The ESP32-WROOM-32, measuring 25.2 x 18 mm only, contains the ESP32 SoC, flash memory, precision discrete components, and PCB antenna to provide outstanding RF performance in space-constrained applications.
ESP32-WROOM-32 is a powerful, generic Wi-Fi + BT + BLE MCU module that targets a wide variety of applications, ranging from low-power sensor networks to the most demanding tasks, such as voice encoding, music streaming and MP3 decoding.
At the core of this module is the ESP32-D0WDQ6 chip. The chip embedded is designed to be scalable and adaptive. There are two CPU cores that can be individually controlled, and the clock frequency is adjustable from 80 MHz to 240 MHz. The user may also power off the CPU and make use of the low-power co-processor to monitor the peripherals for changes or crossing of thresholds constantly. ESP32 integrates a rich set of peripherals, ranging from capacitive touch sensors, Hall sensors, SD card interface, Ethernet, high-speed SPI, UART, I²S and I²C.
The integration of Bluetooth, Bluetooth LE and Wi-Fi ensures that a wide range of applications can be targeted and that the module is future proof. Using Wi-Fi allows a vast physical range and direct connection to the internet through a Wi-Fi router while using Bluetooth allows the user to conveniently connect to the phone or broadcast low energy beacons for its detection.
The sleep current of the ESP32 chip is less than 5 µA, making it suitable for battery powered and wearable electronics applications. ESP32 supports a data rate of up to 150 Mbps, and 20.5 dBm output power at the antenna to ensure the broadest physical range. As such the chip does offer industry-leading specifications and the best performance for electronic integration, range, power consumption, and connectivity.
Downloads
Datasheet
At the core of this module is ESP32-S2, an Xtensa® 32-bit LX7 CPU that operates at up to 240 MHz. The chip has a low-power co-processor that can be used instead of the CPU to save power while performing tasks that do not require much computing power, such as monitoring of peripherals. ESP32-S2 integrates a rich set of peripherals, ranging from SPI, I²S, UART, I²C, LED PWM, TWAITM, LCD, Camera interface, ADC, DAC, touch sensor, temperature sensor, as well as up to 43 GPIOs. It also includes a full-speed USB On-The-Go (OTG) interface to enable USB communication.FeaturesMCU
ESP32-S2 embedded, Xtensa® single-core 32-bit LX7 microprocessor, up to 240 MHz
128 KB ROM
320 KB SRAM
16 KB SRAM in RTC
WiFi
802.11 b/g/n
Bit rate: 802.11n up to 150 Mbps
A-MPDU and A-MSDU aggregation
0.4 µs guard interval support
Center frequency range of operating channel: 2412 ~ 2484 MHz
Hardware
Interfaces: GPIO, SPI, LCD, UART, I²C, I²S, Camera interface, IR, pulse counter, LED PWM, TWAI (compatible with ISO 11898-1), USB OTG 1.1, ADC, DAC, touch sensor, temperature sensor
40 MHz crystal oscillator
4 MB SPI flash
Operating voltage/Power supply: 3.0 ~ 3.6 V
Operating temperature range: –40 ~ 85 °C
Dimensions: 18 × 31 × 3.3 mm
Applications
Generic Low-power IoT Sensor Hub
Generic Low-power IoT Data Loggers
Cameras for Video Streaming
Over-the-top (OTT) Devices
USB Devices
Speech Recognition
Image Recognition
Mesh Network
Home Automation
Smart Home Control Panel
Smart Building
Industrial Automation
Smart Agriculture
Audio Applications
Health Care Applications
Wi-Fi-enabled Toys
Wearable Electronics
Retail & Catering Applications
Smart POS Machines
The RP2040 contains two ARM Cortex-M0+ processors (up to 133 MHz) and features:
264 kB of embedded SRAM in six banks
6 dedicated IO for SPI Flash (supporting XIP)
30 multifunction GPIO:
Dedicated hardware for commonly used peripherals
Programmable IO for extended peripheral support
Four 12-bit ADC channels with internal temperature sensor (up to 0.5 MSa/s)
USB 1.1 Host/Device functionality
The RP2040 is supported with C/C++ and MicroPython cross-platform development environments, including easy access to runtime debugging. It has a UF2 boot and floating-point routines baked into the chip. While the chip has a large internal RAM, the board includes an additional 16 MB of external QSPI flash memory to store program code.
Features
Raspberry Pi Foundation's RP2040 microcontroller
16MB QSPI Flash Memory
JTAG PTH Pins
Thing Plus (or Feather) Form-Factor:
18x Multifunctional GPIO Pins
Four available 12-bit ADC channels with an internal temperature sensor (500 kSa/s)
Up to eight 2-channel PWM
Up to two UARTs
Up to two I²C buses
Up to two SPI buses
USB-C Connector:
USB 1.1 Host/Device functionality
2-pin JST Connector for a LiPo Battery (not included):
500 mA charging circuit
Qwiic Connector
Buttons:
Boot
Reset
LEDs:
PWR - Red 3.3 V power indicator
CHG - Yellow battery charging indicator
25 - Blue status/test LED (GPIO 25)
WS2812 - Addressable RGB LED (GPIO 08)
Four Mounting Holes:
4-40 screw compatible
Dimensions: 2.3' x 0.9'
RP2040 Features
Dual Cortex M0+ processors, up to 133 MHz
264 kB of embedded SRAM in 6 banks
6 dedicated IO for QSPI flash, supporting execute in place (XIP)
30 programmable IO for extended peripheral support
SWD interface
Timer with 4 alarms
Real-time counter (RTC)
USB 1.1 Host/Device functionality
Supported programming languages
MicroPython
C/C++
The SparkFun Thing Plus Matter is the first easily accessible board of its kind that combines Matter and SparkFun’s Qwiic ecosystem for agile development and prototyping of Matter-based IoT devices. The MGM240P wireless module from Silicon Labs provides secure connectivity for both 802.15.4 with Mesh communication (Thread) and Bluetooth Low Energy 5.3 protocols. The module comes ready for integration into Silicon Labs' Matter IoT protocol for home automation.What is Matter? Simply put, Matter allows for consistent operation between smart home devices and IoT platforms without an Internet connection, even from different providers. In doing so, Matter is able to communicate between major IoT ecosystems in order to create a single wireless protocol that is easy, reliable, and secure to use.The Thing Plus Matter (MGM240P) includes Qwiic and LiPo battery connectors, and multiple GPIO pins capable of complete multiplexing through software. The board also features the MCP73831 single-cell LiPo charger as well as the MAX17048 fuel gauge to charge and monitor a connected battery. Lastly, a µSD card slot for any external memory needs is integrated.The MGM240P wireless module is built around the EFR32MG24 Wireless SoC with a 32-bit ARM Cortext-M33 core processor running at 39 MHz with 1536 kb Flash memory and 256 kb RAM. The MGM240P works with common 802.15.4 wireless protocols (Matter, ZigBee, and OpenThread) as well as Bluetooth Low Energy 5.3. The MGM240P supports Silicon Labs' Secure Vault for Thread applications.Specifications
MGM240P Wireless Module
Built around the EFR32MG24 Wireless SoC
32-bit ARM-M33 Core Processor (@ 39 MHz)
1536 kB Flash Memory
256 kB RAM
Supports Multiple 802.15.4 Wireless Protocols (ZigBee and OpenThread)
Bluetooth Low Energy 5.3
Matter-ready
Secure Vault Support
Built-in Antenna
Thing Plus Form-Factor (Feather-compatible):
Dimensions: 5.8 x 2.3 cm (2.30 x 0.9')
2 Mounting Holes:4-40 screw compatible
21 GPIO PTH Breakouts
All pins have complete multiplexing capability through software
SPI, I²C and UART interfaces mapped by default to labeled pins
13 GPIO (6 labeled as Analog, 7 labeled for GPIO)All function as either GPIO or Analog
Built-in-Digital to Analog Converter (DAC)
USB-C Connector
2-Pin JST LiPo Battery Connector for a LiPo Battery (not included)
4-Pin JST Qwiic Connector
MC73831 Single-Cell LiPo ChargerConfigurable charge rate (500 mA Default, 100 mA Alternate)
MAX17048 Single-Cell LiPo Fuel Gauge
µSD Card Slot
Low Power Consumption (15 µA when MGM240P is in Low Power Mode)
LEDs:
PWR – Red Power LED
CHG – Yellow battery charging status LED
STAT – Blue status LED
Reset Button:
Physical push-button
Reset signal can be tied to A0 to enable use as a peripheral device
Downloads
Schematic
Eagle Files
Board Dimensions
Hookup Guide
Datasheet (MGM240P)
Fritzing Part
Thing+ Comparison Guide
Qwiic Info Page
GitHub Hardware Repo
With the M.2 MicroMod connector, connecting your ESP32 Processor is a breeze. Match up the key on your processor's bevelled edge connector to the key on the M.2 connector and secure it with a screw (included with all Carrier Boards). If you need to swap out your processor for a strong wireless option, make sure to check out the MicroMod ESP32! The ESP32 includes a laundry list of functionality, including the dual-core Tensilica LX6 microprocessor, 240MHz clock frequency, 520kB internal SRAM, integrated WiFi transceiver, integrated dual-mode Bluetooth, and hardware-accelerated encryption (AES, SHA2, ECC, RSA-4096). With this MicroMod processor board, you have access to 8 general use IO pins, dedicated analogue, digital, and PWM pins, as well as all the fan favourites - SPI, I²C, UART, and SDIO. Add to that 16MB flash storage and sleep current of around 500µA, and you've got a perfect storm of versatility. Features Dual-core Tensilica LX6 microprocessor Up to 240 MHz clock frequency 520 kB internal SRAM 128 mbit / 16 MB flash storage Integrated 802.11 BGN WiFi transceiver Integrated dual-mode Bluetooth (classic and BLE) 2.7-3.6 V operating range 500µA sleep current under hibernation 10-electrode capacitive touch support Hardware-accelerated encryption (AES, SHA2, ECC, RSA-4096) 1x USB dedicated for programming and debugging 1x UART 2x I²C 1x SPI 7x GPIO 2x Digital Pins 2x Analog Pins 2x PWM Status LED VIN Level ADC
ESP32-C3-WROOM-02U is a general-purpose Wi-Fi and Bluetooth LE module. The rich set of peripherals and high performance make the module an ideal choice for smart homes, industrial automation, health care, consumer electronics, etc. ESP32-C3-WROOM-02U features an external SPI flash and comes with a connector for an external antenna. ESP32-C3-WROOM-02U has an operating ambient temperature option of –40∼85°C, embedded with the ESP32-C3 chip. ESP32-C3 has a 32-bit RISC-V single-core processor. It integrates a rich set of peripherals, ranging from UART, I²C, I²S, remote control peripheral, LED PWM controller, general DMA controller, TWAI controller, USB Serial/JTAG controller, temperature sensor, ADC, etc. It also includes SPI, Dual SPI and Quad SPI interfaces. Features Flash: 4 MB (Quad SPI) Dimensions: 18.0 x 20.0 x 3.2 mm Downloads Datasheet
Ardi32 is the ultimate Arduino Uno alternative packed with powerful specs and exciting features in the Arduino Uno form factor. Ardi32 is powered by the latest ESP32-S3-WROOM-1. The built-in Wi-Fi and Bluetooth connectivity makes the board ideal for IoT projects or projects requiring wireless communication.
Features
Powered by powerful ESP32-S3-WROOM-1 module with inbuild WiFi and BLE support.
Arduino Uno form factor, so you can connect 3.3 V compatible Arduino shields
SD card slot for storage and data transfer
The facility of USB-C interface for programming and to the power board
Boot and Reset buttons are available to operate in various modes.
Multifunction GPIO breakout supporting general I/O, UART, I²C, SPI, ADC & PWM functions.
Multi-tune Buzzer to add audio alert into the project
Multi-platform support like Arduino IDE, Espressif IDF, and MicroPython/CircuitPython
Comes with HID support, so the device can simulate a mouse or keyboard
Specifications
ESP32-S3 series of SoCs having Xtensa dual-core 32-bit LX7 microprocessor
4 GHz Wi-Fi (802.11 b/g/n) and Bluetooth 5 (LE)
Flash up to 16 MB, PSRAM up to 8 MB
Board supply 5 V and GPIO pins operating voltage 3.3 V
22 multipurpose GPIOs breakout in Arduino style for easy peripheral and shield interfacing
I²C, SPI, and UART communications protocol support
Cross-platform development and multiple programming language support
The SparkFun Weather Shield uses the Si7021 humidity / temperature sensor, the MPL3115A2 barometric pressure sensor, and the ALS-PT19 light sensor. The shield utilizes the MPL3115A2 and Si7021 Arduino libraries.
The SparkFun Weather Shield comes with two unpopulated RJ11 connector spaces and a 6-pin GPS connector. Finally, each Weather Shield can operate from 3.3 V up to 16 V and has built-in voltage regulators and signal translators.
Check out the GitHub page, Schematics, and Eagle Files for more information.
The SparkFun Qwiic Adapter provides the perfect means to make any old I²C board into a Qwiic-enabled board. This adapter breaks out the I²C pins from the Qwiic connectors to pins that you can easily solder with your favorite I²C-enabled device. The Qwiic Adapter has two Qwiic connection ports, all on the same I²C bus. Four plated through holes are broken out for SCL, SDA, 3.3V and GND. These pins can be used to convert an old I²C-enabled device into a Qwiic-enabled board. Features 2x Qwiic Connection Ports Broken-out I²C Pins
Reinforcing its commitment to widening the accessibility to and innovation in the area of deep learning, NVIDIA has created a free, self-paced, online Deep Learning Institute (DLI) course, “Getting Started on AI with Jetson Nano.” The course's goal is to build foundational skills to enable anyone to get creative with the Jetson Developer Kit. Please be aware that this kit is for those who already own a Jetson Nano Developer Kit and want to join the DLI Course. A Jetson Nano is not included in this kit.
Included in this kit is everything you will need to get started in the “Getting Started on AI with Jetson Nano” (except for a Jetson Nano, of course), and you will learn how to
Set up your Jetson Nano and camera
Collect image data for classification models
Annotate image data for regression models
Train a neural network on your data to create your own models
Run inference on the Jetson Nano with the models you create
The NVIDIA Deep Learning Institute offers hands-on training in AI and accelerated computing to solve real-world problems. Developers, data scientists, researchers, and students can get practical experience powered by GPUs in the cloud and earn a competency certificate to support professional growth. They offer self-paced, online training for individuals, instructor-led workshops for teams, and downloadable course materials for university educators.
Included
32 GB microSD Card
Logitech C270 Webcam
Power Supply 5 V, 4 A
USB Cable - microB (Reversible)
2-Pin Jumper
Please note: Jetson Nano Developer Kit not included.
These are some of our favourite sensors from each category. But wait, there's more! The SparkFun Sensor Kit now includes several of our sensor boards that feature the Qwiic Connect System for rapid prototyping!
This version of the kit has received a complete overhaul!
This huge assortment of sensors makes an amazing gift for that exceptional electronics enthusiast in your life!
Included
Large Piezo Vibration Sensor (With Mass): A flexible film able to sense for vibration, touch, shock, etc. When the film moves back and forth an AC wave is created, with a voltage of up to ±90.
Reed Switch: Senses magnetic fields, makes for a great non-contact switch.
0.25' Magnet Square: Plays nicely with the reed switch. Embed the magnet into stuffed animals or inside a box to create a hidden actuator to the reed switch.
0.5' Force Sensitive Resistor: A force-sensing resistor with a 0.5' diameter sensing area. Great for sensing pressure (i.e., if it's being squeezed).
Flex Sensor (2.2'): As the sensor is flexed, the resistance across the sensor increases. Useful for sensing motion or positioning.
SoftPot: These are very thin variable potentiometers. By pressing on various positions along the strip, you vary the resistance.
Mini Photocell: The photocell will vary its resistance based on how much light it's exposed to. Will vary from 1kΩ in the light to 10kΩ in the dark.
PIR Motion Sensor: Easy-to-use motion detector with an analog interface. Power it with 5-12VDC, and you'll be alerted of any movement.
QRD1114 Optical Detector/Phototransistor: An all-in-one infrared emitter and detector. Ideal for sensing black-to-white transitions or can be used to detect nearby objects.
IR Diode: This LED can handle up to 50mA of current and outputs in the 940-950nm IR spectrum. Use to send signal to talk to the included IR receiver diode or just turn off your neighbor's TV.
IR Receiver Diode: This simple IR receiver will detect an IR signal coming from a standard IR remote control or the IR diode included in the kit.
Resistor 1.0M Ohm 1/4 Watt PTH: Two 1/4 Watt, +/- 5% tolerance PTH resistors. Commonly used in breadboards and perf boards. The large resistor helps dampen any voltage spikes when using the large piezo vibration sensor with a microcontroller.
Resistor 10K Ohm 1/4 Watt PTH – 20 pack (Thick Leads): 1/4 Watt, +/- 5% tolerance PTH resistors. Commonly used in breadboards and perf boards, these 10KΩ resistors make excellent pullups, pulldowns, and current limiters.
Resistor 330 Ohm 1/4 Watt PTH – 20 pack (Thick Leads): 1/4 Watt +/- 5% tolerance PTH resistors. Commonly used in breadboards and perf boards, these 330Ω resistors make excellent current-limiting resistors for LEDs.
SparkFun 9DoF IMU Breakout – ISM330DHCX, MMC5983MA (Qwiic): This breakout board includes a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. Connect this board over I2C using a Qwiic cable or solder wires or headers to the SPI pins to get started using one of the three sensors or using all three together to determine 3D orientation.
SparkFun Atmospheric Sensor Breakout – BME280 (Qwiic): The SparkFun BME280 Atmospheric Sensor Breakout is an easy way to measure barometric pressure, humidity, and temperature readings, all without taking up too much space.
SparkFun Indoor Air Quality Sensor – ENS160 (Qwiic): The SparkFun ENS160 Indoor Air Quality Sensor is a digital multi-gas sensor solution with four sensor elements that can be used in a wide range of applications including building automation, smart home, and HVAC.
SparkFun Capacitive Touch Slider – CAP1203 (Qwiic): This little board acts great as a non-mechanical button. Use the three pads on the board or connect your own input for a great touch button or slider with no moving parts.
Flexible Qwiic Cable (100 mm): Use these to connect up to four Qwiic boards in your kit.
RGB and Gesture Sensor (APDS-9960): This board does a little bit of everything. You can measure ambient light or color as well as detect proximity and do gesture sensing all over I2C.
Soil Moisture Sensor (with screw terminals): Ever wonder if your plant needs water? This sensor outputs an analog signal based on the resistance of the soil. Since water is conductive, the soil water content will be reflected in the soil resistance.
Sound Detector: Ever need to know if there is noise in an area? This board will not only tell you, but it will also output amplitude as well as the full audio signal.
Break Away Headers (Straight): Solder these pins to any of the breakouts to prototype on a breadboard. You'll want to solder these to boards that do not have Qwiic connectors such as the gesture sensor and sound detector.
,
by Saad Imtiaz
SparkFun Thing Plus Matter (MGM240P): A Versatile Matter-Based IoT Development Board (Review)
The SparkFun Thing Plus Matter (MGM240P) is a versatile and feature-rich development board designed for creating Matter-based IoT devices. Matter, formerly known as Project CHIP...