Excellent quality, high-torque 'NEMA 17' bipolar stepper motor for all of your motion control needs. Features a 5 mm precision ground shaft with a machined flat. Wiring harness included, various wire lengths available. Useful for all kinds of robotics projects! For example, this is the same stepper motor used in the EggBot kit and AxiDraw. Specifications Motor type: Bipolar stepper motor (4-wire) 1.8 degree step angle (200 steps per revolution) 5 mm output shaft, w/ machined flat 24 mm (0.95 inches) shaft length from screw face plate NEMA 17 form factor 31 mm (1.22 inches) mounting hole distance Mounting screw type: M3 with 3.5 mm min. thread depth 42 mm (1.65 inch) square body size Coil voltage 3.1 V Current 1 A per phase Winding resistance 3.1 ohms per phase Holding torque 1440 g*cm Leads are tinned, wrapped in heat shrink tubing (black or gray) Wire colors: Red and Yellow for the first coil, green and gray for the second coil. Downloads Datasheet
The MLX90640 SparkFun IR Array Breakout features a 32×24 array of thermopile sensors generating, in essence, a low resolution thermal imaging camera. With this breakout you can observe surface temperatures from a decent distance away with an accuracy of ±1.5°C (best case). This board communicates via I²C using the Qwiic system developed by Sparkfun, which makes it easier to operate the breakout. However, there are still 0.1'-spaced pins in case you favour using a breadboard.
The SparkFun Qwiic connect system is an ecosystem of I²C sensors, actuators, shields and cables that make prototyping faster and helps you avoid errors. All Qwiic-enabled boards use a common 1 mm pitch, 4-pin JST connector. This reduces the amount of required PCB space, and polarized connections help you connect everything correctly.
This specific IR Array Breakout provides a 110°×75° field of view with a temperature measurement range of -40~300°C. The MLX90640 IR Array has pull up resistors attached to the I²C bus; both can be removed by cutting the traces on the corresponding jumpers on the back of the board. Please be aware that the MLX90640 requires complex calculations by the host platform so a regular Arduino Uno (or equivalent) doesn't have enough RAM or flash to complete the complex computations required to turn the raw pixel data into temperature data. You will need a microcontroller with 20,000 bytes or more of RAM.
The CubeCell series is designed primarily for LoRa/LoRaWAN node applications.
Built on the ASR605x platform (ASR6501, ASR6502), these chips integrate the PSoC 4000 series MCU (ARM Cortex-M0+ Core) with the SX1262 module. The CubeCell series offers seamless Arduino compatibility, stable LoRaWAN protocol operation, and straightforward connectivity with lithium batteries and solar panels.
The HTCC-AB02 is a developer-friendly board, ideal for quickly testing and validating communication solutions.
Features
Arduino compatible
Based on ASR605x (ASR6501, ASR6502), those chips are already integrated the PSoC 4000 series MCU (ARM Cortex M0+ Core) and SX1262
LoRaWAN 1.0.2 support
Ultra low power design, 3.5 uA in deep sleep
Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB/battery power automatic switching)
Good impendence matching and long communication distance
Onboard solar energy management system, can directly connect with a 5.5~7 V solar panel
Micro USB interface with complete ESD protection, short circuit protection, RF shielding, and other protection measures
Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing
Onboard 0.96-inch 128x64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information
Specifications
Main Chip
ASR6502 (48 MHz ARM Cortex-M0+ MCU)
LoRa Chipset
SX1262
Frequency
863~870 MHz
Max. TX Power
22 ±1 dBm
Max. Receiving Sensitivity
−135 dBm
Hardware Resource
2x UART1x SPI2x I²C1x SWD3x 12-bit ADC input8-channel DMA engine16x GPIO
Memory
128 Kb FLASH16 Kb SRAM
Power consumption
Deep sleep 3.5 uA
Interfaces
1x Micro USB1x LoRa Antenna (IPEX)2x (15x 2.54 Pin header) + 3x (2x 2.54 Pin header)
Battery
3.7 V lithium battery (power supply and charging)
Solar Energy
VS pin can be connected to 5.5~7 V solar panel
USB to Serial Chip
CP2102
Display
0.96" OLED (128 x 64)
Operating temperature
−20~70°C
Dimensions
51.9 x 25 x 8 mm
Included
1x CubeCell HTCC-AB02 Development Board
1x Antenna
1x 2x SH1.25 battery connector
Downloads
Datasheet
Schematic
Quick start
GitHub
Valentine's Hearts, 28 blinking LEDs, romantic LED lighting Valentine's Hearts – 28 blinking LEDs for a romantic atmosphere. The perfect Valentine's gift to express your love. Battery-powered and portable, ideal for Valentine's Day.
Downloads
Manual
Waveshare Core3S500E is an FPGA core board that features an XC3S500E device onboard supporting further expansion.
Features
Onboard 1x XCF04S
Integrated FPGA basic circuit, such as clock circuit
Onboard nCONFIG button, RESET button, 4x LEDs
All the I/O ports are accessible on the pin headers
Onboard JTAG debugging/programming interface
2.0 mm header pitch design, suitable for being plugged-in your application system
Downloads
Wiki
Reinforcing its commitment to widening the accessibility to and innovation in the area of deep learning, NVIDIA has created a free, self-paced, online Deep Learning Institute (DLI) course, “Getting Started on AI with Jetson Nano.” The course's goal is to build foundational skills to enable anyone to get creative with the Jetson Developer Kit. Please be aware that this kit is for those who already own a Jetson Nano Developer Kit and want to join the DLI Course. A Jetson Nano is not included in this kit.
Included in this kit is everything you will need to get started in the “Getting Started on AI with Jetson Nano” (except for a Jetson Nano, of course), and you will learn how to
Set up your Jetson Nano and camera
Collect image data for classification models
Annotate image data for regression models
Train a neural network on your data to create your own models
Run inference on the Jetson Nano with the models you create
The NVIDIA Deep Learning Institute offers hands-on training in AI and accelerated computing to solve real-world problems. Developers, data scientists, researchers, and students can get practical experience powered by GPUs in the cloud and earn a competency certificate to support professional growth. They offer self-paced, online training for individuals, instructor-led workshops for teams, and downloadable course materials for university educators.
Included
32 GB microSD Card
Logitech C270 Webcam
Power Supply 5 V, 4 A
USB Cable - microB (Reversible)
2-Pin Jumper
Please note: Jetson Nano Developer Kit not included.
This 14-way MonoDAQ-compatible connector allows the user to create, reuse and archive test fixtures instead of rewiring the connector furnished with the MonoDAQ everytime a measurement or test has to be repeated. Helps the user to build a library of plug-and-play test setups. Features Time saving push-in connection, tools not required Defined contact force ensures that contact remains stable over the long term Intuitive use through colour coded actuation lever Operation and conductor connection from one direction enable integration into front of device All necessary technical data can be found here.
Enhance your ESP32 WiFi Color Display Kit Grande with this high-quality 900 mAh rechargeable lithium-polymer battery!
Designed to provide long-lasting power, this battery ensures your projects remain portable and efficient. With its compact size and lightweight design, it’s the perfect accessory for any DIY electronics enthusiast. The battery offers reliable performance, easy integration, and safe, stable power supply, making it ideal for extended use in a variety of applications.
900 mAh LiPo battery
JST Connector, fitting ePulse Feather
4 LEDs and 4 push buttons ensure hours of fun. Repeat the combination, harder and harder, faster and faster. The microprocessor-controlled game has 4 different difficulty levels and low consumption. The sound and/or LED indication are adjustable. To save the three 1.5 V AA batteries (not included), the kit automatically switches itself off when not in use.
Downloads
Manual
Waveshare CoreEP4CE10 is an FPGA core board that features an EP4CE10F17C8N device onboard supporting further expansion.
Features
Onboard Serial Configuration Device EPCS16SI8N
Integrated FPGA basic circuit, such as clock circuit
Onboard nCONFIG button, RESET button, 4x LEDs
All the I/O ports are accessible on the pin headers
Onboard JTAG debugging/programming interface
2.00 mm header pitch design, suitable for being plugged-in your application system
Downloads
Wiki
Wveshare CoreEP4CE6 is an FPGA core board that features an EP4CE6E22C8N device onboard supporting further expansion.
Features
Onboard Serial Configuration Device EPCS16SI8N
Integrated FPGA basic circuit, such as clock circuit
Onboard nCONFIG button, RESET button, 4x LEDs
All the I/O ports are accessible on the pin headers
Onboard JTAG debugging/programming interface
2.54 mm header pitch design, suitable for being plugged-in your application system
Downloads
Wiki
The Waveshare Jetson Nano Development Kit, based on AI computers Jetson Nano (with 16 GB eMMC) and Jetson Xavier NX, provides almost the same IOs, size, and thickness as the Jetson Nano Developer Kit (B01), more convenient for upgrading the core module. By utilizing the power of the core module, it is qualified for fields like image classification, object detection, segmentation, speech processing, etc., and can be used in sorts of AI projects.
Specifications
GPU
128-core Maxwell
CPU
Quad-core ARM A57 @ 1.43 GHz
RAM
4 GB 64-bit LPDDR4 25.6 GB/s
Storage
16 GB eMMC + 64 GB TF Card
Video encoder
250 MP/s
1x 4K @ 30 (HEVC)
2x 1080p @ 60 (HEVC)
4x 1080p @ 30 (HEVC)
Video decoder
500 MP/s
1x 4K @ 60 (HEVC)
2x 4K @ 30 (HEVC)
4x 1080p @ 60 (HEVC)
8x 1080p @ 30 (HEVC)
Camera
1x MIPI CSI-2 D-PHY lanes
Connectivity
Gigabit Ethernet, M.2 Key E expansion connector
Display
HDMI
USB
1x USB 3.2 Gen 1 Type A
2x USB 2.0 Type A
1x USB 2.0 Micro-B
Interfaces
GPIO, I²C, I²S, SPI, UART
Dimensions
100 x 80 x 29 mm
Included
1x JETSON-NANO-LITE-DEV-KIT (carrier + Nano + heatsink)
1x AC8265 dual-mode NIC
1x Cooling fan
1x USB cable (1.2 m)
1x Ethernet cable (1.5 m)
1x 5 V/3 A power adapter (EU)
1x 64 GB TF Card
1x Card reader
Documentation
Wiki
This AI Edge Computing Development Kit is based on the Jetson Orin Nano Module providing rich peripheral interfaces such as M.2, DP, USB, etc.
This kit also comes with a pre-installed AW-CB375NF wireless network card that supports Bluetooth 5.0 and dual-band WIFI, with two additional PCB antennas, for providing high-speed and reliable wireless network connection and Bluetooth communication.
Specifications
AI performance
40 TOPS
GPU
1024-core N-VIDIA Ampere architecture GPU with 32 Tensor Cores
GPU frequency
625 MHz (max)
CPU
6-core Arm Cortex-A78AE v8.2 64-bit CPU, 1.5 MB L2 + 4 MB L3
CPU frequency
1.5 GHz (max)
RAM
8 GB 128-bit LPDDR5, 68 GB/s
Storage
128 GB NVMe Solid State Drive
Power
7~15 W
PCIE
M.2 Key M slot with x4 PCIe Gen3
M.2 Key M slot with x2 PCIe Gen3
M.2 Key E slot
USB
USB Type-A: 4x USB 3.2 Gen2
USB Type-C (UFP)
CSI camera
2x MIPI CSI-2 camera connector
Video encode
1080p30 supported by 1-2 CPU cores
Video decode
1x 4K60 (H.265)
2x 4K30 (H.265)
5x 1080p60 (H.265)
11x 1080p30 (H.265)
Display
1x DisplayPort 1.2 (+MST) connector
Interfaces
40-Pin Expansion Header (UART, SPI, I²S, I²C, GPIO), 12-pin button header, 4-pin fan header, DC power jack
Networking
1x GbE connector
Dimensions
103 x 90.5 x 34 mm
Included
Waveshare Orin Nano development kit
1x Jetson Orin Nano Module (8 GB)
1x JETSON-ORIN-IO-BASE
1x Cooling Fan
1x 128 GB NVMe Solid State Drive (assembled)
1x Wireless network card (assembled)
1x USB Type A to Type-C cable (1 m)
1x Ethernet cable (1.5 m)
1x Jumper
1x Power adapter (EU)
Documentation
Wiki
The Christmas tree with flashing LEDs takes the coziness of Christmas to a new level! With 16 flashing LEDs, this green Christmas tree creates a warm atmosphere. With very low power consumption and the option to be powered by a 9-volt battery (not included), this Christmas decoration is easy to use.
Enjoy the holidays with this atmospheric addition to your decoration collection.
Downloads
Manual
The starter kit for Jetson Nano is one of the best kits for beginners to get started with Jetson Nano. This kit includes 32 GB MicroSD card, 20 W adapter, 2-pin jumper, camera, and micro-USB cable.
Features
32 GB High-performance MicroSD card
5 V 4 A power supply with 2.1 mm DC barrel connector
2-pin jumper
Raspberry Pi camera module V2
Micro-B To Type-A USB cable with DATA enabled
Waveshare DVK600 is an FPGA CPLD mother board that features expansion connectors for connecting FPGA CPLD core board and accessory boards. DVK600 provides an easy way to set up FPGA CPLD development system.
Features
FPGA CPLD core board connector: for easily connecting core boards which integrate an FPGA CPLD chip onboard
8I/Os_1 interface, for connecting accessory boards/modules
8I/Os_2 interface, for connecting accessory boards/modules
16I/Os_1 interface, for connecting accessory boards/modules
16I/Os_2 interface, for connecting accessory boards/modules
32I/Os_1 interface, for connecting accessory boards/modules
32I/Os_2 interface, for connecting accessory boards/modules
32I/Os_3 interface, for connecting accessory boards/modules
SDRAM interface
for connecting SDRAM accessory board
also works as FPGA CPLD pins expansion connectors
LCD interface, for connecting LCD22, LCD12864, LCD1602
ONE-WIRE interface: easily connects to ONE-WIRE devices (TO-92 package), such as temperature sensor (DS18B20), electronic registration number (DS2401), etc.
5 V DC jack
Joystick: five positions
Buzzer
Potentiometer: for LCD22 backlight adjustment, or LCD12864, LCD1602 contrast adjustment
Power switch
Buzzer jumper
ONE-WIRE jumper
Joystick jumper
Downloads
Schematics
The unPhone is an open-source IoT development platform powered by the ESP32S3 microcontroller. It features integrated LoRa, Wi-Fi, and Bluetooth connectivity, a touchscreen, and a LiPo battery, offering a robust and versatile solution for IoT development. Its compatibility with Adafruit's FeatherWing standard enables easy expansion, making it an ideal choice for educators, makers, and developers seeking a flexible and user-friendly platform.
Features
ESP32S3 microcontroller (with 8 MB flash and 8 MB PSRAM)
LoRaWAN licence-free radio communication (plus the ESP32's excellent wifi and bluetooth support)
3.5" (320 x 480) LCD capacitive touchscreen for easy debugging and UI creation
IR LEDs for surreptitiously switching the cafe TV off
1200 mAh LiPo battery with USB-C charging
Vibration motor for notifications
Compass/Accelorometer
A robust case
SD card slot
Power and reset buttons
Programmable in C++ or CircuitPython
Expander board that supports two Featherwing sockets and a prototyping area
Open source firmware compatible with the Arduino IDE, PlatformIO and Espressif's IDF development framework
Included
unPhone (assembled)
Expander board
FPC cable (to link the expander board to unPhone)
Self adhesive mounts for the expander board
Code Examples
C++ library
Kick the tyres on everything in the box
The main LVGL demo
CircuitPython
Support forum
Textbook (especially chapter 11)
This educational soldering kit is suitable for all kinds of applications such as model making and works with a 9 V battery (not included). You can control the flashing speed with two potentiometers.
Downloads
Manual
The Arduino Pro Portenta Cat. M1/NB IoT GNSS Shield allows you to enhance the connectivity features of your Portenta H7 applications. The shield leverages a Cinterion TX62 wireless module by Thales, designed for highly efficient, low-power IoT applications to deliver optimized bandwidth and performance.
The Portenta Cat. M1/NB IoT GNSS Shield combines with the strong edge computing power of the Portenta H7 to enable the development of asset tracking and remote monitoring applications in industrial settings, as well as in agriculture, public utilities and smart cities. The shield offers cellular connectivity to both Cat. M1 and NB-IoT networks with the option to use eSIM technology. Easily track your valuables – across the city or worldwide – with your choice of GPS, GLONASS, Galileo or BeiDou.
Features
Change connectivity capabilities without changing the board
Add NB-IoT, CAT. M1 and positioning to any Portenta product
Possibility to create a small multiprotocol router (WiFi - BT + NB-IoT/CAT. M1)
Greatly reduce communication bandwidth requirements in IoT applications
Low-power module
Compatible also with MKR boards
Remote Monitoring
Industrial and agricultural companies can leverage the Portenta Cat. M1/NB IoT GNSS Shield to remotely monitor gas detectors, optical sensors, machinery alarm systems, biological bug traps and more.
Technology providers providing smart city solutions can compound the power and reliability of the Portenta H7 with the Portenta Cat. M1/NB IoT GNSS Shield, to connect data and automate actions for a truly optimized use of resources and enhanced user experience.
Asset Monitoring
Add monitoring capabilities to any asset by combining the performance and edge computing features of the Portenta family boards. The Portenta Cat. M1/NB IoT GNSS Shield is ideal to monitor valuable goods and also for monitoring industrial machinery and equipment.
Specifications
Connectivity
Cinterion TX62 wireless module; NB-IoT - LTE CAT.M1; 3GPP Rel.14 Compliant Protocol LTE Cat. M1/NB1/NB2; UMTS BANDS: 1 / 2 / 3 / 4 / 5 / 8 / 12(17) / 13 / 18 / 19 / 20 / 25 / 26 / 27 / 28 / 66 / 71 / 85; LTE Cat.M1 DL: max. 300 kbps, UL: max. 1.1 Mbps; LTE Cat.NB1 DL: max. 27 kbps, UL: max. 63 kbps; LTE Cat.NB2 DL: max. 124 kbps, UL: max. 158 kbps
Short messaging service (SMS)
Point-to-point mobile terminated (MT) and mobile originated (MO) Text Mode; Protocol Data Unit (PDU) Mode
Localization support
GNSS capability (GPS/BeiDou/Galileo/GLONASS)
Other
Embedded IPv4 and IPv6 TCP/IP stack access; Internet Services: TCP server/client, UDP client, DNS, Ping, HTTP client, FTP client, MQTT client Secure Connection with TLS/DTLS Secure boot
Dimensions
66 x 25.4 mm
Operating temperature
-40° C to +85° C (-104° F to 185°F)
Downloads
Datasheet
Schematics
Here you will find all kinds of parts, components and accessories you will need in various projects, starting from simple wires, sensors and displays to already pre-assembled modules and kits.