Products

760 products

  • Arduino MKR Zero - Elektor

    Arduino Arduino MKR Zero

    The Arduino MKR Zero is a development board for music makers! With an SD card holder and dedicated SPI interfaces (SPI1), you are able to play music files without extra hardware. The MKR Zero brings you the power of a Zero in the smaller format established by the MKR form factor. The MKR Zero board acts as a great educational tool for learning about 32-bit application development. It has an on-board SD connector with dedicated SPI interfaces (SPI1) that allows you to play with MUSIC files with no extra hardware! The board is powered by Atmel’s SAMD21 MCU, which features a 32-bit ARM Cortex M0+ core. The board contains everything needed to support the microcontroller; simply connect it to a computer with a micro-USB cable or power it by a LiPo battery. The battery voltage can also be monitored since a connection between the battery and the analog converter of the board exists. Specifications Microcontroller SAMD21 ARM Cortex-M0+ 32-bit low power Board power supply (USB/VIN) 5 V Supported battery Li-Po single cell, 3.7 V, 700 mAh minimum DC current for 3.3 V pin 600 mA DC current for 5 V pin 600 mA Circuit operating voltage 3.3 V Digital I/O pins 22 PWM pins 12 (0, 1, 2, 3, 4, 5, 6, 7, 8, 10, A3 - or 18 -, A4 -or 19) UART 1 SPI 1 I²C 1 Analog input pins 7 (ADC 8/10/12 bit) Analog output pins 1 (DAC 10 bit) External interrupts 10 (0, 1, 4, 5, 6, 7, 8, A1 -or 16-, A2 - or 17) DC current per I/O pin 7 mA Flash memory 256 KB Flash memory for bootloader 8 KB SRAM 32 KB EEPROM No Clock speed 32.768 kHz (RTC), 48 MHz LED_BUILTIN 32 Downloads Datasheet Eagle Files Schematics Fritzing Pinout

    € 36,95

    Members € 33,26

  • Arduino Nano - Elektor

    Arduino Arduino Nano

    The Arduino Nano is a small, complete, and breadboard-friendly board based on the ATmega328 (Arduino Nano 3.x). It has more or less the same functionality of the Arduino Duemilanove but in a different package. It lacks only a DC power jack and works with a Mini-B USB cable instead of a standard one. Specifications Microcontroller ATmega328 Operating Voltage (logic level) 5 V Input Voltage (recommended) 7-12 V Input Voltage (limits) 6-20 V Digital I/O Pins 14 (of which 6 provide PWM output) Analog Input Pins 8 DC Current per I/O Pin 40 mA Flash Memory 16 KB (ATmega168) or 32 KB (ATmega328) of which 2 KB used by bootloader SRAM 1 KB (ATmega168) or 2 KB (ATmega328) EEPROM 512 bytes (ATmega168) or 1 KB (ATmega328) Clock Speed 16 MHz Dimensions 0.73 x 1.70' (18 x 45 mm) Power The Arduino Nano can be powered via the Mini-B USB connection, 6-20 V unregulated external power supply (pin 30), or 5 V regulated external power supply (pin 27). The power source is automatically selected to the highest voltage source. Memory The ATmega168 has 16 KB of flash memory for storing code (of which 2 KB is used for the bootloader), 1 KB of SRAM and 512 bytes of EEPROM The ATmega328 has 32 KB of flash memory for storing code, (also with 2 KB used for the bootloader), 2 KB of SRAM and 1 KB of EEPROM. Input and Output Each of the 14 digital pins on the Nano can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 V. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. Communication The Arduino Nano has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega168 and ATmega328 provide UART TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An FTDI FT232RL on the board channels this serial communication over USB and the FTDI drivers (included with the Arduino software) provide a virtual com port to software on the computer. The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the FTDI chip and USB connection to the computer (but not for serial communication on pins 0 and 1). A SoftwareSerial library allows for serial communication on any of the Nano's digital pins. Programming The Arduino Nano can be programmed with the Arduino software (download). The ATmega168 or ATmega328 on the Arduino Nano comes with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It communicates using the original STK500 protocol (reference, C header files). You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header using Arduino ISP or similar; see these instructions for details. Automatic (Software) Reset Rather than requiring a physical press of the reset button before an upload, the Arduino Nano is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of theFT232RL is connected to the reset line of the ATmega168 or ATmega328 via a 100 nF capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload.

    € 22,95

    Members € 20,66

  •  -23% Arduino Nano 33 BLE Rev2 with Headers - Elektor

    Arduino Arduino Nano 33 BLE Rev2 with Headers

    The Arduino Nano 33 BLE Rev2 stands at the forefront of innovation, leveraging the advanced capabilities of the nRF52840 microcontroller. This 32-bit Arm Cortex-M4 CPU, operating at an impressive 64 MHz, empowers developers for a wide range of projects. The added compatibility with MicroPython enhances the board's flexibility, making it accessible to a broader community of developers. The standout feature of this development board is its Bluetooth Low Energy (Bluetooth LE) capability, enabling effortless communication with other Bluetooth LE-enabled devices. This opens up a realm of possibilities for creators, allowing them to seamlessly share data and integrate their projects with a wide array of connected technologies. Designed with versatility in mind, the Nano 33 BLE Rev2 is equipped with a built-in 9-axis Inertial Measurement Unit (IMU). This IMU is a game-changer, offering precise measurements of position, direction, and acceleration. Whether you're developing wearables or devices that demand real-time motion tracking, the onboard IMU ensures unparalleled accuracy and reliability. In essence, the Nano 33 BLE Rev2 strikes the perfect balance between size and features, making it the ultimate choice for crafting wearable devices seamlessly connected to your smartphone. Whether you're a seasoned developer or a hobbyist embarking on a new adventure in connected technology, this development board opens up a world of possibilities for innovation and creativity. Elevate your projects with the power and flexibility of the Nano 33 BLE Rev2. Specifications Microcontroller nRF52840 USB connector Micro USB Pins Built-in LED Pins 13 Digital I/O Pins 14 Analog Input Pins 8 PWM Pins All digital pins (4 at once) External interrupts All digital pins Connectivity Bluetooth u-blox NINA-B306 Sensors IMU BMI270 (3-axis accelerometer + 3-axis gyroscope) + BMM150 (3-axis Magnetometer) Communication UART RX/TX I²C A4 (SDA), A5 (SCL) SPI D11 (COPI), D12 (CIPO), D13 (SCK). Use any GPIO for Chip Select (CS) Power I/O Voltage 3.3 V Input Voltage (nominal) 5-18 V DC Current per I/O Pin 10 mA Clock Speed Processor nRF52840 64 MHz Memory nRF52840 256 KB SRAM, 1 MB flash Dimensions 18 x 45 mm Downloads Datasheet Schematics

    € 29,95€ 22,95

    Members identical

  •  -18% Arduino Nano 33 BLE Sense Rev2 with Headers - Elektor

    Arduino Arduino Nano 33 BLE Sense Rev2 (with Headers)

    The Arduino Nano 33 BLE Sense Rev2 with headers is Arduino’s 3.3 V AI enabled board in the smallest available form factor with a set of sensors that will allow you without any external hardware to start programming your next project, right away. With the Arduino Nano 33 BLE Sense Rev2, you can: Build wearable devices that using AI can recognize movements. Build a room temperature monitoring device that can suggest or modify changes in the thermostat. Build a gesture or voice recognition device using the microphone or the gesture sensor together with the AI capabilities of the board. Differences between Rev1 and Rev2 Replacement of IMU from LSM9DS1 (9 axis) for a combination of two IMUs (BMI270 – 6 axis IMU and BMM150 – 3 axis IMU) Replacement of temperature and humidity sensor from HTS221 for HS3003 Replacement of microphone from MP34DT05 to MP34DT06JTR Replacement of power supply MPM3610 for MP2322 Addition of VUSB soldering jumper on the top side of the board New test point for USB, SWDIO and SWCLK Specifications Microcontroller nRF52840 (datasheet) Operating Voltage 3.3 V Input Voltage (limit) 21 V DC Current per I/O Pin 15 mA Clock Speed 64 MHz CPU Flash Memory 1 MB (nRF52840) SRAM 256 KB (nRF52840) EEPROM None Digital Input / Output Pins 14 PWM Pins All digital pins UART 1 SPI 1 I²C 1 Analog Input Pins 8 (ADC 12 bit 200 k samples) Analog Output Pins Only through PWM (no DAC) External Interrupts All digital pins LED_BUILTIN 13 USB Native in the nRF52840 Processor IMU BMI270 (datasheet) and BMM150 (datasheet) Microphone MP34DT06JTR (datasheet) Gesture, light, proximity, color APDS9960 (datasheet) Barometric pressure LPS22HB (datasheet) Temperature, humidity HS3003 (datasheet) Downloads Datasheet Schematics

    € 54,95€ 44,95

    Members identical

  •  -25% Arduino Nano ESP32 - Elektor

    Arduino Arduino Nano ESP32

    The Arduino Nano ESP32 (with and without headers) is a Nano form factor board based on the ESP32-S3 (embedded in the NORA-W106-10B from u-blox). This is the first Arduino board to be based fully on an ESP32, and features Wi-Fi, Bluetooth LE, debugging via native USB in the Arduino IDE as well as low power. The Nano ESP32 is compatible with the Arduino IoT Cloud, and has support for MicroPython. It is an ideal board for getting started with IoT development. Features Tiny footprint: Designed with the well-known Nano form factor in mind, this board's compact size makes it perfect for embedding in standalone projects. Wi-Fi and Bluetooth: Harness the power of the ESP32-S3 microcontroller, well-known in the IoT realm, with full Arduino support for wireless and Bluetooth connectivity. Arduino and MicroPython support: Seamlessly switch between Arduino and MicroPython programming with a few simple steps. Arduino IoT Cloud compatible: Quickly and easily create IoT projects with just a few lines of code. The setup takes care of security, allowing you to monitor and control your project from anywhere using the Arduino IoT Cloud app. HID support: Simulate human interface devices, such as keyboards or mice, over USB, opening up new possibilities for interacting with your computer. Specifications Microcontroller u-blox NORA-W106 (ESP32-S3) USB connector USB-C Pins Built-in LED pins 13 Built-in RGB LED pins 14-16 Digital I/O pins 14 Analog input pins 8 PWM pins 5 External interrupts All digital pins Connectivity Wi-Fi u-blox NORA-W106 (ESP32-S3) Bluetooth u-blox NORA-W106 (ESP32-S3) Communication UART 2x I²C 1x, A4 (SDA), A5 (SCL) SPI D11 (COPI), D12 (CIPO), D13 (SCK). Use any GPIO for Chip Select (CS) Power I/O Voltage 3.3 V Input voltage (nominal) 6-21 V Source Current per I/O pin 40 mA Sink Current per I/O pin 28 mA Clock speed Processor Up to 240 MHz Memory ROM 384 kB SRAM 512 kB External Flash 128 Mbit (16 MB) Dimensions 18 x 45 mm Downloads Datasheet Schematics

    € 23,95€ 17,95

    Members identical

  • Arduino Nano ESP32 with Headers - Elektor

    Arduino Arduino Nano ESP32 with Headers

    The Arduino Nano ESP32 is a Nano form factor board based on the ESP32-S3 (embedded in the NORA-W106-10B from u-blox). This is the first Arduino board to be based fully on an ESP32, and features Wi-Fi, Bluetooth LE, debugging via native USB in the Arduino IDE as well as low power. The Nano ESP32 is compatible with the Arduino IoT Cloud, and has support for MicroPython. It is an ideal board for getting started with IoT development. Features Tiny footprint: Designed with the well-known Nano form factor in mind, this board's compact size makes it perfect for embedding in standalone projects. Wi-Fi and Bluetooth: Harness the power of the ESP32-S3 microcontroller, well-known in the IoT realm, with full Arduino support for wireless and Bluetooth connectivity. Arduino and MicroPython support: Seamlessly switch between Arduino and MicroPython programming with a few simple steps. Arduino IoT Cloud compatible: Quickly and easily create IoT projects with just a few lines of code. The setup takes care of security, allowing you to monitor and control your project from anywhere using the Arduino IoT Cloud app. HID support: Simulate human interface devices, such as keyboards or mice, over USB, opening up new possibilities for interacting with your computer. Specifications Microcontroller u-blox NORA-W106 (ESP32-S3) USB connector USB-C Pins Built-in LED pins 13 Built-in RGB LED pins 14-16 Digital I/O pins 14 Analog input pins 8 PWM pins 5 External interrupts All digital pins Connectivity Wi-Fi u-blox NORA-W106 (ESP32-S3) Bluetooth u-blox NORA-W106 (ESP32-S3) Communication UART 2x I²C 1x, A4 (SDA), A5 (SCL) SPI D11 (COPI), D12 (CIPO), D13 (SCK). Use any GPIO for Chip Select (CS) Power I/O Voltage 3.3 V Input voltage (nominal) 6-21 V Source Current per I/O pin 40 mA Sink Current per I/O pin 28 mA Clock speed Processor Up to 240 MHz Memory ROM 384 kB SRAM 512 kB External Flash 128 Mbit (16 MB) Dimensions 18 x 45 mm Downloads Datasheet Schematics

    € 24,95

    Members € 22,46

  • Arduino Nano Every with Headers - Elektor

    Arduino Arduino Nano Every with Headers

    The Arduino Nano Every is an evolution of the traditional Arduino Nano board but features a lot more powerful processor, the ATMega4809. This will allow you to make larger programs than with the Arduino Uno (it has 50% more program memory), and with a lot more variables (the RAM is 200% bigger). An Improved Arduino Nano If you used Arduino Nano in your projects in the past, the Nano Every is a pin-equivalent substitute. The main differences are a better processor and a micro-USB connector. The board comes in two options: with or without headers, allowing you to embed the Nano Every inside any kind of invention, including wearables. The board comes with tessellated connectors and no components on the B-side. These features allow you to solder the board directly onto your own design, minimizing the height of your whole prototype. Oh, and did we mention the improved price? Thanks to a revised manufacturing process, the Arduino Nano Every costs a fraction of the original Nano … what are you waiting for? Upgrade now! Microcontroller ATMega4809 Operating Voltage 5 V Input Voltage 7 V - 21 V Analog Input Pins 8 Analog Output Pins Only through PWM External Interrupts all digital pins DC Current per I/O Pin 20 mA DC Current for 3.3 V Pin 50 mA Flash Memory 48 KB SRAM 6 KB EEPROM 256 Byte Clock Speed 20 MHz LED_Builtin 13 UART 1 SPI 1 I2C 1 PWM Pins 5 USB Uses the ATSAMD11D14A Length 45 mm Width 18 mm Weight 5 g

    € 19,95

    Members € 17,96

  • Arduino Nano RP2040 Connect with Headers - Elektor

    Arduino Arduino Nano RP2040 Connect (with Headers)

    The Arduino Nano RP2040 Connect is an RP2040-based Arduino board equipped with Wi-Fi (802.11b/g/n) and Bluetooth 4.2. Besides wireless connectivity the board comes with a microphone for sound and voice activation and a six-axis smart motion sensor with AI capabilities. An RGB LED is available too. 22 GPIO ports (20 with PWM support and eight analogue inputs) let the user control e.g. relays, motors and LEDs and read switches and other sensors. Program memory is plentiful with 16 MB of flash memory, more than enough room for storing many webpages or other data. Specifications Microcontroller Raspberry Pi RP2040 USB connector Micro USB Pins Built-in LED pins 13 Digital I/O pins 20 Analog Input pins 8 PWM pins 20 (Except A6, A7) External interrupts 20 (Except A6, A7) Connectivity Wi-Fi Nina W102 uBlox module Bluetooth Nina W102 uBlox module Secure element ATECC608A-MAHDA-T Crypto IC Sensors IMU LSM6DSOXTR (6-axis) Microphone MP34DT05 Communication UART Yes I²C Yes SPI Yes Power Circuit operating voltage 3.3 V Input Voltage (VIN) 5-21 V DC Current per I/O pin 4 mA Clock speed Processor 133 MHz Memory AT25SF128A-MHB-T 16 MB Flash IC Nina W102 uBlox module 448 KB ROM, 520 KB SRAM, 16 MB Flash Dimensions 45 x 18 mm Weight 6 g Downloads Schematics Pinout Datasheet

    € 29,95

    Members € 26,96

  •  -27% Arduino Portenta HAT Carrier - Elektor

    Arduino Arduino Portenta HAT Carrier

    Portenta HAT Carrier is a reliable and robust carrier that transforms Portenta X8 into an industrial single board computer compatible with Raspberry Pi HATs and cameras. It is ideal for multiple industrial applications such as building automation and machine monitoring. Compatible also with Portenta H7 and Portenta C33, Portenta HAT Carrier provides easy access to multiple peripherals – including CAN, Ethernet, microSD and USB – and further extends any Portenta application. It is great for prototyping and ready for scaling up, it extends the features found on a typical Raspberry Pi Model B. Debug quickly with dedicated JTAG pins and keeps heat manageable under intense workloads with a PWM fan connector. Control actuators or read analog sensors via the additional 16x analog I/Os. Add industrial machine vision solutions to any project by leveraging the onboard camera connector. Features Add Raspberry Pi HATs to your Portenta projects Quickly access CAN, USB, and Ethernet peripherals Leverage onboard MicroSD card to log data Enjoy simple debugging through the onboard JTAG pins Easily control actuators and read sensors via 16x analog I/Os Leveraging the onboard camera connector for machine vision Portenta takes you from prototype to high-performance Portenta HAT Carrier offers you a frictionless Linux prototyping experience and unlocks the ability for integrated real-time MCU solutions. Portenta HAT Carrier extends Portenta SOMs for faster, easier and more efficient testing for your ideas while also ensuring the capabilities and industrial-grade performances the Portenta range is known for. Extend the Raspberry Pi ecosystem for commercial applications Combine the ease of use, accessibility and incredible support from both the Arduino and Raspberry Pi communities for your next project with the carrier designed to combine and extend MPU and MCU applications for the development of advanced commercial solutions. Specifications Connectors High-density connectors compatible with Portenta products 1x USB-A female connector 1x Gigabit Ethernet connector (RJ45) 1x CAN FD with onboard transceiver 1x MIPI Camera connector 1x MicroSD card slot 1x PWM fan connector 40-pin header connector allowing compatibility with Raspberry Pi HATs 16-pin analog header connectors, including: 8x analog inputs 1x GPIO 1xUART without flow control 2x PWM pins 1x LICELL pin for Portenta's RTC power Interfaces CAN FD UART SAI ANALOG GPIO SPI I²C I²S PWM Debugging Onboard 10x pin 1.27 mm JTAG connector Power From onboard screw terminal block allowing: 7-32 V power supply, powering both the carrier and the connected Portenta 5 V power supply From USB-C on Portenta From 5 V on 40-pin header connector Dimensions 85 x 56 mm Downloads Datasheet Schematics

    € 54,95€ 39,95

    Members identical

  •  -18% Arduino Pro Nicla Sense ME - Elektor

    Arduino Arduino Pro Nicla Sense ME

    The Nicla Sense ME is a tiny, low-power tool that sets a new standard for intelligent sensing solutions. With the simplicity of integration and scalability of the Arduino ecosystem, the board combines four state-of-the-art sensors from Bosch Sensortec: BHI260AP motion sensor system with integrated AI BMM150 magnetometer BMP390 pressure sensor BME688 4-in-1 gas sensor with AI and integrated high-linearity, as well as high-accuracy pressure, humidity and temperature sensors. The Arduino Nicla Sense ME is the smallest Arduino form factor yet, with a range of industrial grade sensors packed into a tiny footprint. Measure process parameters such as temperature, humidity and movement. Featuring a 9-axis inertial measurement unit and the possibility for Bluetooth Low Energy connectivity, it can help you to create your next Bluetooth Low Energy enabled project. Make your own industrial grade wireless sensing network with the onboard BHI260AP, BMP390, BMM150 and BME688 Bosch sensors. Features Tiny size, packed with features Low power consumption Add sensing capabilities to existing projects When battery-powered, becomes a complete standalone board Powerful processor, capable of hosting intelligence on the Edge Measures motion and environmental parameters Robust hardware including industrial-grade sensors with embedded AI BLE connectivity maximizes compatibility with professional and consumer equipment 24/7 always-on sensor data processing at ultra-low power consumption Specifications BHI260AP – Self-learning AI smart sensor with integrated accelerometer and gyroscope BMP390 – Digital pressure sensor BMM150 – Geomagnetic sensor BME688 – Digital low power gas, pressure, temperature & humidity sensor with AI Microcontroller 64 MHz ARM Cortex-M4 (nRF52832) Sensors I/O Castellated pins with the following features: 1x I²C bus (with ext. ESLOV connector) 1x Serial port 1x SPI 2x ADC, programmable I/O voltage from 1.8-3.3 V Connectivity Bluetooth 4.2 Power Micro USB (USB-B), Pin Header, 3.7 V Li-po battery with Integrated battery charger Memory 512 KB Flash / 64 KB RAM 2 MB SPI Flash for storage 2 MB QSPI dedicated for BHI260AP Interface USB interface with debug functionality Dimensions 22.86 x 22.86 mm Weight 2 g Downloads Datasheet

    € 84,95€ 69,95

    Members identical

  •  -33% Arduino Pro Nicla Vision - Elektor

    Arduino Arduino Pro Nicla Vision

    Ever wanted an automated house? Or a smart garden? The Arduino IoT Cloud compatible board Nicla Vision allows you to build your next smart project. You can connect devices, visualize data, control and share your projects from anywhere in the world. Nicla Vision combines a powerful STM32H747AII6 Dual ARM Cortex M7/M4 IC processor with a 2 MP color camera that supports TinyML, as well as a smart 6-axis motion sensor, integrated microphone and distance sensor. You can easily include it into any project because it’s designed to be compatible with all Arduino Portenta and MKR products, fully integrates with OpenMV, supports MicroPython and also offers both WiFi and Bluetooth Low Energy connectivity. It’s so compact – with its 22.86 x 22.86 mm form factor – it can physically fit into most scenarios, and requires so little energy it can be powered by battery for standalone applications. All of this makes Nicla Vision the ideal solution to develop or prototype with on-device image processing and machine vision at the edge, for asset tracking, object recognition, predictive maintenance and more – easier and faster than ever. Train it to spot details, so you can focus on the big picture. Automate anything Check every product is labeled before it leaves the production line; unlock doors only for authorized personnel, and only if they are wearing PPE correctly; use AI to train Nicla Vision to regularly check analog meters and beam readings to the Cloud; teach it to recognize thirsty crops and turn the irrigation on when needed.Anytime you need to act or make a decision depending on what you see, let Nicla Vision watch, decide and act for you. Feel seen Interact with kiosks with simple gestures, create immersive experiences, work with cobots at your side. Nicla Vision allows computers and smart devices to see you, recognize you, understand your movements and make your life easier, safer, more efficient, better. Keep an eye out Let Nicla Vision be your eyes: detecting animals on the other side of the farm, letting you answer your doorbell from the beach, constantly checking on the vibrations or wear of your industrial machinery. It’s your always-on, always precise lookout, anywhere you need it to be. Downloads Schematics Datasheet

    € 149,95€ 99,95

    Members identical

  •  -25% Arduino Pro Portenta C33 - Elektor

    Arduino Arduino Pro Portenta C33

    The Portenta C33 is a powerful System-on-Module designed for low-cost Internet of Things (IoT) applications. Based on the R7FA6M5BH2CBG microcontroller from Renesas, this board shares the same form factor as the Portenta H7 and it is backward compatible with it, making it fully compatible with all Portenta family shields and carriers through its high-density connectors. As a low-cost device, the Portenta C33 is an excellent choice for developers looking to create IoT devices and applications on a budget. Whether you're building a smart home device or a connected industrial sensor, the Portenta C33 provides the processing power and connectivity options you need to get the job done. Quickly deploying AI-powered projects becomes quick and easy with Portenta C33, by leveraging a vast array of ready-to-use software libraries and Arduino sketches available, as well as widgets that display data in real time on Arduino IoT Cloud-based dashboards. Features Ideal for low-cost IoT applications with Wi-Fi/Bluetooth LE connectivity Supports MicroPython and other high-level programming languages Offers industrial-grade security at the hardware level and secure OTA firmware updates Leverages ready-to-use software libraries and Arduino sketches Perfect to monitor and display real-time data on Arduino IoT Cloud widget-based dashboards Compatible with Arduino Portenta and MKR families Features castellated pins for automatic assembly lines Cost Effective Performance Reliable, secure and with computational power worthy of its range, Portenta C33 was designed to provide big and small companies in every field with the opportunity to access IoT and benefit from higher efficiency levels and automation. Applications Portenta C33 brings more applications than ever within users’ reach, from enabling quick plug-and-play prototyping to providing a cost-effective solution for industrial-scale projects. Industrial IoT gateway Machine monitoring to track OEE/OPE Inline quality control and assurance Energy consumption monitoring Appliances control system Ready-to-use IoT prototyping solution Specifications Microcontroller Renesas R7FA6M5BH2CBG ARM Cortex-M33: ARM Cortex-M33 core up to 200 MHz 512 kB onboard SRAM 2 MB onboard Flash Arm TrustZone Secure Crypto Engine 9 External Memories 16 MB QSPI Flash USB-C USB-C High Speed Connectivity 100 MB Ethernet interface (PHY) Wi-Fi Bluetooth Low Energy Interfaces CAN SD Card ADC GPIO SPI I²S I²C JTAG/SWD Security NXP SE050C2 Secure Element Operating Temperatures -40 to +85°C (-40 to 185°F) Dimensions 66,04 x 25,40 mm Downloads Datasheet Schematics

    € 79,95€ 59,95

    Members identical

  •  -25% Arduino Pro Portenta Cat - M1 NB - IoT GNSS Shield - Elektor

    Arduino Arduino Pro Portenta Cat-M1 NB-IoT GNSS Shield

    The Arduino Pro Portenta Cat. M1/NB IoT GNSS Shield allows you to enhance the connectivity features of your Portenta H7 applications. The shield leverages a Cinterion TX62 wireless module by Thales, designed for highly efficient, low-power IoT applications to deliver optimized bandwidth and performance. The Portenta Cat. M1/NB IoT GNSS Shield combines with the strong edge computing power of the Portenta H7 to enable the development of asset tracking and remote monitoring applications in industrial settings, as well as in agriculture, public utilities and smart cities. The shield offers cellular connectivity to both Cat. M1 and NB-IoT networks with the option to use eSIM technology. Easily track your valuables – across the city or worldwide – with your choice of GPS, GLONASS, Galileo or BeiDou. Features Change connectivity capabilities without changing the board Add NB-IoT, CAT. M1 and positioning to any Portenta product Possibility to create a small multiprotocol router (WiFi - BT + NB-IoT/CAT. M1) Greatly reduce communication bandwidth requirements in IoT applications Low-power module Compatible also with MKR boards Remote Monitoring Industrial and agricultural companies can leverage the Portenta Cat. M1/NB IoT GNSS Shield to remotely monitor gas detectors, optical sensors, machinery alarm systems, biological bug traps and more. Technology providers providing smart city solutions can compound the power and reliability of the Portenta H7 with the Portenta Cat. M1/NB IoT GNSS Shield, to connect data and automate actions for a truly optimized use of resources and enhanced user experience. Asset Monitoring Add monitoring capabilities to any asset by combining the performance and edge computing features of the Portenta family boards. The Portenta Cat. M1/NB IoT GNSS Shield is ideal to monitor valuable goods and also for monitoring industrial machinery and equipment. Specifications Connectivity Cinterion TX62 wireless module; NB-IoT - LTE CAT.M1; 3GPP Rel.14 Compliant Protocol LTE Cat. M1/NB1/NB2; UMTS BANDS: 1 / 2 / 3 / 4 / 5 / 8 / 12(17) / 13 / 18 / 19 / 20 / 25 / 26 / 27 / 28 / 66 / 71 / 85; LTE Cat.M1 DL: max. 300 kbps, UL: max. 1.1 Mbps; LTE Cat.NB1 DL: max. 27 kbps, UL: max. 63 kbps; LTE Cat.NB2 DL: max. 124 kbps, UL: max. 158 kbps Short messaging service (SMS) Point-to-point mobile terminated (MT) and mobile originated (MO) Text Mode; Protocol Data Unit (PDU) Mode Localization support GNSS capability (GPS/BeiDou/Galileo/GLONASS) Other Embedded IPv4 and IPv6 TCP/IP stack access; Internet Services: TCP server/client, UDP client, DNS, Ping, HTTP client, FTP client, MQTT client Secure Connection with TLS/DTLS Secure boot Dimensions 66 x 25.4 mm Operating temperature -40° C to +85° C (-104° F to 185°F) Downloads Datasheet Schematics

    € 99,95€ 74,95

    Members identical

  •  -27% Arduino Pro Portenta Max Carrier - Elektor

    Arduino Arduino Pro Portenta Max Carrier

    The Arduino Pro Portenta Max Carrier transforms Portenta modules into single-board computers or reference designs that enable edge AI for high-performance industrial, building automation and robotics applications. Thanks to dedicated high-density connectors, it can be paired with Portenta X8 or H7, allowing you to easily prototype and deploy your industrial projects. This Arduino Pro carrier further augments Portenta connectivity options with Fieldbus, LoRa, Cat-M1 and NB-IoT. Among the many available plug-and-play connectors there are Ethernet, USB-A, audio jacks, microSD, mini-PCIe, FD-CAN and Serial RS232/422/485. Max Carrier can be powered via external supply (6-36 V) or battery via the onboard 18650 Li-ion battery connector with 3.7 V battery charger. Features Easily prototype industrial applications and minimize time to market A powerful carrier exposing Portenta peripherals (e.g. CAN, RS232/422/485, USB, mPCIe) Multiple connectivity options (Ethernet, LoRa, CAT-M1, NB-IoT) MicroSD for data logging operations Integrated audio jacks (line-in, line-out, mic-in) Standalone when battery powered Onboard JTAG debugger via micro-USB (with Portenta H7 only) Specifications Connectors High-Density connectors compatible with Portenta products2x USB-A female connectors1x Gigabit Ethernet connector (RJ45)1x FD-Can on RJ111x mPCIe1x Serial RS232/422/485 on RJ12 Audio 3x audio jacks: stereo line-in/line-out, mic-inSpeaker connector Memory Micro SD Wireless modules Murata CMWX1ZZABZ-078 LoRaSARA-R412M-02B (Cat.M1/NB-IoT) Operating temperatures -40 °C to +85 °C (-40° F to 185 °F) Debugging Onboard JLink OB / Blackmagic probe Power/battery Power Jack for external supply (6-36 V)On-board 18650 Li-ion battery connector with battery charger (3.7 V) Dimensions 101.6 x 101.6 mm (4.0 x 4.0') Downloads Datasheet Schematics

    € 369,00€ 269,00

    Members identical

  •  -21% Arduino Pro Portenta Vision Shield (Ethernet) - Elektor

    Arduino Arduino Pro Portenta Vision Shield (Ethernet)

    The Arduino Pro Portenta Vision Shield brings industry-rated features to your Portenta. This hardware add-on will let you run embedded computer vision applications, connect wirelessly or via Ethernet to the Arduino Cloud or your own infrastructure, and activate your system upon the detection of sound events. Features 324x324 pixels camera sensor: use one of the cores in Portenta to run image recognition algorithms using the OpenMV for Arduino editor 100 Mbps Ethernet connector: get your Portenta H7 connected to the wired Internet 2 onboard microphones for directional sound detection: capture and analyse sound in real-time JTAG connector: perform low-level debugging of your Portenta board or special firmware updates using an external programmer SD-Card connector: store your captured data in the card, or read configuration files The Vision Shield has been designed to fit on top of the Arduino Portenta family. The Portenta boards feature multicore 32-bit ARM Cortex processors running at hundreds of megahertz, with megabytes of program memory and RAM. Portenta boards come with WiFi and Bluetooth. Embedded Computer Vision Made Easy Arduino has teamed up with OpenMV to offer you a free license to the OpenMV IDE, an easy way into computer vision using MicroPython as a programming paradigm. Download the OpenMV for Arduino Editor from our professional tutorials site and browse through the examples we have prepared for you inside the OpenMV IDE. Companies across the whole world are already building their commercial products based on this simple-yet-powerful approach to detect, filter, and classify images, QR codes, and others. Debugging With Professional Tools Connect your Portenta H7 to a professional debugger through the JTAG connector. Use professional software tools like the ones from Lauterbach or Segger on top of your board to debug your code step by step. The Vision Shield exposes the required pins for you to plug in your external JTAG. Camera Himax HM-01B0 camera module Resolution 320 x 320 active pixel resolution with support for QVGA Image sensor High sensitivity 3.6μ BrightSense pixel technology Microphone 2 x MP34DT05 Length 66 mm Width 25 mm Weight 11 gr For more information, check out the tutorials provided by Arduino here.

    € 69,95€ 54,95

    Members identical

  •  -18% Arduino Pro Portenta Vision Shield LoRa - Elektor

    Arduino Arduino Pro Portenta Vision Shield LoRa

    The Arduino Pro Portenta Vision Shield LoRa brings industry-rated features to your Portenta. This hardware add-on will let you run embedded computer vision applications, connect wirelessly via LoRa to the Arduino Cloud or your own infrastructure, and activate your system upon the detection of sound events. The shield comes with: a 320x320 pixels camera sensor: use one of the cores in Portenta to run image recognition algorithms using the OpenMV for Arduino editor long range 868/915 MHz LoRa wireless connectivity: get your Portenta H7 connected to the Internet of Things with low power consumption two on-board microphones for directional sound detection: capture and analyse sound in real-time JTAG connector: perform low-level debugging of your Portenta board or special firmware updates using an external programmer SD-Card connector: store your captured data in the card, or read configuration files The Vision Shield LoRa has been designed to work with the Arduino Portenta H7. The Portenta boards feature multicore 32-bit ARM Cortex processors running at hundreds of megahertz, with megabytes of program memory and RAM. Portenta boards come with WiFi and Bluetooth. Specifications Camera Himax HM-01B0 camera module (manufacturer site) Resolution 320 x 320 active pixel resolution with support for QVGA Image sensor High sensitivity 3.6μ BrightSense pixel technology Microphone 2x MP34DT05 (datasheet) Connectivity 868/915MHz ABZ-093 LoRa Module with ARM Cortex-M0+ (datasheet) Dimensions 66 x 25 mm Weight 8 g Downloads Datasheet Schematics

    € 84,95€ 69,95

    Members identical

  •  -25% Arduino Science Kit Rev3 - Elektor

    Arduino Arduino Science Kit Rev3

    Unlock a world of interactive learning with the Science Kit R3's robust hardware and software. With the Arduino Nano RP2040 Connect, Arduino Science Carrier R3, and an impressive array of sensors at your disposal, you'll have everything you need to embark on an exhilarating educational journey. Meanwhile, the Science Journal app effortlessly bridges the gap between theory and practice, facilitating real-time data collection, recording, and interpretation. The kit elevates the learning experience by nurturing an enhanced understanding of complex physics concepts through engaging hands-on experimentation. It promotes scientific literacy and hones critical thinking skills by providing real-world application scenarios. With its intuitive content guide, both teachers and students can navigate through scientific explorations with ease. Features Hands-on experimental learning: perform physical experiments, transforming abstract physics concepts into tangible and interactive experiences. Real-time data collection & analysis: With the integration of the Science Journal app, the kit allows students to collect, record, and interpret real-time data with mobile devices, strengthening their data literacy and scientific inquiry skills. Teacher and student-friendly design: Equipped with a preloaded program, the kit requires no prior knowledge of coding or electronics. It also features Bluetooth connectivity for easy data transmission from the Arduino board to the students' mobile devices. Comprehensive sensor ecosystem: The kit comes with multiple sensors, providing a wide range of data collection possibilities and keeping it adaptable to evolving educational needs. Free guided courses – Explore Physics: Includes an intuitive courses guide that assists teachers and students in using the kit, presenting and analyzing data, and evaluating experimental outcomes. These courses also help students effectively communicate their scientific discoveries. Comprehensive teaching support: With its intuitive guide, the Arduino Science Kit R3 eases the instructional process for teachers. It not only instructs on kit usage, but also assists in data presentation, analysis, and evaluation, ensuring students communicate their scientific discoveries effectively. Specifications Hardware Arduino Nano RP2040 Connect Arduino Science Carrier R3 Embedded sensors: Air quality, temperature, humidity & pressure IMU: 6-axis linear accelerometer, gyroscope, and magnetometer Proximity, ambient light, light color Voltage or electric potential difference Electrical current Electrical resistance Function generators to see and hear the effect of frequency, amplitude, and phase on a sound wave Ambient sound intensity sensor Ports 2x Grove analog inputs (for external temperature-probe sensor) 2x Grove I²C ports (for external distance & ping-echo sensor) 1x Battery JST connector 2x Output ports connected to lower power signal from function generators (future generation) 1x 3.3 V output port and Ground 2x speaker ports connected to function generators Other 50 cm double-ended cable (blue): crocodile clips one end, banana plug the other 20 cm double-ended cable (black): crocodile clips one end, banana plug the other 20 cm double-ended cable (red): crocodile clips one end, banana plug the other VELCRO strips Silicon stands External temperature probe sensor Ultrasonic distance sensor Grove cable 4-pin housing with lock x2 (L=200 mm) USB-C Cable 50 cm double-ended cable (yellow): crocodile clips one end, banana plug the other 2x Speakers Cable for battery holder with JST connector Battery holder for four 1V5 AA batteries

    € 239,00€ 179,95

    Members identical

  •  -27%Last Stock! Arduino Starter Kit (English) - Elektor

    Arduino Arduino Starter Kit (English)

    1 in stock

    Quickly and easily get started with learning electronics using the Arduino Uno Starter Kit, which have a universal appeal to fans at home, businesses, and schools alike. No prior experience is required, as the kits introduce both coding and electronics through fun, engaging, and hands-on projects. You can use the starter kit to teach students about current, voltage, and digital logic as well as the fundamentals of programming. There’s an introduction to sensors and actuators and how to understand both digital and analog signals. Within all this, you’ll be teaching students how to think critically, learn collaboratively, and solve problems. Projects Book GET TO KNOW YOUR TOOLS an introduction to the basics SPACESHIP INTERFACE design the control panel for your starship LOVE-O-METER measure how hot-blooded you are COLOR MIXING LAMP produce any colour with a lamp that uses light as an input MOOD CUE clue people into how you're doing LIGHT THEREMIN create a musical instrument you play by waving your hands KEYBOARD INSTRUMENT play music and make some noise with this keyboard DIGITAL HOURGLASS a light-up hourglass that can stop you from working too much MOTORIZED PINWHEEL a coloured wheel that will make your head spin ZOETROPE create a mechanical animation you can play forward or reverse CRYSTAL BALL a mystical tour to answer all your tough questions KNOCK LOCK tap out the secret code to open the door TOUCHY-FEEL LAMP a lamp that responds to your touch TWEAK THE ARDUINO LOGO control your personal computer from your Arduino HACKING BUTTONS create a master control for all your devices! Included 1x Projects Book (170 pages) 1x Arduino Uno 1x USB cable 1x Breadboard 400 points 70x Solid core jumper wires 1x Easy-to-assemble wooden base 1x 9 V battery snap 1x Stranded jumper wires (black) 1x Stranded jumper wires (red) 6x Phototransistor 3x Potentiometer 10 kΩ 10x Pushbuttons 1x Temperature sensor [TMP36] 1x Tilt sensor 1x alphanumeric LCD (16x2 characters) 1x LED (bright white) 1x LED (RGB) 8x LEDs (red) 8x LEDs (green) 8x LEDs (yellow) 3x LEDs (blue) 1x Small DC motor 6/9 V 1x Small servo motor 1x Piezo capsule 1x H-bridge motor driver 1x Optocouplers 2x Mosfet transistors 3x Capacitors 100 uF 5x Diodes 3x Transparent gels 1x Male pins strip (40x1) 20x Resistors 220 Ω 5x Resistors 560 Ω 5x Resistors 1 kΩ 5x Resistors 4.7 kΩ 20x Resistors 10 kΩ 5x Resistors 1 MΩ 5x Resistors 10 MΩ

    1 in stock

    € 149,95€ 109,95

    Members identical

  •  -25% Arduino Student Kit - Elektor

    Arduino Arduino Student Kit

    The Arduino Student Kit is a hands-on, step-by-step remote learning tool for ages 11+: get started with the basics of electronics, programming, and coding at home. No prior knowledge or experience is necessary as the kit guides you through step by step. Educators can teach their class remotely using the kits, and parents can use the kit as a homeschool tool for their child to learn at their own pace. Everyone will gain confidence in programming and electronics with guided lessons and open experimentation. Learn the basics of programming, coding and electronics including current, voltage, and digital logic. No prior knowledge or experience is necessary as the kit guides you through step by step. You’ll get all the hardware and software you need for one person, making it ideal to use for remote teaching, homeschooling, and for self-learning. There are step-by-step lessons, exercises, and for a complete and in-depth experience, there’s also extra content including invention spotlights, concepts, and interesting facts about electronics, technology, and programming. Lessons and projects can be paced according to individual abilities, allowing them to learn from home at their own level. The kit can also be integrated into different subjects such as physics, chemistry, and even history. In fact, there’s enough content for an entire semester. How educators can use the kit for remote teaching The online platform contains all the content you need to teach remotely: exclusive learning guidance content, tips for remote learning, nine 90-minute lessons, and two open-ended projects. Each lesson builds off the previous one, providing a further opportunity to apply the skills and concepts students have already learned. They also get a logbook to complete as they work through the lessons. The beginning of each lesson provides an overview, estimated completion times, and learning objectives. Throughout each lesson, there are tips and information that will help to make the learning experience easier. Key answers and extension ideas are also provided. How the kit helps parents homeschool their children This is your hands-on, step-by-step remote learning tool that will help your child learn the basics of programming, coding, and electronics at home. As a parent, you don’t need any prior knowledge or experience as you are guided through step-by-step. The kit is linked directly into the curriculum so you can be confident that your children are learning what they should be, and it provides the opportunity for them to become confident in programming and electronics. You’ll also be helping them learn vital skills such as critical thinking and problem-solving. Self-learning with the Arduino Student Kit Students can use this kit to teach themselves the basics of electronics, programming, and coding. As all the lessons follow step-by-step instructions, it’s easy for them to work their way through and learn on their own. They can work at their own pace, have fun with all the real-world projects, and increase their confidence as they go. They don’t need any previous knowledge as everything is clearly explained, coding is pre-written, and there’s a vocabulary of concepts to refer to. The Arduino Student Kit comes with several parts and components that will be used to build circuits while completing the lessons and projects throughout the course. Included in the kit Access code to exclusive online content including learning guidance notes, step-by-step lessons and extra materials such as resources, invention spotlights and a digital logbook with solutions. 1x Arduino Uno 1x USB cable 1x Board mounting base 1x Multimeter 1x 9 V battery snap 1x 9 V battery 20x LEDs (5x red, 5x green, 5x yellow & 5x blue ) 5x Resistors 560 Ω 5x Resistors 220 Ω 1x Breadboard 400 points 1x Resistor 1 kΩ 1x Resistor 10 kΩ 1x Small Servo motor 2x Potentiometers 10 kΩ 2x Knob potentiometers 2x Capacitors 100 uF Solid core jumper wires 5x Pushbuttons 1x Phototransistor 2x Resistors 4.7 kΩ 1x Jumper wire black 1x Jumper wire red 1x Temperature sensor 1x Piezo 1x Jumper wire female to male red 1x Jumper wire female to male black 3x Nuts and Bolts

    € 79,95€ 59,95

    Members identical

  • Arduino Uno Rev3 - Elektor

    Arduino Arduino Uno Rev3

    Arduino Uno is an open-source microcontroller board based on the ATmega328P. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. You can tinker with your Uno without worring too much about doing something wrong, worst case scenario you can replace the chip for a few dollars and start over again. 'Uno' means one in Italian and was chosen to mark the release of Arduino Software (IDE) 1.0. The Uno board and version 1.0 of Arduino Software (IDE) were the reference versions of Arduino, now evolved to newer releases. The Uno board is the first in a series of USB Arduino boards, and the reference model for the Arduino platform; for an extensive list of current, past or outdated boards see the Arduino index of boards. Specifications Microcontroller ATmega328P Operating Voltage 5 V Input Voltage (recommended) 7-12 V Input Voltage (limit) 6-20 V Digital I/O Pins 14 (of which 6 provide PWM output) PWM Digital I/O Pins 6 Analog Input Pins 6 DC Current per I/O Pin 20 mA DC Current for 3.3 V Pin 50 mA Flash Memory 32 KB (ATmega328P) of which 0.5 KB used by bootloader SRAM 2 KB (ATmega328P) EEPROM 1 KB (ATmega328P) Clock Speed 16 MHz LED_BUILTIN 13 Dimensions 68.6 x 53.4 mm Weight 25 g

    € 24,95

    Members identical

  • Last Stock! Arduino Uno Rev3 SMD - Elektor

    Arduino Arduino Uno Rev3 SMD

    1 in stock

    The Uno differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Additional features coming with the R3 version are: ATmega16U2 instead of 8U2 as a USB-to-Serial converter. 1.0 pinout: added SDA and SCL pins for TWI communication placed near to the AREF pin and two other new pins placed near to the RESET pin, the IOREF that allow the shields to adapt to the voltage provided from the board and the second one is a not connected pin, that is reserved for future purposes. stronger RESET circuit. Microcontroller ATmega328P Operating Voltage 5 V Input Voltage 7 V - 12 V Digital I/O Pins 14 PWM Pins 6 Analog Input Pins 8 DC Current per I/O Pin 20 mA DC Current for 3.3 V Pin 50 mA Flash Memory 32 KB (ATmega328P) of which 0.5 KB used by bootloader SRAM 2 KB EEPROM 1 KB Clock Speed 16 MHz LED_Builtin 13 Length 68.6 mm Width 53.4 mm Weight 25 g

    1 in stock

    € 22,95

    Members identical

  • Arduino Uno – 45 Projects for Beginners and Experts - Elektor

    Elektor Publishing Arduino Uno – 45 Projects for Beginners and Experts

    This book covers a series of exciting and fun projects for the Arduino, such as a silent alarm, people sensor, light sensor, motor control, internet and wireless control (using a radio link). Contrary to many free projects on the internet all projects in this book have been extensively tested and are guaranteed to work! You can use it as a projects book and build more than 45 projects for your own use. The clear explanations, schematics, and pictures of each project make this a fun activity. The pictures are taken of a working project, so you know for sure that they are correct. You can combine the projects in this book to make your own projects. To facilitate this, clear explanations are provided on how the project works and why it has been designed the way it has That way you will learn a lot about the project and the parts used, knowledge that you can use in your own projects. Apart from that, the book can be used as a reference guide. Using the index, you can easily locate projects that serve as examples for the C++ commands and Arduino functionality. Even after you’ve built all the projects in this book, it will still be a valuable reference guide to keep next to your PC.

    € 39,95

    Members € 35,96

  • Arduino Uno – 45 Projects for Beginners and Experts (E - book) - Elektor

    Elektor Digital Arduino Uno – 45 Projects for Beginners and Experts (E-book)

    This book covers a series of exciting and fun projects for the Arduino, such as a silent alarm, people sensor, light sensor, motor control, internet and wireless control (using a radio link). Contrary to many free projects on the internet all projects in this book have been extensively tested and are guaranteed to work! You can use it as a projects book and build more than 45 projects for your own use. The clear explanations, schematics, and pictures of each project make this a fun activity. The pictures are taken of a working project, so you know for sure that they are correct. You can combine the projects in this book to make your own projects. To facilitate this, clear explanations are provided on how the project works and why it has been designed the way it has That way you will learn a lot about the project and the parts used, knowledge that you can use in your own projects. Apart from that, the book can be used as a reference guide. Using the index, you can easily locate projects that serve as examples for the C++ commands and Arduino functionality. Even after you’ve built all the projects in this book, it will still be a valuable reference guide to keep next to your PC.

    € 29,95

    Members € 23,96

  • Arduino – Circuits & Projects Guide (E - book) - Elektor

    Elektor Digital Arduino – Circuits & Projects Guide (E-book)

    Two reasons can be identified for the immense success of the Arduino platform. First, the cheap, ready to go processor board greatly simplifies the introduction to hardware. The second success factor is the free and open-source programming suite that does not require an installation procedure. Simple entry-level examples ensure rapid successes. Complex selection procedures for parameters like the microprocessor version or interface settings are not required. The first sample programs can be uploaded to the Arduino board, and tested, in a matter of minutes. The Arduino user is supported by an array of software libraries. However, the daily increasing volume of libraries poses initial problems to the newcomer, and the way ahead may be uncertain after a few entry-level examples. In many cases, detailed descriptions are missing, and poorly described projects tend to confuse rather than elucidate. Clear guidance and a single motto are missing, usually owing to the projects having been created by several different persons—all with different aims in mind. This book represents a different approach. All projects are presented in a systematical manner, guiding into various theme areas. In the coverage of must-know theory great attention is given to practical directions users can absorb, including essential programming techniques like A/D conversion, timers and interrupts—all contained in the hands-on projects. In this way readers of the book create running lights, a wakeup light, fully functional voltmeters, precision digital thermometers, clocks of many varieties, reaction speed meters, or mouse controlled robotic arms. While actively working on these projects the reader gets to truly comprehend and master the basics of the underlying controller technology.

    € 29,95

    Members € 23,96

Login

Forgot password?

Don't have an account yet?
Create account