Add global GSM connectivity and GPS tracking to your project with a BerryGPS-GSM.
This is an all in one module which can provide location tracking and GSM services such as data, text and SMS to your project. It comes in the same form factor as a Raspberry Pi Zero, which makes it nice and compact when used with a Raspberry Pi Zero.
The two main components that make this board great are;
uBlox CAM-M8 GPS module (Same GPS found on BerryGPS-IMU V3)
uBlox SARA-U201 GSM for GSM connectivity, which has global coverage.
Both of these modules working together results in obtaining a GPS fix in secs, using Assisted GPS.
Typically, a GPS module can take a few minutes to get Time To First Fix(TTFF), or even longer if you are in built up areas. This is because the Almanac needs to be downloaded from satellites before a GPS fix can be acquired and only a small portion of the Almanac is sent in each GPS update.
Assisted GPS speeds this up significantly by downloading ephemeris, almanac, accurate time and satellite status over the network, resulting in faster TTTF, in a few seconds. This is very similar how to GPS works on a smartphone.
BerryGPS-GSM has been designed for the Raspberry Pi Zero, however it works with all versions of Raspberry Pi.
We have created a USB-to-USB PCB connector to be used with a Raspberry Pi Zero, which is designed to make your project more compact.
GPS Specific Datasheets
CAM-M8-FW3_DataSheet_(UBX-15031574)
CAM-M8-FW3_HardwareIntegrationManual_(UBX-15030063)
GSM Specific Datasheets
SARA-U201 DataSheet (UBX-13005287)
SARA-U201 SysIntegrationManual_(UBX-13000995)
u-blox CEL_ATCommands_(UBX-13002752)
The ZED-F9R module is a 184-channel u-blox F9 engine GNSS receiver, meaning it can receive signals from the GPS, GLONASS, Galileo, and BeiDou constellations with ~0.2-meter accuracy! That's right; such accuracy can be achieved with an RTK navigation solution when used with a correction source. Note that the ZED-F9R can only operate as a rover, so you will need to connect to a base station. The module supports the concurrent reception of four GNSS systems. The combination of GNSS and integrated 3D sensor measurements on the ZED-F9R provide accurate, real-time positioning rates of up to 30Hz. Compared to other GPS modules, this pHAT maximizes position accuracy in dense cities or covered areas. Even under poor signal conditions, continuous positioning is provided in urban environments and is also available during complete signal loss (e.g. short tunnels and parking garages). The ZED-F9R is the ultimate solution for autonomous robotic applications that require accurate positioning under challenging conditions. This u-blox receiver supports a few serial protocols. By default, we chose to use the Raspberry Pi's serial UART to communicate with the module. With pre-soldered headers, no soldering is required to stack the pHAT on a Raspberry Pi, NVIDIA Jetson Nano, Google Coral, or any single-board computer with the 2x20 form factor. We have also broken out a few 0.1'-spaced pins from the u-blox receiver. A Qwiic connector is also added in case you need to connect a Qwiic enabled device. U-blox based GPS products are configurable using the popular but dense, windows program called u-centre. Plenty of different functions can be configured on the ZED-F9R: baud rates, update rates, geofencing, spoofing detection, external interrupts, SBAS/D-GPS, etc. The SparkFun ZED-F9R GPS pHAT is also equipped with an on-board rechargeable battery that provides power to the RTC on the ZED-F9R. This reduces the time-to-first fix from a cold start (~24s) to a hot start (~2s). The battery will maintain RTC and GNSS orbit data without being connected to power for plenty of time. Features 1 x Qwiic Connector Integrated U.FL connector for use with an antenna of your choice Concurrent reception of GPS, GLONASS, Galileo and BeiDou 184-Channel GNSS Receiver Receives both L1C/A and L2C bands Horizontal Position Accuracy: 0.20 m with RTK Max Navigation Rate: Up to 30Hz Time to First Fix Cold: 24 s Hot: 2 s Operational Limits Max G: ≤4 G Max Altitude: 50 km Max Velocity: 500 m/s Velocity Accuracy: 0.5 m/s Heading Accuracy: 0.2 degrees Built-In Accelerometer and Gyroscope Time Pulse Accuracy: 30ns Voltage: 5 V or 3.3 V, but all logic is 3.3 V Current: ~85mA to ~130mA (varies with constellations and tracking state) Software Configurable Geofencing Odometer Spoofing Detection External Interrupt Pin Control Low Power Mode Supports NMEA, UBX, and RTCM protocols over UART