The Hti HT-18+ is a professional thermal imaging camera designed for precise temperature measurements and real-time thermal imaging. It has an impressive infrared resolution of 256 x 192 pixels at a frame rate of 25 Hz, resulting in clear and detailed thermal images. The temperature measurement range extends from −20°C to +550°C, with a measurement accuracy of ±2°C or ±2%.
The camera is equipped with a 3.2-inch color display for easy viewing of thermal images. It offers five different color palettes – rainbow, iron red, cold color, black and white and white and black – to adapt the display to different requirements. It also has a built-in memory of 4 GB for storing images and videos in JPG or MP4 format, which can be transferred to a computer via a USB connection.
Specifications
Infrared resolution
256 x 192
Infrared response band
8 to 14 μm
Cell size
12 μm
NETD
≤50 mK @ 25°C, @F/1.1
Lens focal length
3.2 mm
IFOV
3.75 mrad
Field angle
56° x 42°
Focus mode
Free focus
Temperature measurement range
−20°C~550°C (−4~1022°F)
Measurement accuracy
−15°C to 550°C (±2°C or ±2%)−20°C to −15°C (±4°C)
Temperature measurement resolution
0.1°C
Temperature measurement mode
Center point/hot and cold spot tracking
Color palette
Rainbow, iron oxide red, cold color, black & white, white & black
Emissivity setting
Adjustable from 0.01 to 1.00
Thermal imaging frame rate
≤25 Hz
Visible light resolution
640 x 480
Display size
3.2-inch (240 x 320)
Image display mode
Infrared/visible light/dual light fusion
Device storage
Built-in 4 GB eMMC (user available storage space is about 3 GB
Storage Image/Video Format
JPG/MP4
Image/video export method
USB connection to computer export
Image analysis function
Support offline analysis on PC
Battery Type
Dedicated removable rechargeable Lithium battery
Battery capacity
2200 mAh
Working time
2 to 3 hours
Power interface
Micro USB
Power configuration
5 minutes, 20 minutes, no automatic shutdown
Working temperature
−10°C to +50°C
Relative humidity
10% to 85% RH (non-condensing)
Menu languages
English, German, Italian, Chinese
Dimensions
90 x 105 x 223 mm
Weight
389 g
Included
1x Hti HT-18+ Thermal Imaging Camera
1x USB cable
1x Manual
Downloads
Manual
The TOPDON TC004 Lite thermal imaging camera combines simplicity with advanced features, making it ideal for both hobbyists and professionals.
With a 160 x 120 pixel resolution, 1x/2x/4x zoom, and a wide 40° x 30° field of view, it delivers sharp and accurate thermal images. It operates across a broad temperature range (−20°C to +550°C), making it suitable for various industries like HVAC, electrical, and automotive diagnostics.
Its lightweight design, 2.8” display, and 15-hour battery life ensure portability and uninterrupted use, providing a powerful tool for thorough thermal analysis.
Features
Wide Temp Ranging from −20°C to +550°C (−4°F to +1022°F)
IR Photography
5 Color Palettes for More Possibilities
Tripod Mountable for a Stable View
High and Low Temperature Alarm
Monitor Temperature Change with Waveform Graphs
Long-lasting 15 Hour Battery Life
Specifications
TC004
TC004 SE
TC004 Lite
Display
2.8" Color TFT (320 x 240 Pixels)
2.8" Color TFT (320 x 240 Pixels)
2.8" Color TFT (320 x 240 Pixels)
IR light resolution
256 x 192 Pixels
256 x 192 Pixels
160 x 120 Pixels
Spectral range
8~14 μm
8~14 μm
8~14 μm
FOV
52.5° x 39.5°
56° x 42°
40° x 30°
Storage
2 GB RAM + 16 GB TF card
32 GB Built-in
512 MB Built-in
Measuring range
−20~350°C (−4~662°F)
−20~550°C (−4~1022°F)
−20~550°C (−4~1022°F)
Temperature resolution
0.1°C (0.18°F)
0.1°C (0.18°F)
0.1°C (0.18°F)
Measuring modes
Center spot/hot spot/cold spot
Center spot/hot spot/cold spot
Center spot/hot spot/cold spot
Measuring accuracy
±2°C or ±2%
±2°C or ±2%
±2°C or ±2%
Frame rate
25 Hz
25 Hz
25 Hz
Focal length
3.2 mm (0.12")
3.2 mm (0.12")
2.6 mm (0.1")
NETD
<40 mK
<40 mK
<40 mK
Magnification
1x/2x/4x (digital zoom)
1x/2x/4x (digital zoom)
1x/2x/4x (digital zoom)
Tripod screw hole
Yes
Yes
Yes
High/Low temperature alarm
Yes
Yes
Yes
LED flashlight
Yes
Yes
No
Video recording
Yes
Yes
No
Auto shutdown
5 min, 10 min, 20 min, OFF
5 min, 10 min, 20 min, OFF
5 min, 10 min, 20 min, OFF
Battery
Built-in 5000 mAh battery
Built-in 5300 mAh battery
Built-in 2900 mAh battery
Charging time
4 h
4 h
4 h
Standby time
12 h
16 h (High Brightness)21 h (Low Brightness)
15 h
Operating system
Standalone use/Windows devices
Standalone use/Windows devices
Standalone use
PC-based analysis
Supports image analysis with PC
Yes
No
Dimensions
240 x 70 x 90 mm
240 x 70 x 90 mm
240 x 70 x 90 mm
Weight
520 g
520 g
520 g
Included
1x TOPDON TC004 Lite Thermal Imaging Camera
1x USB Power Supply
4x Plugs (EU, UK, US, and AU)
1x USB Cable
1x Storage Bag
1x Manual
Downloads
Datasheet
Manual
The PeakTech 5620 is a professional thermal imaging camera with a high thermal resolution of 384x288 thermal image points and a variety of excellent features for work in building thermography or industrial use.
In addition to the pure thermal image display, this new development also offers a PIP (picture-in-picture) display, a real image camera or a fusion function in which the contours of the real image recording are combined with the thermal image in order to ensure an even better display.
All of the image modes mentioned can also be used for video recording, which also enables audio recordings for the respective video.
The many functions are controlled via push buttons on the device, but also via the touch screen function of the color TFT display.
All thermal images can be opened and evaluated using the enclosed software, with subsequent changes, e.g. can be done on the pallet selection.
Features
Professional thermal imaging technology
3.5" touchscreen and graphic menu navigation
Thermal image resolution of 384x288 pixels
High temperature measuring range up to +550°C
High quality thermal image sensor with high temperature sensitivity
Fast thermal imaging with 25 Hz
Seven color palettes (Iron, Rainbow, White, Black ...)
Photo and video recordings with audio commentary
WiFi, USB and Bluetooth interfaces
IP 54 protected against dust and splash water
Accessories: Hard case, 2x Li-Po battery, charger, carrying strap, connection cable, software and instructions
Specifications
Thermal Resolution
384 x 288 Pixel
Temperature Range
-20°C … 550°C (-4°F … 1022°F), 0,1° Resolution
Accuracy
±2% (±2°C)
Display
3.5" Touchscreen TFT
Thermal Sensivity
<40 mK
Field of View (FOV)
37,2°x 28,5°
Pixel Pitch
17 µm
IFOV
1.7 mrad
Wave Length
8 ... 14 µm
Emissivity
0.01~1.0
Image Frequency
25 Hz
Storage
Micro SD (64 GB)
Data Interface
USB, WiFi, Bluetooth
Operation voltage
5000 mAh / 3.7 V Li-Ion
Dimensions
100 x 244 x 104 mm
Weight
approx. 660 g
The FR01D (2-in-1) thermal imaging camera and multimeter is a compact and lightweight solution that simplifies diagnostic and maintenance tasks. The one-click function allows you to switch effortlessly between thermal imaging and multimeter mode, giving you two important tools in one portable device.
The multimeter is capable of measuring DC and AC voltage, resistance, diode checks, continuity testing, and capacitance.
The FR01D has a 2.8-inch touchscreen with a resolution of 320 x 480 pixels. The device is powered by an integrated rechargeable lithium battery and can be charged via USB.
With the FR01D, you can inspect and maintain circuit boards, check power supplies, repair electronic devices, and overhaul household appliances. Its compact size, multifunctionality, and user-friendliness make the FR01D the ideal companion for electronics and maintenance technicians.
General Specifications
Display size
2.8" (320 x 480)
Touchscreen
Resistive
Data transmission
USB-C
Image storage format
BMP
Battery
Li-ion battery
Storage temperature
−20°C~60°C(−4°F~140°F)
Operating temperature
0°C~50°C(32°F~122°F)
Operating humidity
<85% RH
Dimensions
134 x 69 x 25 mm
Weight
130 g
Thermal Imaging Specifications
Sensor
Vanadium oxide (VOx)
Image capture frequency
25 Hz
Thermal imaging pixels
192 x 192
Field of View (FOV)
50.0°(H) x 50°(V) / 72.1°(D)
Temperature range
−20°C ~ +550°C (−4°F~1022°F)
Gain mode
Auto
Accuracy
±2°C or ±2%
Measurement resolution
0.1°C / 0.1°F
Multimeter Specifications
DC input voltage (max.)
1000 V
AC input voltage (max.)
750 V
Resistance (max.)
99.99 MΩ
Capacitance (max.)
99.99 mF
Duty cycle test range
0.1% ~ 99.9%
Diode test range
0 V ~ 3 V
Continuity test
999.9 Ω
Display
9999 counts (Refreshes 3x per second)
Accuracy
Function
Range
Resolution
Accuracy
AC Voltage
400 mV
0.1 mV
2% +3
9.999 V
0.001 V
1.0% +3
99.99 V
0.01 V
999.9 V
0.1V
DC Voltage
400 mV
0.1 mV
2% +3
9.999 V
0.001 V
1.0% +3
99.99 V
0.01 V
999.9 V
0.1 V
Resistance
999.9 Ω
0.1 Ω
0.5% +3
9.999 KΩ
0.001 kΩ
99.99 KΩ
0.01 kΩ
999.9 KΩ
0.1 kΩ
9.999 MΩ
0.001 MΩ
99.99 MΩ
0.01 MΩ
1.5% +3
Diode Test
3.000 V
0.001 V
10%
Capacitance
9.999 nF
0.001 nF
2% +5
99.99 nF
0.01 nF
999.9 nF
0.1 nF
9.999 uF
0.001 uF
99.99 uF
0.01 uF
999.9 uF
0.1 uF
9.999 mF
0.001 mF
5% +5
99.99 mF
0.01 mF
Included
1x FR01D IR-Camera and Multimeter
2x Test Leads
1x USB Cable
1x Manual
This is a simple DIY kit using Makerfabs' ESP32-S3 3.5" Parallel TFT with Touch (320x480) and Mabee MLX90640 module to monitor the temperature and display on the screen or save to SD card. It is a nice tool for circuit testing and non-contact temperature sensing.
Features
Based on ESP32-S3, 3.5-inch TFT with capacitive touch
Auto check the highest temperature point
Temperature accuracy: <1°C
Suitable for applications such as human temperature checking or electronic boards debugging
All hardware & software are open, users can modify & add more functions, such WiFi/Bluetooth data transmitting
Downloads
Default firmware
New remote monitoring firmware
Blog
This is a long-wave IR thermal imaging camera that adopts the hybrid technology of microbolometer and thermopile pixel, features 80x62 array pixels. It will detect the IR1 distribution of objects in the field of view, turn the data into surface temperature of the objects by calculation, and then generate thermal images, for easy integration into miscellaneous industrial or intelligent control applications.
Features
Adopts the hybrid technology of microbolometer and thermopile, 80x62 array pixels
Continuous operation and thermal imaging video stream due to shutterless design
Noise Equivalent Temperature Difference (NETD) 150mK RMS@1 Hz refresh rate
Up to 25 fps (Max) thermal imaging video stream output
Comes with online resources and manuals (Python demo for Raspberry Pi, Android/Windows host computer and user manual, etc.)
Applications
High precision long-term non-contact temperature online monitoring
IR thermal imaging devices, IR thermometers
Smart home, intelligent building, intelligent lighting
Industrial temperature control, security & safety, intrude/motion detection
Small Target Thermal Analysis, Heat Trend Analysis and Solutions
Specifications
Power supply
5 V
Operating current
61 mA@5 V
Wavelength range
8~14 μm
Operating temperature
-20~85°C
Target temperature
-20~400°C
Refresh rate
25 fps (Max)
FOV
45° x 45° (H x V)
Noise equivalentTemperature diffenerence
150 mK
Measuring accuracy
±2°C (ambient temp. 10~70°C)
Dimensions
65.0 x 30.5 mm
Included
1x Thermal Camera HAT
1x 40-pin female header
1x FPC 15-pin cable 0.3 mm pitch (100 mm)
1x Screws pack
Downloads
Wiki
The HT-M00 is a dual-channel gateway that is specifically designed to cater to smart family LoRa applications that work with less than 30 LoRa nodes. The gateway has been built around two SX1276 chips that are driven by ESP32. To enable monitoring of 125 KHz SF7~SF12 spreading factor, a software mixer has been developed, which is commonly referred to as a baseband simulation program.
The software mixer is a critical component that enables the HT-M00 gateway to operate with high efficiency. It is designed to simulate baseband signals, which are then mixed with the radio frequency signals to produce the desired output. The software mixer has been developed with great care and precision, and has undergone rigorous testing to ensure that it is capable of delivering accurate and reliable results.
Features
ESP32 + SX1276
Emulates LoRa demodulators
Automatic adaptive spread spectrum factor, SF7 to SF12 for each channel is optional
Maximum output: 18 ±1dBm
Support for LoRaWAN Class A, Class C protocol
Specifications
MCU
ESP32-D0WDQ6
LoRa Chipset
SX1276
LoRa Band
863~870 MHz
Power Supply Voltage
5 V
Receiving Sensitivity
-110 dBm @ 300 bps
Interface
USB-C
Max. TX Power
17dB ±1dB
Operating Temperature
−20~70°C
Dimensions
30 x 76 x 14 mm
Included
1x HT-M00 Dual Channel LoRa Gateway
1x Wall bracket
1x USB-C cable
Downloads
Manual
Software
Documentation
The Raspberry Pi AI Camera is a compact camera module based on the Sony IMX500 Intelligent Vision Sensor. The IMX500 combines a 12 MP CMOS image sensor with on-board inferencing acceleration for various common neural network models, allowing users to develop sophisticated vision-based AI applications without requiring a separate accelerator.
The AI Camera enhances captured still images or video with tensor metadata, while keeping the Raspberry Pi's processor free for other tasks. Support for tensor metadata in the libcamera and Picamera2 libraries, as well as the rpicam-apps application suite, ensures ease of use for beginners while providing unparalleled power and flexibility for advanced users.
The Raspberry Pi AI Camera is compatible with all Raspberry Pi models.
Features
12 MP Sony IMX500 Intelligent Vision Sensor
Sensor modes: 4056x3040 (@ 10fps), 2028x1520 (@ 30fps)
1.55 x 1.55 µm cell size
78-degree field of view with manually adjustable focus
Integrated RP2040 for neural network and firmware management
Specifications
Sensor
Sony IMX500
Resolution
12.3 MP (4056 x 3040 pixels)
Sensor size
7.857 mm (type 1/2.3)
Pixel size
1.55 x 1.55 μm
IR cut filter
Integrated
Autofocus
Manual adjustable focus
Focus range
20 cm – ∞
Focal length
4.74 mm
Horizontal FOV
66 ±3°
Vertical FOV
52.3 ±3°
Focal ratio (F-stop)
F1.79
Output
Image (Bayer RAW10), ISP output (YUV/RGB), ROI, metadata
Input tensor maximum size
640 x 640 (H x V)
Framerate
• 2x2 binned: 2028x1520 10-bit 30fps• Full resolution: 4056x3040 10-bit 10fps
Ribbon cable length
20 cm
Cable connector
15 x 1 mm FPC or 22 x 0.5 mm FPC
Dimensions
25 x 24 x 11.9 mm
Downloads
Datasheet
Documentation
The HuskyLens AI Camera intuitive design allows the user to control different aspects of the camera just by pressing buttons. You can start and stop learning new objects and even switch between algorithms from the device.
To further reduce the need to be connected to a PC the HuskyLens AI Camera comes with a 2-inch display so you can see what's going on in real time.
Specifications
Processor: Kendryte K210
Image Sensor: OV2640 (2.0 Megapixel Camera)
Supply Voltage: 3.3~5.0 V
Current Consumption (TYP): 320 mA @ 3.3 V, 230 mA @ 5.0 V (face recognition mode; 80% backlight brightness; fill light off)
Connection Interface: UART, I²C
Display: 2.0-inch IPS screen with 320x240 resolution
Built-in Algorithms: Face Recognition, Object Tracking, Object Recognition, Line Tracking, Color Recognition, Tag Recognition
Dimension: 52 x 44.5 mm (2.05 x 1.75')
Included
1x HuskyLens Mainboard
6x M3 Screws
6x M3 Nuts
1x Small Mounting Bracket
1x Heightening Bracket
1x Gravity 4-Pin Sensor Cable
39 Experiments with Raspberry Pi and Arduino
This book is about Raspberry Pi 3 and Arduino camera projects.
The book explains in simple terms and with tested and working example projects, how to configure and use a Raspberry Pi camera and USB based webcam in camera-based projects using a Raspberry Pi.
Example projects are given to capture images, create timelapse photography, record video, use the camera and Raspberry Pi in security and surveillance applications, post images to Twitter, record wildlife, stream live video to YouTube, use a night camera, send pictures to smartphones, face and eye detection, colour and shape recognition, number plate recognition, barcode recognition and many more.
Installation and use of popular image processing libraries and software including OpenCV, SimpleCV, and OpenALPR are explained in detail using a Raspberry Pi. The book also explains in detail how to use a camera on an Arduino development board to capture images and then save them on a microSD card.
All projects given in this book have been fully tested and are working. Program listings for all Raspberry Pi and Arduino projects used in this book are available for download on the Elektor website.
Raspberry Pi Camera Module 3 is a compact camera from Raspberry Pi. It offers an IMX708 12-megapixel sensor with HDR, and features phase detection autofocus. Camera Module 3 is available in standard and wide-angle variants, both of which are available with or without an infrared cut filter.
Camera Module 3 can be used to take full HD video as well as stills photographs, and features an HDR mode up to 3 megapixels. Its operation is fully supported by the libcamera library, including Camera Module 3’s rapid autofocus feature: this makes it easy for beginners to use, while offering plenty for advanced users. Camera Module 3 is compatible with all Raspberry Pi computers.
All variants of Raspberry Pi Camera Module 3 feature:
Back-illuminated and stacked CMOS 12-megapixel image sensor (Sony IMX708)
High signal-to-noise ratio (SNR)
Built-in 2D Dynamic Defect Pixel Correction (DPC)
Phase Detection Autofocus (PDAF) for rapid autofocus
QBC Re-mosaic function
HDR mode (up to 3 megapixel output)
CSI-2 serial data output
2-wire serial communication (supports I²C fast mode and fast-mode plus)
2-wire serial control of focus mechanism
Specifications
Sensor
Sony IMX708
Resolution
11.9 MP
Sensor size
7.4 mm sensor diagonal
Pixel size
1.4 x 1.4 µm
Horizontal/vertical
4608 x 2592 pixels
Common video modes
1080p50, 720p100, 480p120
Output
RAW10
IR cut filter
Integrated in standard variants; not present in NoIR variants
Autofocus system
Phase Detection Autofocus
Ribbon cable length
200 mm
Cable connector
15 x 1 mm FPC
Dimensions
25 x 24 x 11.5 mm (12.4 mm height for Wide variants)
Variants of Raspberry Pi Camera Module 3
Camera Module 3
Camera Module 3 NoIR
Camera Module 3 Wide
Camera Module 3 Wide NoIR
Focus range
10 cm - ∞
10 cm - ∞
5 cm - ∞
5 cm - ∞
Focal length
4.74 mm
4.74 mm
2.75 mm
2.75 mm
Diagonal field of view
75 degrees
75 degrees
120 degrees
120 degrees
Horizontal field of view
66 degrees
66 degrees
102 degrees
102 degrees
Vertical field of view
41 degrees
41 degrees
67 degrees
67 degrees
Focal ratio (F-stop)
F1.8
F1.8
F2.2
F2.2
Infrared-sensitive
No
Yes
No
Yes
Downloads
GitHub
Documentation
,
by Harry Baggen
FeelElec FR01D Multimeter With Thermal Imaging Camera (Review)
Chinese manufacturers of measuring equipment continue to surprise us with affordable measuring combinations that we would not have thought possible a few years ago. My...