This LR1302 module is a new generation LoRaWAN gateway module. It adopts a mini-PCIe form factor design and features low power consumption and high performance. Based on Semtech Network's SX1302 LoRaWA baseband chip, the LR1302 gateway module provides gateway products with potential capacity for long-distance wireless transmission. Compared to the previous SX1301 and SX1308 LoRa chips, the SX1302 chip has higher sensitivity, lower power consumption and lower operating temperature. It supports 8-channel data transmission, improves communication efficiency and capacity, and supports the connection and data transmission of more devices. It reserves two antenna interfaces, one for transmitting and receiving LoRa signals and one U.FL (IPEX) interface for independent transmission. It also has a metal shield to protect against external interference and provide a reliable communications environment. Designed specifically for the IoT space, the LR1302 is suitable for a variety of IoT applications. Whether used in smart cities, agriculture, industrial automation or other fields, the LR1302 module can provide reliable connections and efficient data transmission. Features Uses Semtech SX1302 baseband LoRa chip with extremely low power consumptionand excellent performance Mini-PCIe form factor and compact design make it easier to integrate into various gateway devices, suitable for space-constrained application scenarios, and provide flexible deployment options Support 8-channeldata transmission, provide more efficient communication efficiency and capacity Ultra-low operating temperatureeliminates the need for additional cooling and reduces the size of the LoRaWAN gateway Uses SX1250 TX/RX front end with sensitivity down to -139 dBm@SF12; TX power up to 26 dBm @3.3 V Specifications Frequency 863-870 MHz (EU868) Chipset Semtech SX1302 Chip Sensitivity -125 dBm @125K/SF7-139 dBm @125K/SF12 TX Power 26 dBm (with 3.3 V power supply) Bandwidth 125/250/500 kHz Channel 8 channel LEDs Power: GreenConfig: RedTX: GreenRX: Blue Form Factor Mini PCIe, 52-pin Golden Finger Power Consumption (SPI version) Standby: 7.5 mATX maximum power: 415 mARX: 40 mA Power Consumption (USB version) Standby: 20 mATX maximum power: 425 mARX: 53 mA LBT(Listen Before Talk) Support Antenna Connector U.FL Operating Temperature -40 to 85°C Dimensions (W x L) 30 x 50.95 mm Note LR1302 LoRaWAN Gateway Module is not included. Downloads Wiki SX1302 Datasheet Schematic Diagram
HyperPixel 4.0 Square has all the great features of our standard HyperPixel 4.0 – a crisp, brilliant IPS display with touchscreen, and high-speed DPI interface – it's just more square!
This square version of HyperPixel 4.0 is great for custom interfaces and control panels, and works really well for Pico-8 games. Everything is pre-soldered and ready to go, just pop it onto your RPi, run our installer, and away you go!
Features
High-speed DPI interface
4.0" IPS (wide viewing angle, 160°) display (72x72 mm)
720x720 pixels (~254 PPI)
18-bit colour (262,144 colors)
60 FPS frame rate
Optional capacitive touchscreen
40-pin female header included to boost height for Raspberry Pi B+, 2, 3, 3B+ and 4
Standoffs included to securely attach to your RPi
Compatible with all 40-pin header Raspberry Pi models
One-line installer
HyperPixel 4.0 Square uses a high-speed DPI interface, allowing it to shift 5x more pixel data than the usual SPI interface that these small RPi displays normally use. It has a 60 FPS frame rate and a resolution of approximately 254 pixels per inch (720x720px) on its 4.0' display. The display can show 18-bits of colour (262,144 colors).
This Touch version has a capacitive touch display that's more sensitive and responsive to touch than a resistive touch display, and it's capable of multi-touch!
Please note: when installing HyperPixel 4.0 Square onto your RPi make sure not to press down on the screen surface! Hold the board by its edges and wiggle it to mate with the extended header (or GPIO header). Also take care not to pull on the edges of the glass display when removing your HyperPixel.
It'll work with any 40-pin version of the RPi, including RPi Zero and RPi Zero W. If you're using it with a larger RPi then use the extra 40-pin header that's included to boost it up to the required height. If you're using a Zero or Zero W then just pop it straight onto the GPIO.
The included standoff kit allows you to mount your HyperPixel 4.0 Square safely and securely to your RPi. Just screw them into the posts on the underside of the HyperPixel 4.0 Square PCB and then secure with screws through the mounting holes on your RPi.
Downloads
GitHub
This NVMe M.2 2242 SSD (128 GB) is already pre-installed with Raspberry Pi OS for immediate use with the Raspberry Pi 5 M.2 HAT+.
Features
Form factor: M.2 2242 M-Key NVMe SSD
Pre-loaded with Raspberry Pi OS
High level of ability to endure shock, vibration, and high temperature
SMART TRIM support
PCIe Interface: PCIe Gen3 x2
Compliance: NVMe 1.3, PCI Express Base 3.1
Capacity: 128 GB
Speed:
Read: Up to 1700 MB/s
Write: Up to 600 MB/s
Shock: 1500 G/0.5 ms
Operation temperature: 0°C-70°C
Up to 30x faster than a typical hard disk drive
Boosts burst write performance, making it ideal for typical computer workloads
Faster boot-up, shutdown, application load, and response for Raspberry Pi
Downloads
Datasheet
YDLIDAR TG15 is a 360-degree two-dimensional rangefinder. Based on the principle of TOF, it is equipped with related optics, electricity, and algorithm design to achieve high-frequency and high-precision distance measurement. The mechanical structure rotates 360 degrees to continuously output the angle information as well as the point cloud data of the scanning environment while ranging.
Features
360 degree omnidirectional scanning ranging distance measurement
Small distance error, stable performance and high accuracy
IP65 protection level
Strong resistance to ambient light interference
Industrial grade brush-less motor drive for stable performance
Laser power meets Class I laser safety standards
5-12 Hz adaptive scanning frequency (support customization)
Photomagnetic fusion technology to achieve wireless communication, wireless power supply
Ranging frequency up to 20 kHz (support customization)
Applications
Robot navigation and obstacle avoidance
Industrial automation
Robot ROS teaching and research
Regional security
Smart transportation
Environmental scanning and 3D reconstruction
Commercial robot /Robot vacuum cleaner
Downloads
Datasheet
User Manual
Development Manual
SDK
Tool
ROS
YARD Stick One (Yet Another Radio Dongle) is a sub-1 GHz wireless transceiver IC on a USB dongle. It is based on the Texas Instruments CC1111.
YARD Stick One can transmit or receive digital wireless signals at frequencies below 1 GHz. It uses the same radio circuit as the popular IM-Me. The radio functions that are possible by customizing IM-Me firmware are now at your fingertips when you attach YARD Stick One to a computer via USB.
Features
Half-duplex transmit and receive
Official operating frequencies: 300-348 MHz, 391-464 MHz, and 782-928 MHz
Unofficial operating frequencies: 281-361 MHz, 378-481 MHz, and 749-962 MHz
Modulations: ASK, OOK, GFSK, 2-FSK, 4-FSK, MSK
Data rates up to 500 kbps
Full-Speed USB 2.0
SMA female antenna connector (50 ohms)
Software-controlled antenna port power (max 50 mA at 3.3 V)
Low pass filter for elimination of harmonics when operating in the 800 and 900 MHz bands
GoodFET-compatible expansion and programming header
GIMME-compatible programming test points
Open source
Downloads
Documentation
GitHub
This PiCAN2 Duo board provides two independent CAN-Bus channels for the Raspberry Pi 4. It uses the Microchip MCP2515 CAN controller with MCP2551 CAN transceiver. Connections are made via 4-way screw terminal. This board has a 5 V/3 A SMPS that can power the Raspberry Pi is well via the screw terminal.p
Easy to install SocketCAN driver. Programming can be done in C or Python.
Features
CAN v2.0B at 1 Mb/s
High speed SPI Interface (10 MHz)
Standard and extended data and remote frames
CAN connection screw terminal
120 Ω terminator ready
Serial LCD ready
LED indicator
Four fixing holes, comply with Pi Hat standard
SocketCAN driver, appears as can0 and can1 to application
Interrupt RX on GPIO25 and GPIO24
5 V/3 A SMPS to power Raspberry Pi and accessories from screw terminal
Reverse polarity protection
High efficiency switch mode design
7-24 V input range
Downloads
User guide
Schematic Rev D
Writing your own program in Python
Python3 examples in Github
Based on direct thermal technology, the Niimbot D110 label printer offers a printing experience without ink, toner or ribbons, making it a cost-effective solution compared to traditional printers. Its compact size and light weight make it easy to transport and fits easily into any pocket.
With Bluetooth connectivity and a built-in 1500 mAh battery, this wireless mini printer allows you to print from up to 10 meters away, giving you flexibility on the go, whether you're printing from your smartphone or tablet.
The "Niimbot" app (available for iOS and Android) offers a variety of free templates for customizing labels.
Specifications
Model
D110_M (Upgraded Version 2024)
Material
ABS
Resolution
203 DPI
Printing speed
30-60 mm/s
Print width
12-15 mm
Printing technology
Thermal
Operating temperature
5°C ~ 45°C (41°F ~ 113°F)
Battery capacity
1500 mAh
Charging interface
USB-C
Charging time
2 hours
Connection
Bluetooth 4.0
Wireless distance
10 m
Dimensions
98 x 76 x 30 mm
Weight
149 g
Included
1x Niimbot D110 Label Printer
1x Label tape (12 x 40 mm)
1x USB cable
1x Manual
Downloads
iOS App
Android App
Create lightning with the touch of your fingers or the clap of your hands
The Plasma Magic Ball is a cutting-edge tech gadget and an eye-catching piece of art. Inside the glass sphere, a special gas mixture creates mesmerizing light effects when activated by high-frequency current – like holding a storm in your hands.
Perfect for use at home, in the office, schools, hotels, or bars, it’s a unique decorative element that sparks curiosity. Looking for a fun and unusual gift? The Plasma Magic Ball is a great choice for friends and family alike.
Despite its stunning effects, the Plasma Magic Ball uses very little electricity. The glass itself is made of specially hardened, high-strength material and can withstand temperatures of up to 522°C (972°F).
Specifications
Material
Plastic
Ball diameter
6 inch (15 cm)
Input voltage
220 V
Output voltage
12 V
Power
15 W
Dimensions
25 x 15.5 x 15.5 cm
The Raspberry Pi SSD unlocks outstanding performance for I/O intensive applications on Raspberry Pi 5 and other devices, including super-fast startup when booting from SSD.
It is a reliable, responsive, and high-performance PCIe Gen 3-compliant SSD capable of fast data transfer, available also with 512 GB capacity.
Features
40k IOPS (4 kB random reads)
70k IOPS (4 kB random writes)
Downloads
Datasheet
The Raspberry Pi SSD unlocks outstanding performance for I/O intensive applications on Raspberry Pi 5 and other devices, including super-fast startup when booting from SSD.
It is a reliable, responsive, and high-performance PCIe Gen 3-compliant SSD capable of fast data transfer, available also with 256 GB capacity.
Features
50k IOPS (4 kB random reads)
90k IOPS (4 kB random writes)
Downloads
Datasheet
Order the Geekworm KVM-A3 Kit now and receive the e-book Raspberry Pi Full Stack (worth €35) for FREE!
KVM stands for Keyboard, Video, and Mouse and it is a powerful open-source software that enables remote access via Raspberry Pi. This KVM-A3 kit is designed based on the Raspberry Pi 4.
With it, you can turn your computer on or off, restart it, configure the UEFI/BIOS, and even reinstall the operating system using a virtual CD-ROM or flash drive. You can either use your own remote keyboard and mouse, or let KVM simulate a keyboard, mouse, and monitor – presented through a web browser as if you were directly interacting with the remote system. It's true hardware-level access with no dependency on remote ports, protocols, or services!
Features
Designed especially for KVM (an open and affordable DIY IP-KVM based on Raspberry Pi)
Compatible with Raspberry Pi 4 (not included)
Fully compatible with PiKVM V3 OS
Control a server or computer using a web browser
HDMI Full HD capture based on the TC358743 chip
OTG keyboard and mouse support; mass storage drive emulation
Hardware Real-Time Clock (RTC) with CR1220 coin battery socket
Equipped with a cooling fan to dissipate heat from the Raspberry Pi
Features solid-state relays to protect Raspberry Pi GPIO pins from computer and ESD spikes
ATX control via RJ45 connector: switch the machine on or off, reset it, and monitor HDD and power LED status remotely
10-pin SH1.0 connector reserved for future I²S HDMI audio support
4-pin header and spacers reserved for I²C OLED display
Included
KVM-A3 Metal Case for Raspberry Pi 4
X630 HDMI to CSI-2 Module (for video capture)
X630-A3 Expansion Board (provides Ethernet, cooling, RTC, power input, etc.)
X630-A5 Adapter Board (installed inside the PC case; connects the computer motherboard to the IO panel cable of the PC case)
0.96-inch OLED Display (128 x 64 pixels)
Ethernet Cable (TIA/EIA-568.B standard; also serves as the ATX control signal cable)
Downloads
Wiki
PiKVM OS
The Arduino Student Kit is a hands-on, step-by-step remote learning tool for ages 11+: get started with the basics of electronics, programming, and coding at home. No prior knowledge or experience is necessary as the kit guides you through step by step. Educators can teach their class remotely using the kits, and parents can use the kit as a homeschool tool for their child to learn at their own pace. Everyone will gain confidence in programming and electronics with guided lessons and open experimentation.
Learn the basics of programming, coding and electronics including current, voltage, and digital logic. No prior knowledge or experience is necessary as the kit guides you through step by step.
You’ll get all the hardware and software you need for one person, making it ideal to use for remote teaching, homeschooling, and for self-learning. There are step-by-step lessons, exercises, and for a complete and in-depth experience, there’s also extra content including invention spotlights, concepts, and interesting facts about electronics, technology, and programming.
Lessons and projects can be paced according to individual abilities, allowing them to learn from home at their own level. The kit can also be integrated into different subjects such as physics, chemistry, and even history. In fact, there’s enough content for an entire semester.
How educators can use the kit for remote teaching
The online platform contains all the content you need to teach remotely: exclusive learning guidance content, tips for remote learning, nine 90-minute lessons, and two open-ended projects. Each lesson builds off the previous one, providing a further opportunity to apply the skills and concepts students have already learned. They also get a logbook to complete as they work through the lessons.
The beginning of each lesson provides an overview, estimated completion times, and learning objectives. Throughout each lesson, there are tips and information that will help to make the learning experience easier. Key answers and extension ideas are also provided.
How the kit helps parents homeschool their children
This is your hands-on, step-by-step remote learning tool that will help your child learn the basics of programming, coding, and electronics at home. As a parent, you don’t need any prior knowledge or experience as you are guided through step-by-step. The kit is linked directly into the curriculum so you can be confident that your children are learning what they should be, and it provides the opportunity for them to become confident in programming and electronics. You’ll also be helping them learn vital skills such as critical thinking and problem-solving.
Self-learning with the Arduino Student Kit
Students can use this kit to teach themselves the basics of electronics, programming, and coding. As all the lessons follow step-by-step instructions, it’s easy for them to work their way through and learn on their own. They can work at their own pace, have fun with all the real-world projects, and increase their confidence as they go. They don’t need any previous knowledge as everything is clearly explained, coding is pre-written, and there’s a vocabulary of concepts to refer to.
The Arduino Student Kit comes with several parts and components that will be used to build circuits while completing the lessons and projects throughout the course.
Included in the kit
Access code to exclusive online content including learning guidance notes, step-by-step lessons and extra materials such as resources, invention spotlights and a digital logbook with solutions.
1x Arduino Uno
1x USB cable
1x Board mounting base
1x Multimeter
1x 9 V battery snap
1x 9 V battery
20x LEDs (5x red, 5x green, 5x yellow & 5x blue )
5x Resistors 560 Ω
5x Resistors 220 Ω
1x Breadboard 400 points
1x Resistor 1 kΩ
1x Resistor 10 kΩ
1x Small Servo motor
2x Potentiometers 10 kΩ
2x Knob potentiometers
2x Capacitors 100 uF
Solid core jumper wires
5x Pushbuttons
1x Phototransistor
2x Resistors 4.7 kΩ
1x Jumper wire black
1x Jumper wire red
1x Temperature sensor
1x Piezo
1x Jumper wire female to male red
1x Jumper wire female to male black
3x Nuts and Bolts
The Raspberry Pi 500 (based on the Raspberry Pi 5) features a quad-core 64-bit Arm processor, RP1 I/O controller, 8 GB RAM, wireless networking, dual-display output, 4K video playback, and a 40-pin GPIO header. It's a powerful, compact all-in-one computer built into a portable keyboard.
The built-in aluminum heatsink provides improved thermal performance, allowing the Raspberry Pi 500 to run quickly and smoothly even under heavy load.
Specifications
SoC
Broadcom BCM2712
CPU
ARM Cortex-A76 (ARM v8) 64-bit
Clock rate
4x 2.4 GHz
GPU
VideoCore VII (800 MHz)
RAM
8 GB LPDDR4X (4267 MHz)
WiFi
IEEE 802.11b/g/n/ac (2.4 GHz/5 GHz)
Bluetooth
Bluetooth 5.0, BLE
Ethernet
Gigabit Ethernet (with PoE+ support)
USB
2x USB-A 3.0 (5 GBit/s)1x USB-A 2.01x USB-C (for power supply)
PCI Express
1x PCIe 2.0
GPIO
Standard 40-pin GPIO header
Video
2x micro-HDMI ports (4K60)
Multimedia
H.265 (4K60 decode)OpenGL ES 3.1, Vulkan 1.2
SD card
microSD
Power supply
5 V DC (via USB-C)
Keyboard layout
US (QWERTY)
Dimensions
286 x 122 x 23 mm
Included
Raspberry Pi 500 (US keyboard layout, QWERTY)
Official 27 W Power Supply for Raspberry Pi (EU, white)
Official Raspberry Pi Mouse (white)
Official Raspberry Pi HDMI Cable (white, 2 m)
32 GB microSD Card with pre-installed Raspberry Pi OS
The Official Raspberry Pi Beginner's Guide (5th Edition)
Downloads
Datasheet
This display features an IPS resolution of 480x480 with capacitive touch and a frame rate of up to 75 FPS. It is very bright and has 65,000 colors. The mechanical rotary encoder supports clockwise/counterclockwise rotation and also supports the entire pressing process, which can usually be used to confirm the process. The display module is based on ESP32-S3 with WiFi & Bluetooth 5.0 to easily connect to the Internet for IoT projects. It can be powered and programmed directly via the USB port. It also has two expansion ports, I²C and UART. Specifications Controller ESP32-S3 WROOM-1-N16R8 (16 MB Flash, 8 MB PSRAM, PCB antenna) Wireless WiFi & Bluetooth 5.0 Resolution 480x480 LCD 2.1' IPS LCD, 65K color LCD driver ST7701S Frame rate >70 FPS LCD interface RGB 565 Touch panel 5-points capacitive touch Touch panel driver CST8266 USB USB-C native Interfaces 1x I²C, 1x UART (1.25 mm, 4-pin connector) Arduino support Yes Downloads Wiki Usage with Squareline/LVGL GitHub Datasheet_ESP32-S3-WROOM-1
Use your Raspberry Pi with LTE Cat-4 4G/3G/2G Communication & GNSS Positioning, for remote data transmission/phone/SMS, suitable for remote area monitoring/alarming.
This 4G hat is based on the Maduino Zero 4G LTE, but without any controller. It needs to work with Raspberry Pi (2x20 connector and USB). The Raspberry communicate with this HAT with simple AT commands (via the TX/RX Pins in the 2X20 connector) for simple controls, such as SMS/Phone/GNSS; with the USB connecting and proper Linux driver installed, the 4G hat act as a 4G network adapter, that can access to the Internet and transmit data with 4G protocol.
Compares to normal USB 4G dongle, this Raspberry Pi 4G Hat has the following advantages:
Onboard Audio codec, that you can have a call directly with your RPI, or auto broadcasting with a loudspeaker;
Hardware UART communication, hardware controlling of Power(by 2s pulse of PI GPIO or POWERKEY button), hardware controlling of flight mode;
Dual LTE 4G antenna, plus GPS antenna
Features
LTE Cat-4, with uplink rate 50 Mbps and downlink rate 150 Mbps
GNSS Positioning
Audio Driver NAU8810
Supports dial-up, phone, SMS, TCP, UDP, DTMF, HTTP, FTP, and so on
Supports GPS, BeiDou, Glonass, LBS base station positioning
SIM card slot, supports 1.8V/3V SIM card
Onboard audio jack and audio decoder for making a telephone call
2x LED indicators, easy to monitor the working status
Supports SIM application toolkit: SAT Class 3, GSM 11.14 Release 99, USAT
Included
1x 4G LTE Hat For Raspberry Pi
1x GPS antenna
2x 4G LTE antenna
2x Standoff
Downloads
GitHub
This programmer is specifically designed for burning bootloaders (without a computer) on Arduino-compatible ATmega328P/ATmega328PB development boards.
Simply plug the programmer into the ICSP interface to re-burn the bootloader. It’s also compatible with new chips, provided the IC is functional.
Note: Burning a bootloader erases all previous chip data.
Features
Working voltage: 3.1-5.3 V
Working current: 10 mA
Compatible with Arduino Uno R3 based boards (ATmega328P or ATmega328PB)
Dimensions: 39.6 x 15.5 x 7.8 mm
The RP2040 contains two ARM Cortex-M0+ processors (up to 133 MHz) and features:
264 kB of embedded SRAM in six banks
6 dedicated IO for SPI Flash (supporting XIP)
30 multifunction GPIO:
Dedicated hardware for commonly used peripherals
Programmable IO for extended peripheral support
Four 12-bit ADC channels with internal temperature sensor (up to 0.5 MSa/s)
USB 1.1 Host/Device functionality
The RP2040 is supported with C/C++ and MicroPython cross-platform development environments, including easy access to runtime debugging. It has a UF2 boot and floating-point routines baked into the chip. While the chip has a large internal RAM, the board includes an additional 16 MB of external QSPI flash memory to store program code.
Features
Raspberry Pi Foundation's RP2040 microcontroller
16MB QSPI Flash Memory
JTAG PTH Pins
Thing Plus (or Feather) Form-Factor:
18x Multifunctional GPIO Pins
Four available 12-bit ADC channels with an internal temperature sensor (500 kSa/s)
Up to eight 2-channel PWM
Up to two UARTs
Up to two I²C buses
Up to two SPI buses
USB-C Connector:
USB 1.1 Host/Device functionality
2-pin JST Connector for a LiPo Battery (not included):
500 mA charging circuit
Qwiic Connector
Buttons:
Boot
Reset
LEDs:
PWR - Red 3.3 V power indicator
CHG - Yellow battery charging indicator
25 - Blue status/test LED (GPIO 25)
WS2812 - Addressable RGB LED (GPIO 08)
Four Mounting Holes:
4-40 screw compatible
Dimensions: 2.3' x 0.9'
RP2040 Features
Dual Cortex M0+ processors, up to 133 MHz
264 kB of embedded SRAM in 6 banks
6 dedicated IO for QSPI flash, supporting execute in place (XIP)
30 programmable IO for extended peripheral support
SWD interface
Timer with 4 alarms
Real-time counter (RTC)
USB 1.1 Host/Device functionality
Supported programming languages
MicroPython
C/C++
The M12 Mount Lens (5 MP, 25 mm) is ideal for use with the Raspberry Pi HQ Camera Module, offering sharp and detailed imaging for a wide range of applications.
The FNIRSI CTG-20 is a coating thickness gauge designed for measuring the thickness of electroplated coatings or coatings on metal surfaces. It can accurately measure non-magnetic coatings (such as paint) on magnetic materials like steel or iron, as well as coatings on non-magnetic materials such as aluminum.
Equipped with a built-in precision probe and a rechargeable lithium battery, the device automatically detects substrate properties and determines coating thickness using electromagnetic induction and eddy current effects. This robust instrument delivers fast and highly accurate measurements, making it ideal for applications in manufacturing, the chemical industry, the automotive sector, and other testing fields.
Specifications
Measuring Range
0-1400 μm
Accuracy
±3% +2 μm
Resolution Ratio
0.1 μm
Calibration
Zero point calibration, Multi-point calibration
Unit
μm, mil
Minimum Convex Curvature Radius
5 mm
Minimum Convex Curvature Radius
25 mm
Minimum measurement area diameter
20 mm
Battery
600 mAh Lithium battery
Charging Interface
USB-C
Features
Data Storage, Rotatable Screen, Putty Powder Test, Auto Power Off
Dimensions
115 x 48 x 18 mm
Weight
83 g
Included
1x FNIRSI CTG-20 Coating Thickness Gauge
1x USB cable
1x Manual
Downloads
Manual
Spencer is a DIY voice assistant that will teach you about AI, voice recognition, IoT, and speech synthesis.
Features
Ask about the weather forecast for your area
Hear a joke
Ask him to sing you a song
Set a stopwatch
Make Spencer display custom animations
Laugh at his corny popular culture references
Included
Spencer’s circuit board that includes a pre-soldered 144-pixel LED grid
The brain board – does smart stuff and includes a dual-core processor, a 16 MB flash memory chip, and power-management circuitry
Acrylic casing – this protects Spencer’s innards from the outside world
A big red button
Various smaller components such as resistors and pushbuttons
Micro USB cable for powering your Spencer
5W Speaker
Instruction booklet – ready for your offline knowledge consumption
Here you can find the assembly guide!
The Raspberry Pi 500 (based on the Raspberry Pi 5) features a quad-core 64-bit Arm processor, RP1 I/O controller, 8 GB RAM, wireless networking, dual-display output, 4K video playback, and a 40-pin GPIO header. It's a powerful, compact all-in-one computer built into a portable keyboard.
The built-in aluminum heatsink provides improved thermal performance, allowing the Raspberry Pi 500 to run quickly and smoothly even under heavy load.
Specifications
SoC
Broadcom BCM2712
CPU
ARM Cortex-A76 (ARM v8) 64-bit
Clock rate
4x 2.4 GHz
GPU
VideoCore VII (800 MHz)
RAM
8 GB LPDDR4X (4267 MHz)
WiFi
IEEE 802.11b/g/n/ac (2.4 GHz/5 GHz)
Bluetooth
Bluetooth 5.0, BLE
Ethernet
Gigabit Ethernet (with PoE+ support)
USB
2x USB-A 3.0 (5 GBit/s)1x USB-A 2.01x USB-C (for power supply)
PCI Express
1x PCIe 2.0
GPIO
Standard 40-pin GPIO header
Video
2x micro-HDMI ports (4K60)
Multimedia
H.265 (4K60 decode)OpenGL ES 3.1, Vulkan 1.2
SD card
microSD
Power supply
5 V DC (via USB-C)
Keyboard layout
US (QWERTY)
Dimensions
286 x 122 x 23 mm
Downloads
Datasheet
Get started with microcontroller based electronics
This Arduino-compatible bundle contains the Motherboard, Digitiser, Sensor Array and RGB Matrix. With these 4 boards you have everything you need to build a clock, score counter, timer, task reminder, thermometer, humidity display, sound meter, light meter, clap trigger, colored bar graph display, animated alarm, and much more!
The Motherboard has a built in real time clock module that keeps time even when unplugged.
The Digitiser can display 4 digits or characters and includes 2 buttons and a potentiometer to let you control what’s being displayed, or the brightness of the display.
The Sensor Array can read temperature, relative humidity, sound and light, with an SD card slot for data recording.
The RGB Matrix has 16 RGB LEDs that are controlled through shift registers, so only use 3 or 4 pins of the Motherboard.
Motherboard
The Motherboard is an Arduino-compatible microcontroller breakout board designed around the ATmega328P. The board comes in a solder-it-yourself kit with all the components you need to get started with microcontroller based electronics. All other boards connect to this.
Based on the ATmega328P
Arduino compatible
On-Board RTC (Real Time Clock)
FTDI Header for easy programming
Bluetooth Header
Terminal Block Connections
Digitiser
The Digitiser is a versatile display and input board. It let’s you visualise your data. Show your sensor information, clock digits, or even keep score for your favourite card game. The Digitiser also includes some buttons and a knob to let you take control.
4x 7-Segment Displays
Uses 595 Shift Registers
2 Switches and a Potentiometer
4 colored 'Mode' LEDs
Chainable with other 595 Boards
Terminal Block Connections
Sensor Array
As the name suggests, the Sensor Array is an array of sensors. Measure temperature and relative humidity via the DHT11, light via the light dependant resistor, and sound via the microphone and amplifier circuit. Then you can log the data using the on-board SD card slot.
DHT11 Temp & Humidity Sensor
Microphone and Amplifier Circuit
Light Dependent Resistor
MicroSD Slot for Saving Data
Logic Level Converter Circuit
Terminal Block Connections
RGB Matrix
Add color to your project by controlling 16 red, 16 green and 16 blue LEDs with just 3 pins of your microcontroller. The RGB Matrix uses shift registers, a matrix and switching transistors, so there’s plenty to learn and explore.
4x4 (16) RGB LEDs
Uses 595 Shift Registers
Chainable with other 595 Boards
Transistor Switches
Terminal Block Connections
Downloads (Manuals)
Motherboard
Digitiser
Sensor Array
RGB Matrix
The FR01D (2-in-1) thermal imaging camera and multimeter is a compact and lightweight solution that simplifies diagnostic and maintenance tasks. The one-click function allows you to switch effortlessly between thermal imaging and multimeter mode, giving you two important tools in one portable device.
The multimeter is capable of measuring DC and AC voltage, resistance, diode checks, continuity testing, and capacitance.
The FR01D has a 2.8-inch touchscreen with a resolution of 320 x 480 pixels. The device is powered by an integrated rechargeable lithium battery and can be charged via USB.
With the FR01D, you can inspect and maintain circuit boards, check power supplies, repair electronic devices, and overhaul household appliances. Its compact size, multifunctionality, and user-friendliness make the FR01D the ideal companion for electronics and maintenance technicians.
General Specifications
Display size
2.8" (320 x 480)
Touchscreen
Resistive
Data transmission
USB-C
Image storage format
BMP
Battery
Li-ion battery
Storage temperature
−20°C~60°C(−4°F~140°F)
Operating temperature
0°C~50°C(32°F~122°F)
Operating humidity
<85% RH
Dimensions
134 x 69 x 25 mm
Weight
130 g
Thermal Imaging Specifications
Sensor
Vanadium oxide (VOx)
Image capture frequency
25 Hz
Thermal imaging pixels
192 x 192
Field of View (FOV)
50.0°(H) x 50°(V) / 72.1°(D)
Temperature range
−20°C ~ +550°C (−4°F~1022°F)
Gain mode
Auto
Accuracy
±2°C or ±2%
Measurement resolution
0.1°C / 0.1°F
Multimeter Specifications
DC input voltage (max.)
1000 V
AC input voltage (max.)
750 V
Resistance (max.)
99.99 MΩ
Capacitance (max.)
99.99 mF
Duty cycle test range
0.1% ~ 99.9%
Diode test range
0 V ~ 3 V
Continuity test
999.9 Ω
Display
9999 counts (Refreshes 3x per second)
Accuracy
Function
Range
Resolution
Accuracy
AC Voltage
400 mV
0.1 mV
2% +3
9.999 V
0.001 V
1.0% +3
99.99 V
0.01 V
999.9 V
0.1V
DC Voltage
400 mV
0.1 mV
2% +3
9.999 V
0.001 V
1.0% +3
99.99 V
0.01 V
999.9 V
0.1 V
Resistance
999.9 Ω
0.1 Ω
0.5% +3
9.999 KΩ
0.001 kΩ
99.99 KΩ
0.01 kΩ
999.9 KΩ
0.1 kΩ
9.999 MΩ
0.001 MΩ
99.99 MΩ
0.01 MΩ
1.5% +3
Diode Test
3.000 V
0.001 V
10%
Capacitance
9.999 nF
0.001 nF
2% +5
99.99 nF
0.01 nF
999.9 nF
0.1 nF
9.999 uF
0.001 uF
99.99 uF
0.01 uF
999.9 uF
0.1 uF
9.999 mF
0.001 mF
5% +5
99.99 mF
0.01 mF
Included
1x FR01D IR-Camera and Multimeter
2x Test Leads
1x USB Cable
1x Manual
The DiP-Pi PIoT is an Advanced Powered, WiFi connectivity System with sensors embedded interfaces that cover most of possible needs for IoT application based on Raspberry Pi Pico. It can supply the system with up to 1.5 A @ 4.8 V delivered from 6-18 VDC on various powering schemes like Cars, Industrial plant etc., additionally to original micro-USB of the Raspberry Pi Pico. It supports LiPo or Li-Ion Battery with Automatic Charger as also automatic switching from cable powering to battery powering or reverse (UPS functionality) when cable powering lost. Extended Powering Source (EPR) is protected with PPTC Resettable fuse, Reverse Polarity, as also ESD.
The DiP-Pi PIoT contains Raspberry Pi Pico embedded RESET button as also ON/OFF Slide Switch that is acting on all powering sources (USB, EPR or Battery). User can monitor (via Raspberry Pi Pico A/D pins) battery level and EPR Level with PICO’s A/D converters. Both A/D inputs are bridged with 0402 resistors (0 OHM) therefore if for any reason user needs to use those Pico pins for their own application can be easy removed. The charger is automatically charging connected battery (if used) but in addition user can switch charger ON/OFF if their application needs it.
DiP-Pi PIoT can be used for cable powered IoT systems, but also for pure Battery Powered System with ON/OFF. Each powering source status is indicated by separate informative LEDs (VBUS, VSYS, VEPR, CHGR, V3V3).
User can use any capacity of LiPo or Li-Ion type; however, must take care to use PCB protected batteries with max discharge current allowed of 2 A. The embedded battery charger is set to charge battery with 240 mA current. This current is set by resistor so if user need more/less can himself to change it. The DiP-Pi PIoT is also equipped with WiFi ESP8266 Clone module with embedded antenna. This feature open a wide range of IoT applications based on it.
In Addition to all above features DiP-Pi PIoT is equipped with embedded 1-wire, DHT11/22 sensors, and micro–SD Card interfaces. Combination of the extended powering, battery, and sensors interfaces make the DiP-Pi PIoT ideal for IoT applications like data logger, plants monitoring, refrigerators monitoring etc.
DiP-Pi PIoT is supported with plenty of ready to use examples written in Micro Python or C/C++.
Specifications
General
Dimensions 21 x 51 mm
Raspberry Pi Pico pinout compatible
Independent Informative LEDs (VBUS, VSYS, VEPR, CHGR, V3V3)
Raspberry Pi Pico RESET Button
ON/OFF Slide Switch acting on all powering sources (USB, EPR, Battery)
External Powering 6-18 VDC (Cars, Industrial Applications etc.)
External Power (6-18 VDC) Level Monitoring
Battery Level Monitoring
Inverse Polarity Protection
PPTC Fuse Protection
ESD Protection
Automatic Battery Charger (for PCB protected LiPo, Li-Ion – 2 A Max) Automatic/User Control
Automatic Switch from Cable Powering to Battery Powering and reverse (UPS Functionality)
Various powering schemes can be used at the same time with USB Powering, External Powering and Battery Powering
1.5 A @ 4.8 V Buck Converter on EPR
Embedded 3.3 V @ 600 mA LDO
ESP8266 Clone WiFi Connectivity
ESP8266 Firmware Upload Switch
Embedded 1-wire Interface
Embedded DHT-11/22 Interface
Powering Options
Raspberry Pi Pico micro-USB (via VBUS)
External Powering 6-18 V (via dedicated Socket – 3.4/1.3 mm)
External Battery
Supported Battery Types
LiPo with protection PCB max current 2A
Li-Ion with protection PCB max current 2A
Embedded Peripherals and Interfaces
Embedded 1-wire interface
Embedded DHT-11/22 Interface
Micro SD Card Socket
Programmer Interface
Standard Raspberry Pi Pico C/C++
Standard Raspberry Pi Pico Micro Python
Case Compatibility
DiP-Pi Plexi-Cut Case
System Monitoring
Battery Level via Raspberry Pi Pico ADC0 (GP26)
EPR Level via Raspberry Pi Pico ADC1 (GP27)
Informative LEDs
VB (VUSB)
VS (VSYS)
VE (VEPR)
CH (VCHR)
V3 (V3V3)
System Protection
Direct Raspberry Pi Pico Hardware Reset Button
ESD Protection on EPR
Reverse Polarity Protection on EPR
PPTC 500 mA @ 18 V fuse on EPR
EPR/LDO Over Temperature protection
EPR/LDO Over Current protection
System Design
Designed and Simulated with PDA Analyzer with one of the most advanced CAD/CAM Tools – Altium Designer
Industrial Originated
PCB Construction
2 ozcopper PCB manufactured for proper high current supply and cooling
6 mils track/6 mils gap technology 2 layers PCB
PCB Surface Finishing – Immersion Gold
Multi-layer Copper Thermal Pipes for increased System Thermal Response and better passive cooling
Downloads
Datasheet
Manual