pi CH340C USB Serial SOIC16 Updated logic level conversion circuitry Power protection circuits
The RP2040 contains two ARM Cortex-M0+ processors (up to 133 MHz) and features:
264 kB of embedded SRAM in six banks
6 dedicated IO for SPI Flash (supporting XIP)
30 multifunction GPIO:
Dedicated hardware for commonly used peripherals
Programmable IO for extended peripheral support
Four 12-bit ADC channels with internal temperature sensor (up to 0.5 MSa/s)
USB 1.1 Host/Device functionality
The RP2040 is supported with C/C++ and MicroPython cross-platform development environments, including easy access to runtime debugging. It has a UF2 boot and floating-point routines baked into the chip. While the chip has a large internal RAM, the board includes an additional 16 MB of external QSPI flash memory to store program code.
Features
Raspberry Pi Foundation's RP2040 microcontroller
16MB QSPI Flash Memory
JTAG PTH Pins
Thing Plus (or Feather) Form-Factor:
18x Multifunctional GPIO Pins
Four available 12-bit ADC channels with an internal temperature sensor (500 kSa/s)
Up to eight 2-channel PWM
Up to two UARTs
Up to two I²C buses
Up to two SPI buses
USB-C Connector:
USB 1.1 Host/Device functionality
2-pin JST Connector for a LiPo Battery (not included):
500 mA charging circuit
Qwiic Connector
Buttons:
Boot
Reset
LEDs:
PWR - Red 3.3 V power indicator
CHG - Yellow battery charging indicator
25 - Blue status/test LED (GPIO 25)
WS2812 - Addressable RGB LED (GPIO 08)
Four Mounting Holes:
4-40 screw compatible
Dimensions: 2.3' x 0.9'
RP2040 Features
Dual Cortex M0+ processors, up to 133 MHz
264 kB of embedded SRAM in 6 banks
6 dedicated IO for QSPI flash, supporting execute in place (XIP)
30 programmable IO for extended peripheral support
SWD interface
Timer with 4 alarms
Real-time counter (RTC)
USB 1.1 Host/Device functionality
Supported programming languages
MicroPython
C/C++
The SparkFun Thing Plus Matter is the first easily accessible board of its kind that combines Matter and SparkFun’s Qwiic ecosystem for agile development and prototyping of Matter-based IoT devices. The MGM240P wireless module from Silicon Labs provides secure connectivity for both 802.15.4 with Mesh communication (Thread) and Bluetooth Low Energy 5.3 protocols. The module comes ready for integration into Silicon Labs' Matter IoT protocol for home automation.
What is Matter? Simply put, Matter allows for consistent operation between smart home devices and IoT platforms without an Internet connection, even from different providers. In doing so, Matter is able to communicate between major IoT ecosystems in order to create a single wireless protocol that is easy, reliable, and secure to use.
The Thing Plus Matter (MGM240P) includes Qwiic and LiPo battery connectors, and multiple GPIO pins capable of complete multiplexing through software. The board also features the MCP73831 single-cell LiPo charger as well as the MAX17048 fuel gauge to charge and monitor a connected battery. Lastly, a µSD card slot for any external memory needs is integrated.
The MGM240P wireless module is built around the EFR32MG24 Wireless SoC with a 32-bit ARM Cortext-M33 core processor running at 39 MHz with 1536 kb Flash memory and 256 kb RAM. The MGM240P works with common 802.15.4 wireless protocols (Matter, ZigBee, and OpenThread) as well as Bluetooth Low Energy 5.3. The MGM240P supports Silicon Labs' Secure Vault for Thread applications.
Specifications
MGM240P Wireless Module
Built around the EFR32MG24 Wireless SoC
32-bit ARM-M33 Core Processor (@ 39 MHz)
1536 kB Flash Memory
256 kB RAM
Supports Multiple 802.15.4 Wireless Protocols (ZigBee and OpenThread)
Bluetooth Low Energy 5.3
Matter-ready
Secure Vault Support
Built-in Antenna
Thing Plus Form-Factor (Feather-compatible):
Dimensions: 5.8 x 2.3 cm (2.30 x 0.9')
2 Mounting Holes:
4-40 screw compatible
21 GPIO PTH Breakouts
All pins have complete multiplexing capability through software
SPI, I²C and UART interfaces mapped by default to labeled pins
13 GPIO (6 labeled as Analog, 7 labeled for GPIO)
All function as either GPIO or Analog
Built-in-Digital to Analog Converter (DAC)
USB-C Connector
2-Pin JST LiPo Battery Connector for a LiPo Battery (not included)
4-Pin JST Qwiic Connector
MC73831 Single-Cell LiPo Charger
Configurable charge rate (500 mA Default, 100 mA Alternate)
MAX17048 Single-Cell LiPo Fuel Gauge
µSD Card Slot
Low Power Consumption (15 µA when MGM240P is in Low Power Mode)
LEDs:
PWR – Red Power LED
CHG – Yellow battery charging status LED
STAT – Blue status LED
Reset Button:
Physical push-button
Reset signal can be tied to A0 to enable use as a peripheral device
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Datasheet (MGM240P)
Fritzing Part
Thing+ Comparison Guide
Qwiic Info Page
GitHub Hardware Repo
Can you use the SparkFun Top pHAT to prototype machine learning on your Raspberry Pi 4, NVIDIA Jetson, Google Coral or another single-board computer? Indubitably! The SparkFun Top pHAT supports machine learning interactions, including voice control with onboard microphones & speaker, graphical display for camera control feedback, and uninhibited access to the RPi camera connector. Additionally, you can use the programmable buttons, joystick, and RGB LED for user-defined I/O, dynamic system interaction, or system status displays.
Can you use it as an interface to introduce your project to the SparkFun Qwiic ecosystem? Indeed! In addition to all the previous features, we have also included a Qwiic connector to allow easy integration over I²C. Billions of combinations of Qwiic-enabled boards are available to you to expand upon the capabilities of the SparkFun Top pHAT.
With all the I/O interaction on this board and the lack of soldering needed to get up and running, the SparkFun Top pHAT is the fundamental machine learning add-on for Raspberry Pi or any 2x20 GPIO SBC!
Features
A Raspberry Pi pHAT that focuses on user interaction with an SBC/RPi.
Support for machine learning interactions
Voice control (microphones, speaker)
Graphical display on 2.4' colour TFT
Two Programmable buttons for user-defined I/O
Programmable Joystick – for dynamic/interaction with the system (GUI menus, robot driving).
Programmable RGB LEDs – for system status, display.
Does not inhibit access to RPi camera or display connector
On/Off switch for RPi.
Supports access to the SparkFun Qwiic ecosystem
Intended to be at the top of a pHAT stack - no pins for stacking on top of this board. It’s the Top pHAT!
The SparkFun Weather Shield uses the Si7021 humidity / temperature sensor, the MPL3115A2 barometric pressure sensor, and the ALS-PT19 light sensor. The shield utilizes the MPL3115A2 and Si7021 Arduino libraries.
The SparkFun Weather Shield comes with two unpopulated RJ11 connector spaces and a 6-pin GPS connector. Finally, each Weather Shield can operate from 3.3 V up to 16 V and has built-in voltage regulators and signal translators.
Check out the GitHub page, Schematics, and Eagle Files for more information.
An upgraded jaw set that withstands direct contact with a soldering iron
Stickvise High Temperature PTFE Vise Jaws will withstand accidental contact with a soldering iron and will not melt. These are a great upgrade for your Stickvise.
Features
Made from PTFE with extremely high melting point
Withstands incidental contact with a soldering iron
This is the jaw plates only, does not include a Stickvise
Specifications
Material
Aluminum
Dimensions
73 x 53 x 3 mm
Weight
21 g
An easy way to hold parts to the bottom of a PCB while soldering
PartLift holds thru hole parts in place to free up your hands while you solder the legs. A simple but useful tool to go along with your Stickvise. The base pad is non-slip silicone foam, the body of the tool is ABS which provides very light spring tension to hold your part in place. The tip of the tool is made from high temperature silicone that withstands soldering temperatures without being damaged.
Features
PartLift holds thru hole parts in place during soldering
Use with a Stickvise or any low profile PCB holder
The tip is silicone that withstands soldering temperatures
The base pad is non-slip silicone foam
Specifications
Material
Silicone
Dimensions
109 x 40 x 40 mm
Weight
59 g
Stickvise PCB Vise is a low-profile holder that keeps your circuit board flat for soldering, rework, probing, and testing.
With Stickvise, your PCB stays at table level, providing a stable and comfortable working position. This design helps reduce strain on your arms and ensures precise soldering.
Specifications
Material
Nylon, Aluminum
Dimensions
200 x 76 x 19 mm
Weight
150 g
If you are looking for a simple way to learn soldering, or just want to make a small gadget that you can carry, this set is a great opportunity. Stop me game is an educational kit which teaches you how to solder, and in the end, you get to have your own small game. The LEDs go up and down, and your goal is to press the button as soon as the green LED turns on. With every correct answer, the game gets a bit harder – the time you have to press the button shortens. How many correct answers can you get?
It’s based on ATtiny404 microcontroller, programmed in Arduino. At its back, you’ll find CR2032 battery which makes the kit portable. There’s keychain holder as well. Soldering process is easy enough based on the mark on the PCB.
Included
1x PCB
1x ATtiny404 microcontroller
7x LEDs
1x Pushbutton
1x Switch
7x Resistors (330 ohm)
1x CR2032 battery holder
1x Battery CR2032
1x Keychain holder
Your gateway to IoT and microcontroller programming
With 450+ components and 117 online projects, this comprehensive kit ignites your creativity. The tutorials by Paul McWhorter make learning enjoyable for beginners and advanced users. This kit supports MicroPython, C/C++, and Piper Make, offering diverse programming options.
Explore sensors, actuators, LEDs, and LCDs for endless project possibilities. From home automation to robotics, this kit empowers your tech journey.
Features
IoT Starter Kit for Beginners: This kit offers a rich IoT learning experience for beginners. With 450+ components, 117 projects, and expert-led video lessons, this kit makes learning microcontroller programming and IoT engaging and accessible.
Expert-Guided Video Lessons: The kit includes 27 video tutorials by the renowned educator, Paul McWhorter. His engaging style simplifies complex concepts, ensuring an effective learning experience in microcontroller programming.
Wide Range of Hardware: The kit includes a diverse array of components like sensors, actuators, LEDs, LCDs, and more, enabling you to experiment and create a variety of projects with the Raspberry Pi Pico W.
Supports Multiple Languages: The kit offers versatility with support for three programming languages - MicroPython, C/C++, and Piper Make, providing a diverse programming learning experience.
Dedicated Support: Benefit from our ongoing assistance, including a community forum and timely technical help for a seamless learning experience.
Included
Raspberry Pi Pico W
Breadboard
Jumper Wires
Resistor
Transistor
Capacitor
Diode
Li-po Charger Module
74HC595
TA6586 – Motor Driver Chip
LED
RGB LED
LED Bar Graph
7-segment Display
4-Digit 7-Segment Display
LED Dot Matrix
I²C LCD1602
WS2812 RGB 8 LEDs Strip
Buzzer
DC Motor
Servo
DC Water Pump
Relay
Button
Micro Switch
Slide Switch
Potentiometer
Infrared Receiver
Joystick Module
4x4 Keypad
MPR121 Module
MFRC522 Module
Photoresistor
Thermistor
Tilt Switch
Reed Switch
PIR Motion Sensor Module
Water Level Sensor Module
Ultrasonic Module
DHT11 Humiture Sensor
MPU6050 Module
Documentation
Online Tutorials in 3 languages (EN, DE and JP)
The SUNKKO 737G+ spot welder is a powerful and versatile tool designed for seamless and precise welding, particularly for 18650 battery packs. Prioritizing safety, it comes equipped with a 30 A fuse for 220 V, ensuring protection against potential electrical hazards, giving users peace of mind during use.
For enhanced adaptability, the welder offers the option of automatic or foot pedal control, allowing you to switch between modes based on your needs and preferences. Whether you're working on intricate projects or larger tasks, this flexibility ensures you have full control at all times.
With a robust 4.3 KW rated capacity, the SUNKKO 737G+ delivers the power needed for efficient and effective welding. Its advanced pulse control system features four pulse time settings ranging from 2 to 20 milliseconds, and eight extended pulse time settings between 8 and 80 milliseconds. This level of precision gives you the ability to tailor the welding process to each specific task, ensuring high-quality results every time.
Furthermore, the welder supports a maximum welding thickness of 0.35 mm, making it suitable for a variety of battery sizes and materials. This versatility, combined with its advanced features, makes the SUNKKO 737G+ an excellent choice for both professionals and hobbyists seeking reliable, efficient, and safe welding performance.
IMPORTANT: This device requires a 25 A circuit breaker. Do not use with a smaller circuit breaker!
Features
Max. power output: 4.3 kW (Instantaneous)
Input voltage: 220 V
Welding current: 120-1200 A
Single pulse time: 5 ms
Max. pulse quantity: 18
Fuse: 30 A
Max. welding thickness: 0.35 mm
Automatic spot welding
Foot pedal control welding
Dimensions: 14 x 25 x 20 cm
Weight: 7 kg
Included
1x 737G+ spot welding machine
1x S70BN mobile welding pen
1x Copper welding rods
1x Mini grinder with USB cable
1x Copper welding pins for mobile pen
1x Battery fixture
1x Foot pedal
2x Fuses
1x Hexagon wrench
50x Nickel plated steel (0.15 x 8 x 100 mm)
50x Nickel plated steel (0.1 x 4 x 100 mm)
1x Manual
Downloads
Manual
Create Models for 3D Printing, CNC Milling, Process Communication and DocumentationEngineers dread designing 3D models using traditional modeling software. OpenSCAD takes a refreshing and completely different approach. Create your models by arranging geometric solids in a JavaScript-like language, and use them with your 3D printer, CNC mill, or process communication.OpenSCAD differs from other design systems in that it uses programmatical modeling. Your model is made up of primitives that are invoked using a C-, Java- or Python-like language. This approach to model design is close to the “mechanical work” done in the real world and appeals to engineers and others who are not a member of the traditional creative class.OpenSCAD also provides a wide variety of comfort functions that break the 1:1 relationship between code and geometry. This book demonstrates the various features of the programming language using practical examples such as a replacement knob for a LeCroy oscilloscope, a wardrobe hanger, a container for soap dispensers, and various other real-life examples.Written by an engineer with over 15 years of experience, this book is intended for Linux and Windows users alike. If you have programming experience in any language, this book will have you producing practical three-dimensional objects in short order!