Looking to dispense materials with a lower viscosity? These are the nozzles for you. Don't use this with our standard ink or solder paste... that will result in poor performance.
This pack contains 4 extra fine nozzles with an internal diameter of 0.100 mm (4 mil).
If you want to push the resolution limits of the V-One, these dispensing tips will help enable your experimental projects. This pack contains 4 extra fine nozzles with an internal diameter of 0.150 mm (6 mil).
Do not use with solder paste! It will clog!
The Punk Console circuit is an advanced tutorial to get you familiar with the V-One Drill attachment. Learn how to create a double sided board and turn the knobs to create music! The kit contains: 2x Green LEDs 8x 1k Resistors 3x 0.01uF Capacitor 2x 500K Trimpots 1x 556 Timer 1x Piezo Buzzer 1x 9 V Battery 1x 9 V Battery Connector Rivets and a V-One Drill are required.
Use the right tool for the right job. These steel stakes are used to press the rivets on the PCB after holes have been drilled. They have been designed for optimum performance on the ink and ensure an electrical connection between the top and bottom layers of your PCB. Learn how to use them here.
Do you need a way to connect the top and bottom layers? Rivets are the key!Rivets are little copper tubes that make a mechanical connection between the top and bottom layer. We found rivets to be the easiest way to create vias. Be sure to pick up the corresponding rivet tool if you don't have one!
Pack of 200
Inner Diameter - 1.0mm
Head Diameter - 2.2mm
Drill Size: 1.5mm (or 1.6mm)
Confused on how to use them? Checkout our tutorial here.
Solder Paste Dispensing and Reflow All-in-One
The Voltera V-One creates two-layer prototype circuit boards on your desk. Gerber files go in, printed circuit boards come out. The dispenser lays down a silver-based conductive ink to print your circuit right before your eyes. Assembling traditional and additive boards is easy with the V-One’s solder paste dispensing and reflow features. Simply mount your board on the print bed and import your Gerber file into Voltera’s software.
No more stencils required
Voltera’s software is designed to be understood easily. From importing your Gerber files to the moment you press print, the software safely walks you through each step.
Compatible with EAGLE, Altium, KiCad, Mentor Graphics, Cadence, DipTrace, Upverter.
The V-One Desktop PCB Printer includes all accessories and consumables needed to get started:
Consumables
1 Conductor 2 cartridge
1 Solder Paste cartridge
10 2"x3" FR4 substrates
6 3"x4" FR4 substrates
10 2"x3" FR1 substrates
6 3"x4" FR1 substrates
25 Disposable 230 micron nozzles
1 Burnishing pad
1 Solder wire spool
1 Drill bit set
200 0.4 mm rivets
200 1.0 mm rivets
2 Rivet tools
1 Sacrificial layer
1 Hello World starter kit
1 Punk Console starter kit
Accessories
2 Substrate clamps and thumbscrews
2 Dispensers with caps
1 Probe
1 Drill
1 Set of safety glasses
1 Voltera anti-static tweezers
Downloads
Specifications
V-One Software
Manuals
Safety Datasheets
Technical Datasheets
Voltera CAM file for EAGLE
Substrates and Templates
More Info
Frequently Asked Questions
More from the Voltera community
Technical Specifications
Printing Specifications
Minimum trace width
0.2 mm
Minimum passive size
1005
Minimum pin-to-pin pitch (conductive ink)
0.8 mml
Minimum pin-to-pin pitch (solder paste)
0.5 mml
Resistivity
12 mΩ/sq @ 70 um height
Substrate material
FR4
Maximum board thickness
3 mm
Soldering Specifications
Solder paste alloy
Sn42/Bi57.6/Ag0.4
Solder wire alloy
SnBiAg1
Soldering iron temperature
180-210°C
Print Bed
Print area
135 x 113.5 mm
Max. heated bed temperature
240°C
Heated bed ramp rate
~2°C/s
Footprint
Dimensions
390 x 257 x 207 mm (L x W x H)
Weight
7 kg
Computing Requirements
Compatible operating systems
Windows 7 or higher, MacOS 10.11 or higher
Compatible file format
Gerber
Connection type
Wired USB
Certification
EN 61326-1:2013
EMC requirements
IEC 61010-1
Safety requirements
CE Marking
Affixed to the Voltera V-One printers delivered to European customers
Designed and assembled in Canada.
More technical information
Quickstart
Explore Flexible Printed Electronics on the V-One
Voltera V-One Capabilities Reel
Voltera V-One PCB Printer Walkthrough
Unpacking the V-One
V-One: Solder Paste Dispensing and Reflow All-in-One
Voltera @ Stanford University's Bao Research Group: Robotic Skin and Stretchable Sensors
Voltera @ Princeton: The Future of Aerospace Innovation
The Pico-10DOF-IMU is an IMU sensor expansion module specialized for Raspberry Pi Pico. It incorporates sensors including gyroscope, accelerometer, magnetometer, baroceptor, and uses I²C bus for communication. Combined with the Raspberry Pi Pico, it can be used to collect environment sensing data like temperature and barometric pressure, or to easily DIY a robot that detects motion gesture and orientation. Features Standard Raspberry Pi Pico header, supports Raspberry Pi Pico series Onboard ICM20948 (3-axis gyroscope, 3-axis accelerometer, and 3-axis magnetometer) for detecting motion gesture, orientation, and magnetic field Onboard LPS22HB barometric pressure sensor, for sensing the atmospheric pressure of the environment Comes with development resources and manual (Raspberry Pi Pico C/C++ and MicroPython examples) Specifications Operating voltage 5 V Accelerometer Resolution: 16-bitMeasuring range (configurable): ±2, ±4, ±8, ±16gOperating current: 68.9uA Gyroscope Resolution: 16-bitMeasuring range (configurable): ±250, ±500, ±1000, ±2000°/secOperating current: 1.23mA Magnetometer Resolution: 16-bitMeasuring range: ±4900µTOperating current: 90uA Baroceptor Measuring range: 260 ~ 1260hPaMeasuring accuracy (ordinary temperature): ±0.025hPaMeasuring speed: 1Hz - 75Hz
Features
SPI-compatible, easy to drive
Standard Raspberry Pi Pico header, supports Raspberry Pi Pico series
Comes with development resources and manual (Raspberry Pi Pico C/C++ and MicroPython examples)
Specifications
Operating voltage
5 V
Digits
4
Dispaly size
0.4 inch
LED color
red
Driver
74HC595
Display part no.
FJ4401AH
Dimensions
52 × 21 mm
Waveshare Core3S500E is an FPGA core board that features an XC3S500E device onboard supporting further expansion.
Features
Onboard 1x XCF04S
Integrated FPGA basic circuit, such as clock circuit
Onboard nCONFIG button, RESET button, 4x LEDs
All the I/O ports are accessible on the pin headers
Onboard JTAG debugging/programming interface
2.0 mm header pitch design, suitable for being plugged-in your application system
Downloads
Wiki
Waveshare CoreEP4CE10 is an FPGA core board that features an EP4CE10F17C8N device onboard supporting further expansion.
Features
Onboard Serial Configuration Device EPCS16SI8N
Integrated FPGA basic circuit, such as clock circuit
Onboard nCONFIG button, RESET button, 4x LEDs
All the I/O ports are accessible on the pin headers
Onboard JTAG debugging/programming interface
2.00 mm header pitch design, suitable for being plugged-in your application system
Downloads
Wiki
Features Standard Raspberry Pi Pico female header for direct attaching Raspberry Pi Pico (if male header soldered), or just through jumper wires Two sets of 2x20 male header, allows connecting more Raspberry Pi Pico expansion modules Clear pinout labels on the front side, easy to use Immersion gold process, beautiful & practical, stunning aesthetic looking
Waveshare DVK600 is an FPGA CPLD mother board that features expansion connectors for connecting FPGA CPLD core board and accessory boards. DVK600 provides an easy way to set up FPGA CPLD development system.
Features
FPGA CPLD core board connector: for easily connecting core boards which integrate an FPGA CPLD chip onboard
8I/Os_1 interface, for connecting accessory boards/modules
8I/Os_2 interface, for connecting accessory boards/modules
16I/Os_1 interface, for connecting accessory boards/modules
16I/Os_2 interface, for connecting accessory boards/modules
32I/Os_1 interface, for connecting accessory boards/modules
32I/Os_2 interface, for connecting accessory boards/modules
32I/Os_3 interface, for connecting accessory boards/modules
SDRAM interface
for connecting SDRAM accessory board
also works as FPGA CPLD pins expansion connectors
LCD interface, for connecting LCD22, LCD12864, LCD1602
ONE-WIRE interface: easily connects to ONE-WIRE devices (TO-92 package), such as temperature sensor (DS18B20), electronic registration number (DS2401), etc.
5 V DC jack
Joystick: five positions
Buzzer
Potentiometer: for LCD22 backlight adjustment, or LCD12864, LCD1602 contrast adjustment
Power switch
Buzzer jumper
ONE-WIRE jumper
Joystick jumper
Downloads
Schematics
ESP32-S3-GEEK is a geek development board with built-in USB-A port, 1.14-inch LCD screen, TF card slot and other peripherals. It supports 2.4 GHz WiFi and BLE 5, with built-in 16 MB Flash & 2 MB PSRAM, provides I²C port, UART port and GPIO header for more possibilities for your project.
Features
Adopts ESP32-S3R2 chip with Xtensa 32-bit LX7 dual-core processor, capable of running at 240 MHz
Built in 512 KB SRAM, 384 KB ROM, 2 MB of on-chip PSRAM, and onboard 16 MB Flash memory
Onboard 1.14-inch 240x135 pixels 65K color IPS LCD display
Integrated 2.4 GHz WiFi and Bluetooth LE wireless communication
WiFi supports Infrastructure BSS in Station, SoftAP, and Station + SoftAP modes
WiFi supports 1T1R mode with data rate up to 150 Mbps
Bluetooth supports high power mode (20 dBm)
Internal co-existence mechanism between Wi-Fi and Bluetooth to share the same antenna
Onboard 3-pin UART port, 3-pin GPIO header and 4-pin I²C port
Equipped with plastic case and cables
Provides online open-source demo and resources, more convenient for learning and development
Dimensions: 61.0 x 24.5 x 9.0 mm
Downloads
Wiki
The Waveshare Jetson Nano Development Kit, based on AI computers Jetson Nano (with 16 GB eMMC) and Jetson Xavier NX, provides almost the same IOs, size, and thickness as the Jetson Nano Developer Kit (B01), more convenient for upgrading the core module. By utilizing the power of the core module, it is qualified for fields like image classification, object detection, segmentation, speech processing, etc., and can be used in sorts of AI projects.
Specifications
GPU
128-core Maxwell
CPU
Quad-core ARM A57 @ 1.43 GHz
RAM
4 GB 64-bit LPDDR4 25.6 GB/s
Storage
16 GB eMMC + 64 GB TF Card
Video encoder
250 MP/s
1x 4K @ 30 (HEVC)
2x 1080p @ 60 (HEVC)
4x 1080p @ 30 (HEVC)
Video decoder
500 MP/s
1x 4K @ 60 (HEVC)
2x 4K @ 30 (HEVC)
4x 1080p @ 60 (HEVC)
8x 1080p @ 30 (HEVC)
Camera
1x MIPI CSI-2 D-PHY lanes
Connectivity
Gigabit Ethernet, M.2 Key E expansion connector
Display
HDMI
USB
1x USB 3.2 Gen 1 Type A
2x USB 2.0 Type A
1x USB 2.0 Micro-B
Interfaces
GPIO, I²C, I²S, SPI, UART
Dimensions
100 x 80 x 29 mm
Included
1x JETSON-NANO-LITE-DEV-KIT (carrier + Nano + heatsink)
1x AC8265 dual-mode NIC
1x Cooling fan
1x USB cable (1.2 m)
1x Ethernet cable (1.5 m)
1x 5 V/3 A power adapter (EU)
1x 64 GB TF Card
1x Card reader
Documentation
Wiki
The Pico-GPS-L76B is a GNSS module designed for Raspberry Pi Pico, with multi satellite systems support including GPS, BDS, and QZSS. It has advantages such as fast positioning, high accuracy, and low power consumption, etc. Combined with the Raspberry Pi Pico, it's easy to use global navigating function.Features
Standard Raspberry Pi Pico header, supports Raspberry Pi Pico series boards
Multi satellite systems support: GPS, BDS, and QZSS
EASY, self track prediction technology, help quick positioning
AlwaysLocate, intelligent controller of periodic mode for power saving
Supports D-GPS, SBAS (WAAS/EGNOS/MSAS/GAGAN)
UART communication baudrate: 4800~115200bps (9600bps by default)
Onboard battery holder, supports ML1220 rechargeable cell, for preserving ephemeris information and hot starts
4x LEDs for indicating the module operating status
Comes with development resources and manual (Raspberry Pi Pico C/C++ and MicroPython examples)
Specifications
GNSS
Frequency band:GPS L1 (1575.42 Mhz)BD2 B1 (1561.098 MHz)
Channels: 33 tracking ch, 99 acquisition ch, 210 PRN ch
C/A code
SBAS: WAAS, EGNOS, MSAS, GAGAN
Horizontal position accuracy(autonomous positioning)
<2.5 m CEP
Time-To-First-Fix @ -130 dBm(EASY enabled)
Cold starts: <15s
Warm starts: <5s
Hot starts: <1s
Sensitivity
Acquisition: -148 dBm
Tracking: -163 dBm
Re-acquisition: -160 dBm
Dynamic performance
Altitude (max): 18000 m
Velocity (max): 515 m/s
Acceleration (max): 4 g
Others
Communication interface
UART
Baudrate
4800~115200bps (9600bps by default)
Update rate
1 Hz (default), 10 Hz (max)
Protocols
NMEA 0183, PMTK
Power supply voltage
5 V
Operating current
13 mA
Overall current consumption
< 40 mA@5 V (Continue mode)
Operating temperature
-40℃ ~ 85℃
Dimensions
52 × 21 mm
Included
1x Pico-GPS-L76B
1x GPS Antenna
This is a long-wave IR thermal imaging camera that adopts the hybrid technology of microbolometer and thermopile pixel, features 80x62 array pixels. It will detect the IR1 distribution of objects in the field of view, turn the data into surface temperature of the objects by calculation, and then generate thermal images, for easy integration into miscellaneous industrial or intelligent control applications.
Features
Adopts the hybrid technology of microbolometer and thermopile, 80x62 array pixels
Continuous operation and thermal imaging video stream due to shutterless design
Noise Equivalent Temperature Difference (NETD) 150mK RMS@1 Hz refresh rate
Up to 25 fps (Max) thermal imaging video stream output
Comes with online resources and manuals (Python demo for Raspberry Pi, Android/Windows host computer and user manual, etc.)
Applications
High precision long-term non-contact temperature online monitoring
IR thermal imaging devices, IR thermometers
Smart home, intelligent building, intelligent lighting
Industrial temperature control, security & safety, intrude/motion detection
Small Target Thermal Analysis, Heat Trend Analysis and Solutions
Specifications
Power supply
5 V
Operating current
61 mA@5 V
Wavelength range
8~14 μm
Operating temperature
-20~85°C
Target temperature
-20~400°C
Refresh rate
25 fps (Max)
FOV
45° x 45° (H x V)
Noise equivalentTemperature diffenerence
150 mK
Measuring accuracy
±2°C (ambient temp. 10~70°C)
Dimensions
65.0 x 30.5 mm
Included
1x Thermal Camera HAT
1x 40-pin female header
1x FPC 15-pin cable 0.3 mm pitch (100 mm)
1x Screws pack
Downloads
Wiki
Specifications
CM4 socket
Suitable for all variants of Compute Module 4
Networking
Gigabit Ethernet RJ45 connectorM.2 M KEY, supports communication modules or NVME SSD
Connector
Raspberry Pi 40-PIN GPIO header
USB
2x USB 2.0 Type A2x USB 2.0 via FFC connector
Display
MIPI DSI display port (15-pin 1.0 mm FPC connector)
Camera
2x MIPI CSI-2 camera port (15-pin 1.0 mm FPC connector)
Video
2x HDMI port (including one port via FFC connector), supports 4K 30fps output
RTC
N/A
Storage
MicroSD card socket for Compute Module 4 Lite (without eMMC) variants
Fan header
No fan control, 5 V
Power input
5 V
Dimensions
85 x 56 mm
Included
1x CM4-IO-BASE-A
1x SSD mounting screw
Downloads
Wiki
The Waveshare PCIe to Gigabit Ethernet and USB 3.2 Gen 1 HAT+ is an expansion board designed specifically for the Raspberry Pi 5. It enhances the Raspberry Pi's connectivity by adding three high-speed USB 3.2 Gen 1 ports and a Gigabit Ethernet port, all in a driver-free, plug-and-play setup.
Features
Based on 16-pin PCIe Interface of Raspberry Pi 5
Equipped with RTL8153B high-performance Gigabit Ethernet chip
Supports Raspberry Pi OS, Ubuntu, OpenWRT, etc.
Stable and reliable network speed
Real-time monitoring of power status
Supports USB port power control via software
Included
1x PCIe to Gigabit Ethernet USB 3.2 HAT+
1x Network cable (1.5 m)
1x 16P Cable (40 mm)
1x Standoff pack
Downloads
Wiki
This PCIe to M.2 adapter is specifically designed for the Raspberry Pi 5. It supports the NVMe protocol for M.2 SSDs, enabling fast read and write operations, and adheres to the HAT+ standard. The adapter is compatible with M.2 SSDs in the 2230 and 2242 sizes.
Included
1x PCIe to M.2 HAT+ Adapter
1x 2x20 Pin header
1x 16P cable (40 mm)
1x Standoff pack
Downloads
Wiki
The Waveshare PoE M.2 HAT+ (B) combines Power over Ethernet (PoE) and PCIe-to-M.2 functionality for the Raspberry Pi 5. It supports the IEEE 802.3af/at networking standards and accommodates M.2 NVMe SSDs in 2230, 2242, 2260, and 2280 form factors. Additionally, it enables SSD boot for the Raspberry Pi.
Features
Standard Raspberry Pi 40-pin GPIO extension header, compatible with Raspberry Pi 5
Supports Power over Ethernet (PoE) and complies with the IEEE 802.3af/at network standards
Utilizes a fully isolated Switch Mode Power Supply (SMPS) for stable power delivery
Supports NVMe protocol M.2 interface hard drives, offering high-speed read/write performance and high efficiency
Provides 1x PCIe in Gen2 or Gen3 mode
Specifically designed for the Raspberry Pi 5 only
Compatible with M.2 SSDs in 2230, 2242, 2260, and 2280 form factors
Specifications
PoE power input
37~57 V DC
Power output
GPIO header: 5 V/4.5 A (max.)2P header: 12 V/2 A (max.)
Network standard
IEEE 802.3af/at PoE
Dimensions
56 x 85 mm
Included
1x Waveshare PoE M.2 HAT+ (B)
1x 16-Pin PCIe cable
1x SSD mounting screw
1x Screws pack
Downloads
Wiki
The PoE HAT (G) is an IEEE 802.3af/at-compliant PoE (Power Over Ethernet) HAT for Raspberry Pi 5. By using with a PoE router or switch that supports the IEEE 802.3af/at network standard, it is possible to provide both network connection and power supply for your Raspberry Pi in only one Ethernet cable.
Features
Standard Raspberry Pi 40-pin GPIO header
PoE capability, IEEE 802.3af/at-compliant
Onboard original IC solution for more stable PoE power performance
Adopts non-isolated switched-mode power supply (SMPS)
Compact and easy to assemble
Specifications
PoE power input
38~57 V DC in
Power output
GPIO header: 5 V/5 A (max)
Network standard
IEEE 802.3af/at PoE
Dimensions
56.5 x 64.98 mm
Included
1x PoE HAT (G)
1x 2x2 header
1x 2x20 header
1x Standoffs pack
Downloads
Wiki