Build your first IoT devices with this kit by seamlessly integrating hardware and software without diving into complex theory.
Plug and Make Kit is the easiest way to get started with Arduino. It includes everything you need for your very first seven projects – as well as many more that our community shares and you can invent yourself!
Weather Report: Never get caught in the rain again, with a visual reminder to take an umbrella when needed
Hourglass: Who needs an egg timer? Customize your own digital hourglass
Eco Watch: Make sure your plants thrive in the perfect temperature and humidity
Game Controller: Level up with your very own HID (Human Interface Device) gamepad
Sonic Synth: Get one step closer to being a rockstar, DJ or sound engineer!
Smart Lights: Set the mood with your very own smart lamp
Touchless Lamp: Control lights with a simple gesture
Each idea is inspiration for a fun activity that will not only teach you the basics of do-it-yourself electronics but leave you with a great sense of accomplishment. You can make technology too!
With the innovative Modulino nodes, simply connect them sequentially using the onboard Qwiic connector of the Arduino Uno R4 WiFi. By utilizing one of the Arduino Cloud templates, you can swiftly transform your concept into a fully operational project.
Features
No extra tools needed, all you have to kick off you journey as maker is included in the kit.
No breadboard and no soldering are involved.
Build a fully functional IoT project, understanding its inner working, in under 45 minutes.
Start from the project you find more interesting, you define your own learning path.
Continue learning and working on your projects from any connected computer using the online Arduino ecosystem.
Modulino
Modulino are sensors and actuators that simply connect via the Uno R4 WiFi’s onboard Qwiic connector. You can connect more than one for more complex projects and never have to wonder which side goes where, because the connector is polarized.
Modulino Knob: for super-fine value adjustments
Modulino Pixels: eight LEDs to shine bright, dim down, or change color
Modulino Distance: a time-of-flight proximity sensor to measure distances with precision
Modulino Movement: to perfectly capture movements like pitch, roll or tilt
Modulino Buzzer: to generate your own alarm sounds or simple tunes
Modulino Thermo: a sensor for both temperature and humidity data
Modulino Buttons: three buttons for quick project navigation
Specifications
Board included
Arduino Uno R4 WiFi
Modulino nodes
Communications
I²C (over Qwiic connector)
Operational voltage
3.3 V
Modulino nodes included
Modulino Movement
LSM6DSOXTR
0x6A (0x6B)
Modulino Distance
VL53L4CDV0DH/1
0x29
Modulino Thermo
HS3003
0x44
Modulino Knob
PEC11J (STM32C011F4 for I²C communication)
0x76 (address can change via software)
Modulino Buzzer
PKLCS1212E4001-R1 (STM32C011F4 for I²C communication)
0x3C (address can change via software)
Modulino Pixels
8 LC8822-2020 (STM32C011F4 for I²C communication)
0x6C (address can change via software)
Modulino Buttons
3 push buttons plus 3 yellow LEDs (STM32C011F4 for I²C communication)
0x7C (address can change via software)
Included
1x Arduino Uno R4 WiFi
1x Modulino base
7x Modulino sensors
1x USB-C cable
7x Qwiic cables
24x Screws M3 (10 mm)
20x Nuts M3
4x Metal spacers
Downloads
Datasheet
Schematics
Portenta HAT Carrier is a reliable and robust carrier that transforms Portenta X8 into an industrial single board computer compatible with Raspberry Pi HATs and cameras. It is ideal for multiple industrial applications such as building automation and machine monitoring.
Compatible also with Portenta H7 and Portenta C33, Portenta HAT Carrier provides easy access to multiple peripherals – including CAN, Ethernet, microSD and USB – and further extends any Portenta application.
It is great for prototyping and ready for scaling up, it extends the features found on a typical Raspberry Pi Model B. Debug quickly with dedicated JTAG pins and keeps heat manageable under intense workloads with a PWM fan connector. Control actuators or read analog sensors via the additional 16x analog I/Os. Add industrial machine vision solutions to any project by leveraging the onboard camera connector.
Features
Add Raspberry Pi HATs to your Portenta projects
Quickly access CAN, USB, and Ethernet peripherals
Leverage onboard MicroSD card to log data
Enjoy simple debugging through the onboard JTAG pins
Easily control actuators and read sensors via 16x analog I/Os
Leveraging the onboard camera connector for machine vision
Portenta takes you from prototype to high-performance
Portenta HAT Carrier offers you a frictionless Linux prototyping experience and unlocks the ability for integrated real-time MCU solutions. Portenta HAT Carrier extends Portenta SOMs for faster, easier and more efficient testing for your ideas while also ensuring the capabilities and industrial-grade performances the Portenta range is known for.
Extend the Raspberry Pi ecosystem for commercial applications
Combine the ease of use, accessibility and incredible support from both the Arduino and Raspberry Pi communities for your next project with the carrier designed to combine and extend MPU and MCU applications for the development of advanced commercial solutions.
Specifications
Connectors
High-density connectors compatible with Portenta products
1x USB-A female connector
1x Gigabit Ethernet connector (RJ45)
1x CAN FD with onboard transceiver
1x MIPI Camera connector
1x MicroSD card slot
1x PWM fan connector
40-pin header connector allowing compatibility with Raspberry Pi HATs
16-pin analog header connectors, including:
8x analog inputs
1x GPIO
1xUART without flow control
2x PWM pins
1x LICELL pin for Portenta's RTC power
Interfaces
CAN FD
UART
SAI
ANALOG
GPIO
SPI
I²C
I²S
PWM
Debugging
Onboard 10x pin 1.27 mm JTAG connector
Power
From onboard screw terminal block allowing:
7-32 V power supply, powering both the carrier and the connected Portenta
5 V power supply
From USB-C on Portenta
From 5 V on 40-pin header connector
Dimensions
85 x 56 mm
Downloads
Datasheet
Schematics
The Nicla Sense ME is a tiny, low-power tool that sets a new standard for intelligent sensing solutions. With the simplicity of integration and scalability of the Arduino ecosystem, the board combines four state-of-the-art sensors from Bosch Sensortec:
BHI260AP motion sensor system with integrated AI
BMM150 magnetometer
BMP390 pressure sensor
BME688 4-in-1 gas sensor with AI and integrated high-linearity, as well as high-accuracy pressure, humidity and temperature sensors.
The Arduino Nicla Sense ME is the smallest Arduino form factor yet, with a range of industrial grade sensors packed into a tiny footprint. Measure process parameters such as temperature, humidity and movement. Featuring a 9-axis inertial measurement unit and the possibility for Bluetooth Low Energy connectivity, it can help you to create your next Bluetooth Low Energy enabled project. Make your own industrial grade wireless sensing network with the onboard BHI260AP, BMP390, BMM150 and BME688 Bosch sensors.
Features
Tiny size, packed with features
Low power consumption
Add sensing capabilities to existing projects
When battery-powered, becomes a complete standalone board
Powerful processor, capable of hosting intelligence on the Edge
Measures motion and environmental parameters
Robust hardware including industrial-grade sensors with embedded AI
BLE connectivity maximizes compatibility with professional and consumer equipment
24/7 always-on sensor data processing at ultra-low power consumption
Specifications
BHI260AP – Self-learning AI smart sensor with integrated accelerometer and gyroscope
BMP390 – Digital pressure sensor
BMM150 – Geomagnetic sensor
BME688 – Digital low power gas, pressure, temperature & humidity sensor with AI
Microcontroller
64 MHz ARM Cortex-M4 (nRF52832)
Sensors
I/O
Castellated pins with the following features:
1x I²C bus (with ext. ESLOV connector)
1x Serial port
1x SPI
2x ADC, programmable I/O voltage from 1.8-3.3 V
Connectivity
Bluetooth 4.2
Power
Micro USB (USB-B), Pin Header, 3.7 V Li-po battery with Integrated battery charger
Memory
512 KB Flash / 64 KB RAM
2 MB SPI Flash for storage
2 MB QSPI dedicated for BHI260AP
Interface
USB interface with debug functionality
Dimensions
22.86 x 22.86 mm
Weight
2 g
Downloads
Datasheet
Ever wanted an automated house? Or a smart garden? The Arduino IoT Cloud compatible board Nicla Vision allows you to build your next smart project. You can connect devices, visualize data, control and share your projects from anywhere in the world.
Nicla Vision combines a powerful STM32H747AII6 Dual ARM Cortex M7/M4 IC processor with a 2 MP color camera that supports TinyML, as well as a smart 6-axis motion sensor, integrated microphone and distance sensor. You can easily include it into any project because it’s designed to be compatible with all Arduino Portenta and MKR products, fully integrates with OpenMV, supports MicroPython and also offers both WiFi and Bluetooth Low Energy connectivity. It’s so compact – with its 22.86 x 22.86 mm form factor – it can physically fit into most scenarios, and requires so little energy it can be powered by battery for standalone applications.
All of this makes Nicla Vision the ideal solution to develop or prototype with on-device image processing and machine vision at the edge, for asset tracking, object recognition, predictive maintenance and more – easier and faster than ever. Train it to spot details, so you can focus on the big picture.
Automate anything
Check every product is labeled before it leaves the production line; unlock doors only for authorized personnel, and only if they are wearing PPE correctly; use AI to train Nicla Vision to regularly check analog meters and beam readings to the Cloud; teach it to recognize thirsty crops and turn the irrigation on when needed.Anytime you need to act or make a decision depending on what you see, let Nicla Vision watch, decide and act for you.
Feel seen
Interact with kiosks with simple gestures, create immersive experiences, work with cobots at your side. Nicla Vision allows computers and smart devices to see you, recognize you, understand your movements and make your life easier, safer, more efficient, better.
Keep an eye out
Let Nicla Vision be your eyes: detecting animals on the other side of the farm, letting you answer your doorbell from the beach, constantly checking on the vibrations or wear of your industrial machinery. It’s your always-on, always precise lookout, anywhere you need it to be.
Downloads
Schematics
Datasheet
Portenta Breakout board is designed to help hardware engineers and makers to prototype and help test devices connections and capacity within the Portenta family boards (e.g. the Portenta H7). It makes all high-density connectors’ signals individually accessible, making it quick and easy to connect and test external hardware components and devices as normally needed during development in the lab. Features PowerON Button Boot mode DIP switch Connectors USB-A RJ45 up to 1Gb/s Micro-SD Card MIPI-20T-JTAG with Trace-Capability. Power CR2032 RTC-Lithium battery backup External power terminal block I/O Break out all Portenta High Density connector signals Male/female HD connectors allow interposing breakout between Portenta and shield to debug signals Compatibility Standard Portenta High Density connector pinout Specifications USB Port USB-A Ethernet RJ45 up to 1 Gb/s Memory slot Micro SD card Debug MIPI-20T-JTAG with trace capability Connectors HD Male/Female RTC power battery CR2032 Dimensions 164 x 72 mm Weight 69 g Downloads Datasheet Schematics Pinout
The Portenta C33 is a powerful System-on-Module designed for low-cost Internet of Things (IoT) applications. Based on the R7FA6M5BH2CBG microcontroller from Renesas, this board shares the same form factor as the Portenta H7 and it is backward compatible with it, making it fully compatible with all Portenta family shields and carriers through its high-density connectors.
As a low-cost device, the Portenta C33 is an excellent choice for developers looking to create IoT devices and applications on a budget. Whether you're building a smart home device or a connected industrial sensor, the Portenta C33 provides the processing power and connectivity options you need to get the job done.
Quickly deploying AI-powered projects becomes quick and easy with Portenta C33, by leveraging a vast array of ready-to-use software libraries and Arduino sketches available, as well as widgets that display data in real time on Arduino IoT Cloud-based dashboards.
Features
Ideal for low-cost IoT applications with Wi-Fi/Bluetooth LE connectivity
Supports MicroPython and other high-level programming languages
Offers industrial-grade security at the hardware level and secure OTA firmware updates
Leverages ready-to-use software libraries and Arduino sketches
Perfect to monitor and display real-time data on Arduino IoT Cloud widget-based dashboards
Compatible with Arduino Portenta and MKR families
Features castellated pins for automatic assembly lines
Cost Effective Performance
Reliable, secure and with computational power worthy of its range, Portenta C33 was designed to provide big and small companies in every field with the opportunity to access IoT and benefit from higher efficiency levels and automation.
Applications
Portenta C33 brings more applications than ever within users’ reach, from enabling quick plug-and-play prototyping to providing a cost-effective solution for industrial-scale projects.
Industrial IoT gateway
Machine monitoring to track OEE/OPE
Inline quality control and assurance
Energy consumption monitoring
Appliances control system
Ready-to-use IoT prototyping solution
Specifications
Microcontroller
Renesas R7FA6M5BH2CBG ARM Cortex-M33:
ARM Cortex-M33 core up to 200 MHz
512 kB onboard SRAM
2 MB onboard Flash
Arm TrustZone
Secure Crypto Engine 9
External Memories
16 MB QSPI Flash
USB-C
USB-C High Speed
Connectivity
100 MB Ethernet interface (PHY)
Wi-Fi
Bluetooth Low Energy
Interfaces
CAN
SD Card
ADC
GPIO
SPI
I²S
I²C
JTAG/SWD
Security
NXP SE050C2 Secure Element
Operating Temperatures
-40 to +85°C (-40 to 185°F)
Dimensions
66,04 x 25,40 mm
Downloads
Datasheet
Schematics
The Arduino Pro Portenta Cat. M1/NB IoT GNSS Shield allows you to enhance the connectivity features of your Portenta H7 applications. The shield leverages a Cinterion TX62 wireless module by Thales, designed for highly efficient, low-power IoT applications to deliver optimized bandwidth and performance.
The Portenta Cat. M1/NB IoT GNSS Shield combines with the strong edge computing power of the Portenta H7 to enable the development of asset tracking and remote monitoring applications in industrial settings, as well as in agriculture, public utilities and smart cities. The shield offers cellular connectivity to both Cat. M1 and NB-IoT networks with the option to use eSIM technology. Easily track your valuables – across the city or worldwide – with your choice of GPS, GLONASS, Galileo or BeiDou.
Features
Change connectivity capabilities without changing the board
Add NB-IoT, CAT. M1 and positioning to any Portenta product
Possibility to create a small multiprotocol router (WiFi - BT + NB-IoT/CAT. M1)
Greatly reduce communication bandwidth requirements in IoT applications
Low-power module
Compatible also with MKR boards
Remote Monitoring
Industrial and agricultural companies can leverage the Portenta Cat. M1/NB IoT GNSS Shield to remotely monitor gas detectors, optical sensors, machinery alarm systems, biological bug traps and more.
Technology providers providing smart city solutions can compound the power and reliability of the Portenta H7 with the Portenta Cat. M1/NB IoT GNSS Shield, to connect data and automate actions for a truly optimized use of resources and enhanced user experience.
Asset Monitoring
Add monitoring capabilities to any asset by combining the performance and edge computing features of the Portenta family boards. The Portenta Cat. M1/NB IoT GNSS Shield is ideal to monitor valuable goods and also for monitoring industrial machinery and equipment.
Specifications
Connectivity
Cinterion TX62 wireless module; NB-IoT - LTE CAT.M1; 3GPP Rel.14 Compliant Protocol LTE Cat. M1/NB1/NB2; UMTS BANDS: 1 / 2 / 3 / 4 / 5 / 8 / 12(17) / 13 / 18 / 19 / 20 / 25 / 26 / 27 / 28 / 66 / 71 / 85; LTE Cat.M1 DL: max. 300 kbps, UL: max. 1.1 Mbps; LTE Cat.NB1 DL: max. 27 kbps, UL: max. 63 kbps; LTE Cat.NB2 DL: max. 124 kbps, UL: max. 158 kbps
Short messaging service (SMS)
Point-to-point mobile terminated (MT) and mobile originated (MO) Text Mode; Protocol Data Unit (PDU) Mode
Localization support
GNSS capability (GPS/BeiDou/Galileo/GLONASS)
Other
Embedded IPv4 and IPv6 TCP/IP stack access; Internet Services: TCP server/client, UDP client, DNS, Ping, HTTP client, FTP client, MQTT client Secure Connection with TLS/DTLS Secure boot
Dimensions
66 x 25.4 mm
Operating temperature
-40° C to +85° C (-104° F to 185°F)
Downloads
Datasheet
Schematics
Portenta H7 Lite allows you to build your next smart project.
Ever wanted an automated house? Or a smart garden? Well, now it’s easy with the Arduino IoT Cloud compatible boards. It means: you can connect devices, visualize data, control and share your projects from anywhere in the world.
The Arduino Pro Portenta H7 Lite is very similar to the Portenta H7, that simultaneously can run high level code along with real time tasks thanks to its two processors. It is, for example, possible to execute Arduino compiled code along with MicroPython one and have both cores to communicate with one another. However, the H7 Lite is a low-cost board with H7 functionalities that can be configured to specific use cases.
Features
Dual Core – Two best-in-class processors in one, running parallel tasks
AI on the edge – So powerful it can run AI state machines
Customization – The board is highly customizable in volumes
High-level programming language support (Micropython)
The Portenta H7 Lite offers twofold functionality: it can run either like any other embedded microcontroller board, or as the main processor of an embedded computer.
For example, use the Portenta Vision Shield to transform your H7 Lite into an industrial camera capable of performing real-time machine learning algorithms on live video feeds. As the H7 Lite can easily run processes created with TensorFlow Lite, you could have one of the cores computing a computer vision algorithm on the fly, while the other carries out low-level operations like controlling a motor or acting as a user interface.
Solutions
High-end industrial machinery
Laboratory equipment
Computer vision
PLCs
Robotics controllers
Mission-critical devices
High-speed booting computation (ms)
Two Parallel Cores
The Portenta H7 Lite’s main processor is the STM32H747 dual core including a Cortex-M7 running at 480 MHz and a Cortex-M4 running at 240 MHz. The two cores communicate via a Remote Procedure Call mechanism that allows calling functions on the other processor seamlessly. Both processors share all the in-chip peripherals and can run:
Arduino sketches on top of the ARM Mbed OS
Native Mbed applications
MicroPython / JavaScript via an interpreter
TensorFlow Lite
A New Standard for Pinouts
The Portenta family adds two 80-pin high-density connectors at the bottom of the board. This ensures scalability for a wide range of applications: simply upgrade your Portenta board to the one suiting your needs.
USB-C Multipurpose Connector
The board’s programming connector is a USB-C port that can also be used to power the board, as a USB Hub, or to deliver power to OTG connected devices.
Arduino IoT Cloud
Use your Portenta board on Arduino’s IoT Cloud, a simple and fast way to ensure secure communication for all of your connected Things.
Specifications
Microcontroller
STM32H747XI Dual Cortex-M7+M4 32-bit low power ARM MCU (datasheet)
Secure element (default)
Microchip ATECC608
Board power supply (USB/VIN)
5 V
Supported battery
Li-Po Single Cell, 3.7 V, 700 mAh Minimum (integrated charger)
Circuit operating voltage
3.3 V
Current consumption
2.95 μA in Standby mode (Backup SRAM OFF, RTC/LSE ON)
Timers
22x timers and watchdogs
UART
4x ports (2 with flow control)
Ethernet PHY
10 / 100 Mbps (through expansion port only)
SD card
Interface for SD card connector (through expansion port only)
Operational temperature
-40 °C to +85 °C
MKR headers
Use any of the existing industrial MKR shields on it
High-density connectors
Two 80-pin connectors will expose all of the board's peripherals to other devices
Camera interface
8-bit, up to 80 MHz
ADC
3x ADCs with 16-bit max. resolution (up to 36 channels, up to 3.6 MSPS)
DAC
2x 12-bit DAC (1 MHz)
USB-C
Host / Device, High / Full Speed, Power delivery
Downloads
Datasheet
Schematics
The Portenta Machine Control is a fully-centralized, low-power, industrial control unit able to drive equipment and machinery. It can be programmed using the Arduino framework or other embedded development platforms.
Thanks to its computing power, the Portenta Machine Control enables a wide range of predictive maintenance and AI use cases. It enables the collection of real-time data from the factory floor and supports the remote control of equipment, even from the cloud, when desired.
Features
Shorter Time-To-Market
Give new life to existing products
Add connectivity for monitoring and control
Tailor it to your need, each I/O pin can be configured
Make equipment smarter to be ready for the AI revolution
Provide security and robustness from the ground up
Open new business model opportunity (e.g. servitization)
Interact with your equipment with advanced HMI
Modular Design for adaptation & upgrades
The Portenta Machine Control allows companies to enable new business-as-a-service models by monitoring customer usage of equipment for predictive maintenance and providing valuable production data.
The Portenta Machine Control enables industry standard soft-PLC control and is able to connect to a range of external sensors and actuators with isolated digital I/O, 4-20 mA compatible analog I/O, 3 configurable temperature channels, and a dedicated I²C connector. Multiple choices are available for network connectivity, including USB, Ethernet, and WiFi/Bluetooth Low Energy in addition to industry specific protocols such as RS485. All I/O are protected by resettable fuses and onboard power management has been engineered to ensure maximum reliability in harsh environments.
The Portenta Machine Control core runs a Portenta H7 microcontroller board (included), a highly reliable design operating at industrial temperature ranges (-40 °C to +85 °C) with a dual-core architecture that doesn’t require any external cooling. The main processor offers the possibility of connecting external Human Machine Interfaces like displays, touch panels, keyboards, joysticks, and mice to enable on-site reconfiguration of state machines and direct manipulation of processes.
The Portenta Machine Control’s design addresses a large variety of use scenarios. It is possible to configure a selection of the I/O pins via software. The Portenta Machine Control stands out as a powerful computer to unify and optimize production where one single type of hardware can serve all of your needs. Among other outstanding features are the following:
Industrial performance leveraging the power of Portenta boards
DIN bar compatible housing
Push-in terminals for fast connection
Compact device (170 x 90 x 50 mm)
Reliable design, operating at industrial temperature rates (-40 °C to +85 °C) with a dual-core architecture that doesn’t require any external cooling
Embedded RTC (Real Time Clock) to ensure perfect synchronization of processes
Leverage the embedded connectivity without any external parts
The Portenta Machine Control can be used in multiple industries, across a wide range of machine types, including: labelling machine, form & seal machine, cartoning machine, gluing machine, electric oven, industrial washer & dryers, mixers, etc.
Add the Portenta Machine Control to your existing processes effortlessly and become the owner of your solutions in the market of machines.
Specifications
Processor
STM32H747XI Dual Cortex-M7+M4 32-bit low power Arm MCU (Portenta H7)
Input
8 digital 24 VDC
2 channels encoder readings
3 Analog for PT100/J/K temperature probes (3-wire cable with compensation)
3 Analog input (4-20 mA/ 0-10 V/NTC 10K)
Output
8 digital 24 VDC up to 0.5 A (short circuit protection)
4 analog 0-10 V (up to 20 mA output per channel)
Other I/O
12 programmable digital I/O (24 V logic)
Commmunication protocols
CAN-BUS
Programmable Serial port 232/422/485
Connectivity
Ethernet
USB Programming Port
Wi-Fi
Bluetooth Low Energy
Memory
16 MB onboard Flash memory
8 MB SD-RAM
Dimensions
170 x 90 x 50 mm
Weight
186 g
Power
24 VDC +/- 20%
Connector type
Push-in terminals for fast connection
Operating temperature
-40°C to +85°C (-40°F to 185°F)
Downloads
Datasheet
Schematics
Pinout
The Arduino Pro Portenta Max Carrier transforms Portenta modules into single-board computers or reference designs that enable edge AI for high-performance industrial, building automation and robotics applications. Thanks to dedicated high-density connectors, it can be paired with Portenta X8 or H7, allowing you to easily prototype and deploy your industrial projects. This Arduino Pro carrier further augments Portenta connectivity options with Fieldbus, LoRa, Cat-M1 and NB-IoT.
Among the many available plug-and-play connectors there are Ethernet, USB-A, audio jacks, microSD, mini-PCIe, FD-CAN and Serial RS232/422/485.
Max Carrier can be powered via external supply (6-36 V) or battery via the onboard 18650 Li-ion battery connector with 3.7 V battery charger.
Features
Easily prototype industrial applications and minimize time to market
A powerful carrier exposing Portenta peripherals (e.g. CAN, RS232/422/485, USB, mPCIe)
Multiple connectivity options (Ethernet, LoRa, CAT-M1, NB-IoT)
MicroSD for data logging operations
Integrated audio jacks (line-in, line-out, mic-in)
Standalone when battery powered
Onboard JTAG debugger via micro-USB (with Portenta H7 only)
Specifications
Connectors
High-Density connectors compatible with Portenta products2x USB-A female connectors1x Gigabit Ethernet connector (RJ45)1x FD-Can on RJ111x mPCIe1x Serial RS232/422/485 on RJ12
Audio
3x audio jacks: stereo line-in/line-out, mic-inSpeaker connector
Memory
Micro SD
Wireless modules
Murata CMWX1ZZABZ-078 LoRaSARA-R412M-02B (Cat.M1/NB-IoT)
Operating temperatures
-40 °C to +85 °C (-40° F to 185 °F)
Debugging
Onboard JLink OB / Blackmagic probe
Power/battery
Power Jack for external supply (6-36 V)On-board 18650 Li-ion battery connector with battery charger (3.7 V)
Dimensions
101.6 x 101.6 mm (4.0 x 4.0')
Downloads
Datasheet
Schematics
The Arduino Pro Portenta Vision Shield brings industry-rated features to your Portenta. This hardware add-on will let you run embedded computer vision applications, connect wirelessly or via Ethernet to the Arduino Cloud or your own infrastructure, and activate your system upon the detection of sound events.
Features
324x324 pixels camera sensor: use one of the cores in Portenta to run image recognition algorithms using the OpenMV for Arduino editor
100 Mbps Ethernet connector: get your Portenta H7 connected to the wired Internet
2 onboard microphones for directional sound detection: capture and analyse sound in real-time
JTAG connector: perform low-level debugging of your Portenta board or special firmware updates using an external programmer
SD-Card connector: store your captured data in the card, or read configuration files
The Vision Shield has been designed to fit on top of the Arduino Portenta family. The Portenta boards feature multicore 32-bit ARM Cortex processors running at hundreds of megahertz, with megabytes of program memory and RAM. Portenta boards come with WiFi and Bluetooth.
Embedded Computer Vision Made Easy
Arduino has teamed up with OpenMV to offer you a free license to the OpenMV IDE, an easy way into computer vision using MicroPython as a programming paradigm. Download the OpenMV for Arduino Editor from our professional tutorials site and browse through the examples we have prepared for you inside the OpenMV IDE. Companies across the whole world are already building their commercial products based on this simple-yet-powerful approach to detect, filter, and classify images, QR codes, and others.
Debugging With Professional Tools
Connect your Portenta H7 to a professional debugger through the JTAG connector. Use professional software tools like the ones from Lauterbach or Segger on top of your board to debug your code step by step. The Vision Shield exposes the required pins for you to plug in your external JTAG.
Camera
Himax HM-01B0 camera module
Resolution
320 x 320 active pixel resolution with support for QVGA
Image sensor
High sensitivity 3.6μ BrightSense pixel technology
Microphone
2 x MP34DT05
Length
66 mm
Width
25 mm
Weight
11 gr
For more information, check out the tutorials provided by Arduino here.
The Arduino Pro Portenta Vision Shield LoRa brings industry-rated features to your Portenta. This hardware add-on will let you run embedded computer vision applications, connect wirelessly via LoRa to the Arduino Cloud or your own infrastructure, and activate your system upon the detection of sound events.
The shield comes with:
a 320x320 pixels camera sensor: use one of the cores in Portenta to run image recognition algorithms using the OpenMV for Arduino editor
long range 868/915 MHz LoRa wireless connectivity: get your Portenta H7 connected to the Internet of Things with low power consumption
two on-board microphones for directional sound detection: capture and analyse sound in real-time
JTAG connector: perform low-level debugging of your Portenta board or special firmware updates using an external programmer
SD-Card connector: store your captured data in the card, or read configuration files
The Vision Shield LoRa has been designed to work with the Arduino Portenta H7. The Portenta boards feature multicore 32-bit ARM Cortex processors running at hundreds of megahertz, with megabytes of program memory and RAM. Portenta boards come with WiFi and Bluetooth.
Specifications
Camera
Himax HM-01B0 camera module (manufacturer site)
Resolution
320 x 320 active pixel resolution with support for QVGA
Image sensor
High sensitivity 3.6μ BrightSense pixel technology
Microphone
2x MP34DT05 (datasheet)
Connectivity
868/915MHz ABZ-093 LoRa Module with ARM Cortex-M0+ (datasheet)
Dimensions
66 x 25 mm
Weight
8 g
Downloads
Datasheet
Schematics
Portenta X8 is a powerful, industrial-grade SOM with Linux OS preloaded onboard, capable of running device-independent software thanks to its modular container architecture. Take advantage of onboard Wi-Fi/Bluetooth Low Energy connectivity to securely perform OS/application OTA updates. It’s basically two industrial products in one, with the power of no less than 9 cores. Leverage the Arduino environment to carry out real-time tasks while Linux takes care of high-performance processing. Portenta X8 features an NXP i.MX 8M Mini Cortex-A53 quad-core, up to 1.8 GHz per core + 1x Cortex-M4 up to 400 MHz, plus the STMicroelectronics STM32H747 dual-core Cortex-M7 up to 480 Mhz +M4 32-bit ARM MCU up to 240 Mhz. Features Two industrial products in one, combining Arduino’s availability of libraries/skills with container-based Linux distribution Outstanding computational density – a total of 9 cores within a compact form factor Multi-processor architecture allowing power-optimized processing Leverage popular programming languages like Python, Java and Ruby among others Real-time I/O and fieldbus/control on a dedicated core Deploy powerful AI algorithms and machine learning on the edge Secure OS/applications updates over-the-air Industrial-grade security at the hardware level, thanks to its crypto chip on dedicated bus Leverage the Arduino ecosystem to expand Portenta capabilities Implement multi-protocol routing with a single module Compatible with other Arduino Portenta products Industrial-Grade Security Portenta X8 has been designed with industrial-grade security in mind. PSA Certified and includes the NXP SE050C2 hardware security element to provide key generation, accelerated crypto operations and secure storage. Awarded Arm SystemReady certification and integrated Parsec services, making it one of the market’s first Cassini Products available to developers. Portenta X8 includes the customizable open-source Linux microPlatform OS, built using best industry practices for end-to-end security, incremental OTA updates and fleet management. Utilizing the cloud-based DevOps platform from Foundries.io to reinvent the way embedded Linux solutions are built, tested, deployed and maintained, the Portenta X8 benefits from Foundries.io continuous update service for cybersecurity. This service guarantees an updated image that contains all vulnerability patches; whilst the approach to containers decouples the operating system from the application, to seamlessly keep the whole system updated. Applications Portenta X8 enables IT professionals, system integrators and consulting firms to build and boost a wide variety of solutions for industrial contexts, and also lends itself to building automation and smart agriculture applications. Connected edge computer for manufacturing Autonomous Guided Vehicles (AGV) Interactive full-HD secure kiosks and digital signage Office & home control systems Navigation and control for smart agriculture Behavioral analytics for offices and factories Downloads Datasheet Schematics
Unlock a world of interactive learning with the Science Kit R3's robust hardware and software. With the Arduino Nano RP2040 Connect, Arduino Science Carrier R3, and an impressive array of sensors at your disposal, you'll have everything you need to embark on an exhilarating educational journey. Meanwhile, the Science Journal app effortlessly bridges the gap between theory and practice, facilitating real-time data collection, recording, and interpretation.
The kit elevates the learning experience by nurturing an enhanced understanding of complex physics concepts through engaging hands-on experimentation. It promotes scientific literacy and hones critical thinking skills by providing real-world application scenarios. With its intuitive content guide, both teachers and students can navigate through scientific explorations with ease.
Features
Hands-on experimental learning: perform physical experiments, transforming abstract physics concepts into tangible and interactive experiences.
Real-time data collection & analysis: With the integration of the Science Journal app, the kit allows students to collect, record, and interpret real-time data with mobile devices, strengthening their data literacy and scientific inquiry skills.
Teacher and student-friendly design: Equipped with a preloaded program, the kit requires no prior knowledge of coding or electronics. It also features Bluetooth connectivity for easy data transmission from the Arduino board to the students' mobile devices.
Comprehensive sensor ecosystem: The kit comes with multiple sensors, providing a wide range of data collection possibilities and keeping it adaptable to evolving educational needs.
Free guided courses – Explore Physics: Includes an intuitive courses guide that assists teachers and students in using the kit, presenting and analyzing data, and evaluating experimental outcomes. These courses also help students effectively communicate their scientific discoveries.
Comprehensive teaching support: With its intuitive guide, the Arduino Science Kit R3 eases the instructional process for teachers. It not only instructs on kit usage, but also assists in data presentation, analysis, and evaluation, ensuring students communicate their scientific discoveries effectively.
Specifications
Hardware
Arduino Nano RP2040 Connect
Arduino Science Carrier R3
Embedded sensors:
Air quality, temperature, humidity & pressure
IMU: 6-axis linear accelerometer, gyroscope, and magnetometer
Proximity, ambient light, light color
Voltage or electric potential difference
Electrical current
Electrical resistance
Function generators to see and hear the effect of frequency, amplitude, and phase on a sound wave
Ambient sound intensity sensor
Ports
2x Grove analog inputs (for external temperature-probe sensor)
2x Grove I²C ports (for external distance & ping-echo sensor)
1x Battery JST connector
2x Output ports connected to lower power signal from function generators (future generation)
1x 3.3 V output port and Ground
2x speaker ports connected to function generators
Other
50 cm double-ended cable (blue): crocodile clips one end, banana plug the other
20 cm double-ended cable (black): crocodile clips one end, banana plug the other
20 cm double-ended cable (red): crocodile clips one end, banana plug the other
VELCRO strips
Silicon stands
External temperature probe sensor
Ultrasonic distance sensor
Grove cable 4-pin housing with lock x2 (L=200 mm)
USB-C Cable
50 cm double-ended cable (yellow): crocodile clips one end, banana plug the other
2x Speakers
Cable for battery holder with JST connector
Battery holder for four 1V5 AA batteries
Grove is an open-source, modulated, and ready-to-use toolset and takes a building block approach to assemble electronics. This Kit includes a Base Shield to which the various Grove modules can be connected both individually, or together in various combinations to create fun and exciting projects. All of the modules use a Grove connector, which connects each of the components to a Base Shield in just a few seconds. The Base Shield can then be mounted onto an Arduino UNO board and can be programmed using the Arduino IDE. Instructions for connecting and programming the different modules are also included in this kit. This kit was elaborated in collaboration with Seeed Studio and provides the Arduino community with the opportunity to build projects with minimal effort of both wiring and coding. This kit acts as a bridge to the world of Grove and provides a flexible way for Makers to extend their projects to include other complex Grove modules. The Kit comes includes access to an online platform with all the instructions required to plug, sketch and play with the different Grove Modules. Please note: This kit does not include the Arduino Uno board. Included 1 Base Shield that is designed to fit on top of an Arduino UNO board. It comes equipped with 16 grove connectors, which, when placed on top of the UNO, provides the functionality to various pins. It includes: 7x digital connections 4x analog connections 4x I²C connections 1x UART connection 10 Grove modules included can be connected to the base shield, either through the digital, analog, or I2C connectors on the shield. Let's take a quick look at them: The LED - a simple LED that can be turned ON or OFF, or dimmed. The button - pushbutton can either be in a HIGH or LOW state. The potentiometer - a variable resistor that increases or decreases resistance when turning its knob. The buzzer - a piezo speaker that is used to produce binary sounds. The light sensor - a photoresistor that reads light intensity. The sound sensor - a tiny microphone that measures sound vibrations. The air pressure sensor - reads air pressure, using the I²C protocol. The temperature sensor - reads temperature and humidity at the same time. The accelerometer - a sensor used for orientation, used for detecting movement. The OLED screen - a screen that values or messages can be printed to. 6 Grove cables allow you to easily connect the modules to the Base Shield without any soldering required. The Arduino Sensor Kit Library is a wrapper that contains links to other libraries related to certain modules such as the accelerometer, air pressure sensor, temperature sensor, and OLED display. This library provides easy-to-use APIs that will help you build a clear mental model of the concepts you will be using.
Quickly and easily get started with learning electronics using the Arduino Uno Starter Kit, which have a universal appeal to fans at home, businesses, and schools alike.
No prior experience is required, as the kits introduce both coding and electronics through fun, engaging, and hands-on projects. You can use the starter kit to teach students about current, voltage, and digital logic as well as the fundamentals of programming.
There’s an introduction to sensors and actuators and how to understand both digital and analog signals. Within all this, you’ll be teaching students how to think critically, learn collaboratively, and solve problems.
Projects Book
GET TO KNOW YOUR TOOLS an introduction to the basics
SPACESHIP INTERFACE design the control panel for your starship
LOVE-O-METER measure how hot-blooded you are
COLOR MIXING LAMP produce any colour with a lamp that uses light as an input
MOOD CUE clue people into how you're doing
LIGHT THEREMIN create a musical instrument you play by waving your hands
KEYBOARD INSTRUMENT play music and make some noise with this keyboard
DIGITAL HOURGLASS a light-up hourglass that can stop you from working too much
MOTORIZED PINWHEEL a coloured wheel that will make your head spin
ZOETROPE create a mechanical animation you can play forward or reverse
CRYSTAL BALL a mystical tour to answer all your tough questions
KNOCK LOCK tap out the secret code to open the door
TOUCHY-FEEL LAMP a lamp that responds to your touch
TWEAK THE ARDUINO LOGO control your personal computer from your Arduino
HACKING BUTTONS create a master control for all your devices!
Included
1x Projects Book (170 pages)
1x Arduino Uno
1x USB cable
1x Breadboard 400 points
70x Solid core jumper wires
1x Easy-to-assemble wooden base
1x 9 V battery snap
1x Stranded jumper wires (black)
1x Stranded jumper wires (red)
6x Phototransistor
3x Potentiometer 10 kΩ
10x Pushbuttons
1x Temperature sensor [TMP36]
1x Tilt sensor
1x alphanumeric LCD (16x2 characters)
1x LED (bright white)
1x LED (RGB)
8x LEDs (red)
8x LEDs (green)
8x LEDs (yellow)
3x LEDs (blue)
1x Small DC motor 6/9 V
1x Small servo motor
1x Piezo capsule
1x H-bridge motor driver
1x Optocouplers
2x Mosfet transistors
3x Capacitors 100 uF
5x Diodes
3x Transparent gels
1x Male pins strip (40x1)
20x Resistors 220 Ω
5x Resistors 560 Ω
5x Resistors 1 kΩ
5x Resistors 4.7 kΩ
20x Resistors 10 kΩ
5x Resistors 1 MΩ
5x Resistors 10 MΩ
The Arduino Student Kit is a hands-on, step-by-step remote learning tool for ages 11+: get started with the basics of electronics, programming, and coding at home. No prior knowledge or experience is necessary as the kit guides you through step by step. Educators can teach their class remotely using the kits, and parents can use the kit as a homeschool tool for their child to learn at their own pace. Everyone will gain confidence in programming and electronics with guided lessons and open experimentation.
Learn the basics of programming, coding and electronics including current, voltage, and digital logic. No prior knowledge or experience is necessary as the kit guides you through step by step.
You’ll get all the hardware and software you need for one person, making it ideal to use for remote teaching, homeschooling, and for self-learning. There are step-by-step lessons, exercises, and for a complete and in-depth experience, there’s also extra content including invention spotlights, concepts, and interesting facts about electronics, technology, and programming.
Lessons and projects can be paced according to individual abilities, allowing them to learn from home at their own level. The kit can also be integrated into different subjects such as physics, chemistry, and even history. In fact, there’s enough content for an entire semester.
How educators can use the kit for remote teaching
The online platform contains all the content you need to teach remotely: exclusive learning guidance content, tips for remote learning, nine 90-minute lessons, and two open-ended projects. Each lesson builds off the previous one, providing a further opportunity to apply the skills and concepts students have already learned. They also get a logbook to complete as they work through the lessons.
The beginning of each lesson provides an overview, estimated completion times, and learning objectives. Throughout each lesson, there are tips and information that will help to make the learning experience easier. Key answers and extension ideas are also provided.
How the kit helps parents homeschool their children
This is your hands-on, step-by-step remote learning tool that will help your child learn the basics of programming, coding, and electronics at home. As a parent, you don’t need any prior knowledge or experience as you are guided through step-by-step. The kit is linked directly into the curriculum so you can be confident that your children are learning what they should be, and it provides the opportunity for them to become confident in programming and electronics. You’ll also be helping them learn vital skills such as critical thinking and problem-solving.
Self-learning with the Arduino Student Kit
Students can use this kit to teach themselves the basics of electronics, programming, and coding. As all the lessons follow step-by-step instructions, it’s easy for them to work their way through and learn on their own. They can work at their own pace, have fun with all the real-world projects, and increase their confidence as they go. They don’t need any previous knowledge as everything is clearly explained, coding is pre-written, and there’s a vocabulary of concepts to refer to.
The Arduino Student Kit comes with several parts and components that will be used to build circuits while completing the lessons and projects throughout the course.
Included in the kit
Access code to exclusive online content including learning guidance notes, step-by-step lessons and extra materials such as resources, invention spotlights and a digital logbook with solutions.
1x Arduino Uno
1x USB cable
1x Board mounting base
1x Multimeter
1x 9 V battery snap
1x 9 V battery
20x LEDs (5x red, 5x green, 5x yellow & 5x blue )
5x Resistors 560 Ω
5x Resistors 220 Ω
1x Breadboard 400 points
1x Resistor 1 kΩ
1x Resistor 10 kΩ
1x Small Servo motor
2x Potentiometers 10 kΩ
2x Knob potentiometers
2x Capacitors 100 uF
Solid core jumper wires
5x Pushbuttons
1x Phototransistor
2x Resistors 4.7 kΩ
1x Jumper wire black
1x Jumper wire red
1x Temperature sensor
1x Piezo
1x Jumper wire female to male red
1x Jumper wire female to male black
3x Nuts and Bolts
Celebrating the Arduino Uno with a miniaturized limited edition
The world's favorite development board has gone mini. Everything in this version of the Arduino Uno is unique. Black and gold, finishing, elegant design and packaging, all delivered to the highest standard. A little jewel to celebrate the Arduino community and what we’ve been doing together for all these years.
Each item is unique and numbered on the PCB, and includes a hand-signed letter from the founders. It’s a limited edition, so get while it’s in stock!
For serious Arduino Uno lovers
Arduino Uno Mini Limited Edition is a collector’s item for serious Arduino Lovers: hobbyists, students, makers, reimaginers, dreamers, hopers, fans, engineers, designers, questioners, cake-makers, problem-solvers, puzzlers, gamers, debaters, developers, entrepreneurs, architects, future-shapers, musicians, scientists... 10 million projects based on (official) Uno boards that have contributed to this incredible story.
Specifications
The Arduino Uno Mini Limited Edition is a microcontroller board based on the ATmega328P. It has 14 digital inputs/outputs (six of which can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator, a USB-C connector, and a reset button. Contains everything needed to support the microcontroller. Simply connect it to a computer with a USB cable, use a power adapter, or connect a battery to get started.
Microcontroller
ATmega328P
USB connector
USB-C
Built-in LED Pins
13
Digital I/O Pins
14
Analog Input Pins
6
PWM Pins
6
UART
Yes
I²C
Yes
SPI
Yes
Circuit operating voltage
5 V
Input Voltage (limit)
6-12 V
Battery connector
None
DC current per I/O Pin
20 mA
DC current for 3.3 V Pin
50 mA
Main processor
ATmega328P (16 MHz)
USB-serial processor
ATmega16U2 (16 MHz)
Memory ATmega328P
2 KB SRAM, 32 KB Flash, 1 KB EEPROM
Weight
8.05 g
Dimensions
26.70 x 34.20 mm
Downloads
Datasheet
The Arduino Uno R4 is powered by the Renesas RA4M1 32-bit ARM Cortex-M4 processor, providing a significant boost in processing power, memory, and functionality. The WiFi version comes with an ESP32-S3 WiFi module in addition to the RA4M1, expanding creative opportunities for makers and engineers. The Uno R4 Minima is an affordable option for those who don't need the additional features.
The Arduino Uno R4 runs at 48 MHz, which provides a 3x increase over the popular Uno R3. Additionally, SRAM has been upgraded from 2 kB to 32 kB, and flash memory from 32 kB to 256 kB to support more complex projects. Responding to community feedback, the USB port is now USB-C, and the maximum power supply voltage has been raised to 24 V with an enhanced thermal design. The board includes a CAN bus and an SPI port, enabling users to reduce wiring and perform parallel tasks by connecting multiple shields. A 12-bit analog DAC is also provided on the board.
The Arduino Uno R4 comes in 2 versions (Minima and WiFi) and offers the following new features compared to the Uno R3:
Arduino Uno R4 Minima
Arduino Uno R4 WiFi
USB-C connector
USB-C connector
RA4M1 from Renesas (Cortex-M4)
RA4M1 from Renesas (Cortex-M4)
HID device (emulate a mouse or a keyboard)
HID device (emulate a mouse or a keyboard)
Improved power section (up to 24 V through VIN)
Improved power section (up to 24 V through VIN)
CAN bus
CAN bus
DAC (12 bits)
DAC (12 bits)
Op amp
Op amp
WiFi/Bluetooth LE
Fully-addressable LED matrix (12x8)
Qwiic I²C connector
RTC (with support for a buffer battery)
Runtime errors diagnostics
Model Comparison
Uno R3
Uno R4 Minima
Uno R4 WiFi
Microcontroller
Microchip ATmega328P (8-bit AVR RISC)
Renesas RA4M1 (32-bit ARM Cortex-M4)
Renesas RA4M1 (32-bit ARM Cortex-M4)
Operating Voltage
5 V
5 V
5 V
Input Voltage
6-20 V
6-24 V
6-24 V
Digital I/O Pins
14
14
14
PWM Digital I/O Pins
6
6
6
Analog Input Pins
6
6
6
DC Current per I/O Pin
20 mA
8 mA
8 mA
Clock Speed
16 MHz
48 Mhz
48 Mhz
Flash Memory
32 KB
256 KB
256 KB
SRAM
2 KB
32 KB
32 KB
USB
USB-B
USB-C
USB-C
DAC (12 bit)
–
1
1
SPI
1
2
2
I²C
1
2
2
CAN
–
1
1
Op amp
–
1
1
SWD
–
1
1
RTC
–
–
1
Qwiic I²C connector
–
–
1
LED Matrix
–
–
12x8 (96 red LEDs)
LED_BUILTIN
13
13
13
Dimensions
68.6 x 53.4 mm
68.9 x 53.4 mm
68.9 x 53.4 mm
Downloads
Datasheet
Schematics
The Arduino Uno R4 is powered by the Renesas RA4M1 32-bit ARM Cortex-M4 processor, providing a significant boost in processing power, memory, and functionality. The WiFi version comes with an ESP32-S3 WiFi module in addition to the RA4M1, expanding creative opportunities for makers and engineers. The Uno R4 Minima is an affordable option for those who don't need the additional features.
The Arduino Uno R4 runs at 48 MHz, which provides a 3x increase over the popular Uno R3. Additionally, SRAM has been upgraded from 2 kB to 32 kB, and flash memory from 32 kB to 256 kB to support more complex projects. Responding to community feedback, the USB port is now USB-C, and the maximum power supply voltage has been raised to 24 V with an enhanced thermal design. The board includes a CAN bus and an SPI port, enabling users to reduce wiring and perform parallel tasks by connecting multiple shields. A 12-bit analog DAC is also provided on the board.
The Arduino Uno R4 comes in 2 versions (Minima and WiFi) and offers the following new features compared to the Uno R3:
Arduino Uno R4 Minima
Arduino Uno R4 WiFi
USB-C connector
USB-C connector
RA4M1 from Renesas (Cortex-M4)
RA4M1 from Renesas (Cortex-M4)
HID device (emulate a mouse or a keyboard)
HID device (emulate a mouse or a keyboard)
Improved power section (up to 24 V through VIN)
Improved power section (up to 24 V through VIN)
CAN bus
CAN bus
DAC (12 bits)
DAC (12 bits)
Op amp
Op amp
WiFi/Bluetooth LE
Fully-addressable LED matrix (12x8)
Qwiic I²C connector
RTC (with support for a buffer battery)
Runtime errors diagnostics
Model Comparison
Uno R3
Uno R4 Minima
Uno R4 WiFi
Microcontroller
Microchip ATmega328P (8-bit AVR RISC)
Renesas RA4M1 (32-bit ARM Cortex-M4)
Renesas RA4M1 (32-bit ARM Cortex-M4)
Operating Voltage
5 V
5 V
5 V
Input Voltage
6-20 V
6-24 V
6-24 V
Digital I/O Pins
14
14
14
PWM Digital I/O Pins
6
6
6
Analog Input Pins
6
6
6
DC Current per I/O Pin
20 mA
8 mA
8 mA
Clock Speed
16 MHz
48 Mhz
48 Mhz
Flash Memory
32 KB
256 KB
256 KB
SRAM
2 KB
32 KB
32 KB
USB
USB-B
USB-C
USB-C
DAC (12 bit)
–
1
1
SPI
1
2
2
I²C
1
2
2
CAN
–
1
1
Op amp
–
1
1
SWD
–
1
1
RTC
–
–
1
Qwiic I²C connector
–
–
1
LED Matrix
–
–
12x8 (96 red LEDs)
LED_BUILTIN
13
13
13
Dimensions
68.6 x 53.4 mm
68.9 x 53.4 mm
68.9 x 53.4 mm
Downloads
Datasheet
Schematics
Arduino Uno is an open-source microcontroller board based on the ATmega328P. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. You can tinker with your Uno without worring too much about doing something wrong, worst case scenario you can replace the chip for a few dollars and start over again.
'Uno' means one in Italian and was chosen to mark the release of Arduino Software (IDE) 1.0. The Uno board and version 1.0 of Arduino Software (IDE) were the reference versions of Arduino, now evolved to newer releases. The Uno board is the first in a series of USB Arduino boards, and the reference model for the Arduino platform; for an extensive list of current, past or outdated boards see the Arduino index of boards.
Specifications
Microcontroller
ATmega328P
Operating Voltage
5 V
Input Voltage (recommended)
7-12 V
Input Voltage (limit)
6-20 V
Digital I/O Pins
14 (of which 6 provide PWM output)
PWM Digital I/O Pins
6
Analog Input Pins
6
DC Current per I/O Pin
20 mA
DC Current for 3.3 V Pin
50 mA
Flash Memory
32 KB (ATmega328P) of which 0.5 KB used by bootloader
SRAM
2 KB (ATmega328P)
EEPROM
1 KB (ATmega328P)
Clock Speed
16 MHz
LED_BUILTIN
13
Dimensions
68.6 x 53.4 mm
Weight
25 g
The Uno differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Additional features coming with the R3 version are: ATmega16U2 instead of 8U2 as a USB-to-Serial converter. 1.0 pinout: added SDA and SCL pins for TWI communication placed near to the AREF pin and two other new pins placed near to the RESET pin, the IOREF that allow the shields to adapt to the voltage provided from the board and the second one is a not connected pin, that is reserved for future purposes. stronger RESET circuit. Microcontroller ATmega328P Operating Voltage 5 V Input Voltage 7 V - 12 V Digital I/O Pins 14 PWM Pins 6 Analog Input Pins 8 DC Current per I/O Pin 20 mA DC Current for 3.3 V Pin 50 mA Flash Memory 32 KB (ATmega328P) of which 0.5 KB used by bootloader SRAM 2 KB EEPROM 1 KB Clock Speed 16 MHz LED_Builtin 13 Length 68.6 mm Width 53.4 mm Weight 25 g
Add this board to a device and you'll be able to connect it to a WiFi network, using its secure ECC608 crypto chip accelerator. The Arduino Uno WiFi is functionally the same as the Arduino Uno Rev3, but with the addition of WiFi/Bluetooth and some other enhancements. It incorporates the brand new ATmega4809 8-bit microcontroller from Microchip and has an onboard IMU (Inertial Measurement Unit) LSM6DS3TR.
The Wi-Fi Module is a self-contained SoC with an integrated TCP/IP protocol stack that can provide access to a Wi-Fi network, or act as an access point.
The Arduino Uno WiFi Rev2 has 14 digital input/output pins (5 that can be used as PWM outputs, 6 analog inputs), a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller. Simply connect it to a computer with a USB cable or power it with an AC adapter or battery to get started.
Specifications
Operating Voltage
5 V
Input Voltage
7 V - 12 V
Digital I/O
14
Analog Input Pins
6
Analog Input Pins
6
DC Current per I/O Pin
20 mA
DC Current for 3.3 V Pin
50 mA
Flash Memory
48 KB
SRAM
6.144 Bytes
EEPROM
256 Bytes
Clock Speed
16 MHz
Radio Module
u-blox NINA-W102
Secure Element
ATECC608A
Inertial Measurement Unit
LSM6DS3TR
LED_Builtin
25
Length
101.52 mm
Width
53.3 mm
Weight
37 g