Discover the perfect fusion of science, music, and visual spectacle!
This compact yet powerful musical Tesla coil is designed with an advanced circuit and an upgraded booster top coil to produce long, thick lightning arcs – bringing raw energy to life right before your eyes.
Two Modes for Twice the Fun
Long Arc Mode: Emits lightning at a fixed frequency. At medium power, the arcs are safe to touch – giving only a slight tingling sensation.
Music Mode: Connect via Bluetooth and watch the arcs dance in sync with the music. It plays square wave tones, concentrating the energy into a stunning sparkling melody.
Stable Bluetooth & Smart Design
Equipped with a custom-developed Bluetooth chip, the coil connects smoothly with any smartphone, computer, or Bluetooth-enabled device. It also supports USB-C for added convenience. The coil is coated with a gold-clear ink for improved dust resistance and enhanced durability.
Easy Setup – Instant Magic
No audio cables needed! Just tighten the discharge pin, turn down the power and frequency knobs, plug it in – and watch the magic unfold. Whether placed vertically or horizontally, this Tesla coil puts on a mesmerizing show every time.
Fun Meets Education
More than just a gadget, this Tesla coil is an engaging tool for science education. It can wirelessly light up gas tubes or even bubbles, and the touchable arcs are completely safe to interact with. It's an unforgettable gift and a futuristic piece of art that’ll turn heads on any desk.
Specifications
Body Material
Transparent acrylic
Input Voltage
48 V
Discharge Frequency
5-50 Hz (lightning mode)
Included
Power adapter (EU)
Note: Before powering on, always turn both knobs fully counterclockwise to avoid sudden loud shocks from the arc.
The DLOS8 is an open-source outdoor LoRaWAN Gateway. It lets you bridge LoRa wireless network to an IP network via Ethernet, WiFi or 3G. The LoRa wireless allows users to send data and reach extremely long ranges at low data-rates.
The DLOS8 uses Semtech packet forwarder and fully compatible with LoRaWAN protocol. It includes an SX1301 LoRaWAN concentrator, which provides ten programmable parallel demodulation paths.
DLOS8 has pre-configured standard LoRaWAN frequency bands to use for different countries. User can also customize the frequency bands to use in their LoRaWAN network.
DLOS8 can communicate with ABP LoRaWAN end node without LoRaWAN server. The system integrator can use it to integrate with their existing IoT Service without set up own LoRaWAN server or use 3rd party LoRaWAN service.
Features
Managed by SSH via LAN or WiFi, Web GUI
Open Source OpenWrt system
Emulates 49x LoRa demodulators
Outdoor LoRaWAN Gateway
LoRaWAN packet filtering
Ten programmable parallel demodulation paths
Farseeing LED indicator
External fibreglass antenna
Built-in GPS module for location & timing
802.3af PoE
IP65
Lighting Protection
Power Consumption: 12 V, 300~500 mA
1x 10M/100M RJ45 Ports
1x USB host port
2.4G WiFi (802.11 bgn)
Applications
Logistics and Supply Chain Management
Smart Buildings & Home Automation
Smart Metering
Smart Cities
Smart Agriculture
Smart Factory
Downloads
Datasheet
User Manual
Firmware
Mechanical
The Dragino LDS02 is powered by 2x AAA batteries and targets long-time use, these two batteries can provide about 16,000~70,000 uplink packets. After the batteries run out, the user can easily open the enclosure and replace them with 2 common AAA batteries.
It will send periodically data every day as well as for each door open/close action. It also counts the door open times and calculates the last door open duration. The user can also disable the uplink for each open/close event, instead, the device can count each open event and uplink periodically.
It also has the open alarm feature, the user can set this feature so the device will send an alarm if the door has been open for a certain time. Each LDS02 is pre-load with a set of unique keys for LoRaWAN registration, register these keys to the LoRaWAN server and it will auto-connect after power on.
Features
LoRaWAN v1.0.3 Class A
SX1262 LoRa Core
Door Open/Close detect
2 x AAA LR03 Batteries
Door open/close statistics
AT Commands to change parameters
Uplink on periodically and open/close action
Open duration alarm
Downlink to change configure
Applications
Wireless Alarm and Security Systems
Home and Building Automation
Industrial Monitoring and Control
Pixy2 can be taught to detect objects by the press of a button. It is equipped with a new line detection algorithm to use on line-following robots. It can learn to recognize intersection and follow road signs.
Pixy2 comes with various cables so that you can connect it with an Arduino or a Raspberry Pi out of the box. Furthermore, the I/O port offers several interfaces (SOI, I²C, UART, USB) to plug your Pixy2 in most boards.
Downloads
Documentation
Projects
Software
LoRa-E5 Development Kit is an easy-to-use compact development toolset for you to unlock the powerful performance of the LoRa-E5 STM32WLE5JC. It consists of a LoRa-E5 Dev Board, an antenna (EU868), a USB type C cable, and a 2-AA 3 V Battery Holder. LoRa-E5 Dev Board embedded with LoRa-E5 STM32WLE5JC Module, which is the world-first combo of LoRa RF and MCU chip into one single tiny chip and is FCC and CE certified. It is powered by ARM Cortex-M4 core and Semtech SX126X LoRa chip, supports both LoRaWAN and LoRa protocol on the worldwide frequency and (G)FSK, BPSK, (G)MSK, and LoRa modulations. The LoRa-E5 development board features a very long transmission range, extremely low power consumption and user-friendly interfaces. LoRa-E5 Dev Board has a long-distance transmission range of LoRa-E5 up to 10 km in an open area. The sleep current of LoRa-E5 modules on board is as low as 2.1 uA (WOR mode). It is designed with industrial standards with a wide working temperature at -40℃ ~ 85℃, high sensitivity between -116.5 dBm ~ -136 dBm, and power output up to +20.8 dBm at 3.3 V. LoRa-E5 Dev Board also has rich interfaces. Developed to unlock the full functionality of the LoRa-E5 module, LoRa-E5 Dev Board has led out full 28 pins of LoRa-E5 and provides with rich interfaces including Grove connectors, RS-485 terminal, male/female pin headers for you to connect sensors and modules with different connectors and data protocols, saving your time on wire soldering. You could also easily power the board by connecting the battery holder with 2-AA batteries, enabling temporary use when lacking an external power source. It is a user-friendly board for easy testing and rapid prototyping. Specifications Size LoRa-E5 Dev Board: 85.6 x 54 mm Voltage (supply) 3-5 V (Battery) / 5 V (USB-C) Voltage (output) EN 3V3 / 5 V Power (output) Up to +20.8 dBm at 3.3 V Frequency EU868 Protocol LoRaWAN Sensitivity -116.5 dBm ~ -136 dBm Interfaces USB Type C / JST2.0 / 3x Grove (2x I²C/1x UART) / RS485 / SMA-K / IPEX Modulation LoRa, (G)FSK, (G)MSK, BPSK Working temperature -40℃ ~ 85℃ Current LoRa-E5 module sleep current as low as 2.1 uA (WOR mode) Included 1x LoRa-E5 Dev Board 1x Antenna (EU868) 1x USB Type C Cable (20 cm) 1x 2-AA 3 V Battery Holder
The RangePi – LoRa USB Dongle uses the Semtech SX1262 that allows communications up to 5 km.
The RangePi can be used with any device that utilizes a USB connection, eliminating the need for extra equipment just to connect to the LoRa network.
Specifications
1.14” LCD
RP2040 MCU
Up to 5 km distance
UART
Included
1x RangePi
1x Antenna
Downloads
STEP File
Product Dimension
3D PDF File
Schematic File
GitHub
Take your first step to upgrading your smart home with Home Assistant Green, the easiest way to start using Home Assistant. Its powerful hardware lets you control and automate everything in your home from a single app with Home Assistant.
Just plug in power and network cables, and you'll be up and running.
Download our mobile apps or use our web app to guide you through the setup process seamlessly.
That's all! Home Assistant will automatically start detecting your smart home devices.
Everything in one app
More than 1,000 built-in integrations support hundreds of thousands of smart devices and online services, with more regularly added by our community.
Switch from other smart home ecosystems at your own pace
Home Assistant works with your existing Apple HomeKit, Google Home, Samsung SmartThings, and Amazon Alexa setup, allowing a seamless and gradual migration for everyone in your home.
Expand compatibility as your home expands
You can add Home Assistant SkyConnect to connect Zigbee and Thread devices, set up Home Assistant Cloud for voice assistants, and integrate third-party USB accessories to support other smart standards, such as Z-Wave or Bluetooth.
Home Assistant is built by one of the largest communities of open-source contributors. New features and improvements are added every month, ensuring your smart home never lets you down.
Home Assistant keeps your data locally, which means you are safe from invasive privacy practices and you can access your smart home even when the Internet is down.
Specifications
SoC
Rockchip RK3566 SoC with quad-core Arm Cortex-A55 CPU
CPU Frequency
1.8 GHz
Storage
32 GB eMMC flash drive
RAM
4 GB LPDDR4X
Interfaces
Status LEDs
White (power indicator)Green (activity indicator)Yellow (system health indicator)
Power supply
DC barrel connector, 5.5 x 2.1 mm12 V DC, 1 A
Battery
CR2032 (not included)
Energy consumption
Idle: ~1.7 W at 12 VLoad: ~3 W at 12 V
USB
2x USB 2.0 Type-A Host ports, 5 V up to 2 A (combined)
Display
HDMI port, for diagnostic purposes only
External storage
MicroSD slot, for recovery purposes only
Networking
Gigabit Ethernet
Dimensions
112 x 112 x 32 mm
Weight
340 g
Included
Home Assistant Green smart home hub
Gigabit Ethernet cable
12 V/1 A universal power supply (comes with plug adapters for EU, US, and UK)
Quick Start Guide
Warranty and Safety Information
Downloads
Datasheet
Documentation
GitHub
The XL741 kit is sold as an easy-to-build soldering kit. It includes the circuit board, resistors, transistors and capacitor that make up the electrical circuit as well as printed assembly instructions. The kit also comes complete with the 'IC Leg' stand, and eight colour-coded thumbscrew terminal posts. To build the XL741 kit, fundamental electronic soldering skill and tools are required. Soldering tools are not included, and you will need to use your own. You will need: a soldering iron, solder and small ('flush') wire clippers, as well as a Phillips head screwdriver The kit features easy construction and should take roughly an hour to build. Kit size The XL741 kit printed circuit board is 5.215' x 3.175' (13.25 cm x 8.06 cm) in area, and (nominally) 0.100' (2.54 mm) thick. Including the 'Integrated Circuit Legs' stand and terminal posts, the overall size of the assembled kit is 5.215' x 3.9' x 1.70' (13.25 cm x 9.9 cm x 4.3 cm). Materials and construction The decorative stand is smooth to the touch and made of anodised aluminium. The circuit board in the kit is extra thick for rigidity and made with a matte-black solder mask finish. It comes pre-fitted with eight 8-32 threaded inserts for the terminal posts. All materials (including the circuit board and stand) are RoHS compliant (lead-free). The included terminal post screws are stainless steel thumbscrews with colour-coded plastic caps (1 red, 1 black, 6 grey).
Looking for a fun DIY Christmas project? Assemble and program this extra-large Poly Reindeer figurine and make its LEDs shine all the colors of the rainbow! Ideal for both beginners and advanced makers! This educational and fun kit combines soldering and programming skills in one XL-sized project. First, you will need to solder some simple components onto the copper plated circuit board. The components include fancy RGB LEDs that have a special diffused effect. Once the soldering work is finished, you will be able to program the colors and light effects of the different LEDs thanks to the onboard Arduino Nano Every. The Arduino will be pre-programmed with some basic LED effects, so your kit will work once you power it with the included adaptor. Or you can choose to write your own code based on the available example code. Programmable add-ons The printed circuit board of this project is designed especially so you can add different add-ons. For example, add an OLED screen to display messages or program it to countdown the days until Christmas! Or add an IoT Tuya chip so your project can communicate with your smartphone. You can even add a sound microphone, motion sensor or light sensor. Features XL-sized & copper plated circuit board (PCB) in the shape of a polymetric reindeer 22 addressable (programmable) RGB LEDs 14 x 5 mm RGB LEDs 10 x 8 mm RGB LEDs Arduino Nano Every Onboard push button USB A to USB micro cable for programming USB A to USB B cable for power supply Wooden holder Complete manual and video available in 5 languages Example code for Arduino available Educational & fun for all ages and skill levels Expandable with lots of add-ons: an OLED screen a smart IoT sensor to connect with your smartphone a microphone sensor and more! Not included: soldering iron, soldering tin, pliers and an soldering mat Specifications Dimensions: 168 x 270 mm Power supply: 5 V/2.1 A max. (cable included)
This versatile plotter robot arm DIY kit for Arduino is equipped with MG90S metal gear servo motors to ensure precise and stable drawing movements.
Features
Fully compatible with Arduino IDE, includes complete source code for easy development and customization.
Equipped with robust MG90S metal gear servo motors for accuracy and durability.
Includes a Bluetooth module enabling wireless operation via a dedicated app.
Specially designed robotic arm tip securely holds pens or markers with a diameter of 8-10 mm, ideal for sketches and detailed drawings.
Included
Arduino-compatible Nano motherboard
Nano expansion board
Bluetooth module
MG90S all-metal gear servo motors
Aluminum structural frame
Thickened stable base plate
Screw and fastening accessories
Connecting wires
USB data cable
Features NFC chip material: PET + Etching antenna Chip: NTAG216 (compatible with all NFC phones) Frequency: 13.56 MHz (High Frequency) Reading time: 1 - 2 ms Storage capacity: 888 bytes Read and write times: > 100,000 times Reading distance: 0 - 5 mm Data retention: > 10 years NFC chip size: Diameter 30 mm Non-contact, no friction, the failure rate is small, low maintenance costs Read rate, verification speed, which can effectively save time and improve efficiency Waterproof, dustproof, anti-vibration No power comes with an antenna, embedded encryption control logic, and communication logic circuit Included 1x NFC Stickers (6-color kit)
Use acoustic waves to hold in mid-air samples such as water, ants, or tiny electric components. This technology has been previously restricted to a couple of research labs but now you can make it at your home.
Included
76x 10 mm 40 kHz transducers
1x Arduino Nano
1x L298N Dual Motor Drive Board
1x Power Switch
1x DC Adaptor 9 V
1x Jumper Wires
6x Black and Red Wire
Some Exposed Wire
1x 3D-Printed TinyLev
Downloads
Instructables
Scientific Information
Arduboy is a miniture game development system the size of a credit card based on the popular open source Arduino platform. Learn to program/code with lots of tutorials and an active community of developers, develop and share your own games using Arduino software via the USB-Cable. Use your PC/Mac/Linux machine to download over 200 unique games created by members of the Arduboy Community.
Features
Processor: ATmega32u4 (same as Arduino Leonardo & Micro)
Memory: 32 KB Flash, 2.5 KB RAM, 1 KB EEPROM
Inputs: 6 Momentary Tactile Buttons
Outputs: 128 x 64 1-bit OLED, 4 Ch. Piezo Speaker & Blinky LED
Battery: 180 mAh Thin-Film Lithium Polymer
Connectivity: Micro-USB 2.0 with built-in HID profile
Programming: Arduino IDE, Arduboy Game Loader, GCC & AVRDude
Open source gaming
Anyone can make games for the Arduboy! Free online tutorials guide you through a step by step process on how to develop your own software! There are already plenty of examples to learn from. Ever wanted to create a level or map for your favorite game, or make your favorite character jump higher? Now is your chance!
Super retro
Designed to remind you of a more simple time in the world of gaming, the Arduboy brings true 8-bit gaming into the 21st century with style. The black and white screen invites you to involve your imagination once again while gaming.
Durable construction
A polycarbonate front, ultra thin circuit board, and stamped aluminum metal back is the ultimate combination. A rechargeable lithium polymer battery provides over 8 hours of battery life, and the same cable you use to charge can be used to upload new games! At only 5 mm thick, Arduboy can live in your pocket (or even wallet) and is thinner than nearly any mobile phone!
Downloads
Schematics
GitHub
Documentation
The EggBot is a friendly art robot that can draw on spherical or egg-shaped objects from the size of a ping pong ball to that of a small Grapefruit – roughly 1.25 to 4.25 inches in diameter (3-10 cm).
You can use EggBot on all kinds of spherical objects. Use it to create the most impressive Easter eggs, personalize Christmas ornaments or even golf balls or light bulbs. The EggBot is not just a cool gadget; it’s also a great introduction to CNC (computer numerical control) and do-it-yourself robotics. All of the electronics and software are designed to be hackable and repurposable, so you could easily computer control an Etch-a-Sketch or create something totally new.
The EggBot software allows you to control the ‘bot from within Inkscape – a superb freeware illustration program – on Mac, Windows, or Linux computers. You can draw an image directly, trace a photograph, or import designs from other programs. You can also control the EggBot directly from many other programs that have the ability to send serial commands over a USB port.
Universal power supply included! (with US-EU adapter).
LWL01 is powered by a CR2032 coin battery, in a good LoRaWAN Network Coverage case, it can transmit as many as 12,000 uplink packets (based on SF 7, 14 dB). In poor LoRaWAN network coverage, it can transmit ~ 1,300 uplink packets (based on SF 10, 18.5 B). The design goal for one battery is up to 2 years. User can easily change the CR2032 battery for reuse. The LWL01 will send periodically data every day as well as for water leak event. It also counts the water leak event times and also calculates last water leak duration. Each LWL01 is pre-load with a set of unique keys for LoRaWAN registration, register these keys to local LoRaWAN server and it will auto connect after power on. Features LoRaWAN v1.0.3 Class A SX1262 LoRa Core Water Leak detect CR2032 battery powered AT Commands to change parameters Uplink on periodically and water leak event Downlink to change configure Applications Wireless Alarm and Security Systems Home and Building Automation Industrial Monitoring and Control
The Mendocino Motor AR O-8 is a magnetically levitated, solar powered electric motor as a kit.
Light Becomes Movement
The solar-powered Mendocino motor seems to float in the air. At first glance, you can't see why the rotor is turning at all. This is the magic of the motor.
The Lorentz force is a very small electrical force. In a classroom setting, it is detected by a current swing in the magnetic field. With the Mendocino motor, we have succeeded in developing a beautiful application that uses this weak force for propulsion. Due to its concealed base magnet, the motor will fascinate technically inclined observers.
In bright sunlight, the motor can reach a speed of up to 1,000 rpm. More impressive, however, is that even the faint glow of an ample tea light (D = 6 cm with a flame height of about 2 cm) is sufficient to drive the motor. The motor is not yet an alternative source of energy, even though it looks tempting. Presumably, it will remain an attractive model until a resourceful mind disproves this assumption.
Dimensions
All solar cells 65 x 20 mm
Mirror diameter: 25 mm
Rotor weight: approx. 150 g
Model length: 160 mm
Model width: 85 mm
Frame height: approx. 85 mm
Frame material: black acrylic
Tube made of highly polished aluminum
Mirror color: silver
The Mendocino motor’s easy-to-follow instruction manual includes more than 70 illustrations. It describes a safe and practical approach to construction but also gives you the freedom to try your solutions.
Partly Pre-Assembled Kit
A portion of the kit comes pre-assembled. Bonding the borosilicate glass pane to the acrylic surface requires specialized knowledge and aids. We do not want to impose this on the hobbyist. For instance, the base magnet is attached to the aluminum tube.
As a hobbyist, you will need some know-how and appropriate tools: carpet knife, soldering iron and tin, hot glue, pliers, and a clamp or ferrule to fix the supplied assembly aid. A lot of fun is guaranteed!
The Raspberry Pi AI HAT+ is an expansion board designed for the Raspberry Pi 5, featuring an integrated Hailo AI accelerator. This add-on offers a cost-effective, efficient, and accessible approach to incorporating high-performance AI capabilities, with applications spanning process control, security, home automation, and robotics.
Available in models offering 13 or 26 tera-operations per second (TOPS), the AI HAT+ is based on the Hailo-8L and Hailo-8 neural network accelerators. The 13 TOPS model efficiently supports neural networks for tasks like object detection, semantic and instance segmentation, pose estimation, and more. This 26 TOPS variant accommodates larger networks, enables faster processing, and is optimized for running multiple networks simultaneously.
The AI HAT+ connects via the Raspberry Pi 5’s PCIe Gen3 interface. When the Raspberry Pi 5 is running a current version of the Raspberry Pi OS, it automatically detects the onboard Hailo accelerator, making the neural processing unit (NPU) available for AI tasks. Additionally, the rpicam-apps camera applications included in Raspberry Pi OS seamlessly support the AI module, automatically using the NPU for compatible post-processing functions.
Included
Raspberry Pi AI HAT+ (26 TOPS)
Mounting hardware kit (spacers, screws)
16 mm GPIO stacking header
Downloads
Datasheet
Features: Supports motor voltage from 4 V to 16 V DC Bidirectional control for two brushed DC motor. Control one unipolar or one bipolar stepper motor. Maximum Motor Current: 3A continuous, 5A peak LEDs for motor output state. Buttons for quick testing. Compatible with Arduino and Raspberry Pi PWM frequency up to 20kHz Reverse polarity protection Here you can find the product's Datasheet. Check out the sample code provided by Cytron here.
BeagleY-AI is a low-cost, open-source, and powerful 64-bit quad-core single-board computer, equipped with a GPU, DSP, and vision/deep learning accelerators, designed for developers and makers.
Users can take advantage of BeagleBoard.org's provided Debian Linux software images, which include a built-in development environment. This enables the seamless running of AI applications on a dedicated 4 TOPS co-processor, while simultaneously handling real-time I/O tasks with an 800 MHz microcontroller.
BeagleY-AI is designed to meet the needs of both professional developers and educational environments. It is affordable, easy to use, and open-source, removing barriers to innovation. Developers can explore in-depth lessons or push practical applications to their limits without restriction.
Specifications
Processor
TI AM67 with quad-core 64-bit Arm Cortex-A53, GPU, DSP, and vision/deep learning accelerators
RAM
4 GB LPDDR4
Wi-Fi
BeagleBoard BM3301 module based on TI CC3301 (802.11ax Wi-Fi)
Bluetooth
Bluetooth Low Energy 5.4 (BLE)
USB
• 4x USB-A 3.0 supporting simultaneous 5 Gbps operation• 1x USB-C 2.0 supports USB 2.0 device
Ethernet
Gigabit Ethernet, with PoE+ support (requires separate PoE+ HAT)
Camera/Display
1x 4-lane MIPI camera/display transceivers, 1x 4-lane MIPI camera
Display Output
1x HDMI display, 1x OLDI display
Real-time Clock (RTC)
Supports an external button battery for power failure time retention. It is only populated on EVT samples.
Debug UART
1x 3-pin debug UART
Power
5 V/5 A DC power via USB-C, with Power Delivery support
Power Button
On/Off included
PCIe Interface
PCI-Express Gen3 x1 interface for fast peripherals (requires separate M.2 HAT or other adapter)
Expansion Connector
40-pin header
Fan connector
1x 4-pin fan connector, supports PWM speed control and speed measurement
Storage
microSD card slot, with support for high-speed SDR104 mode
Tag Connect
1x JTAG, 1x Tag Connect for PMIC NVM Programming
Downloads
Pinout
Documentation
Quick start
Software
This Mini Radar Robot is an exciting, programmable DIY kit that combines creativity, technology, and hands-on learning. The kit is perfect for tech enthusiasts, makers, and students eager to explore robotics and programming with Arduino or ESP8266.
Equipped with a 2.8" TFT screen, it offers real-time visual feedback by detecting objects with its ultrasonic sensors. Targets within 1 meter are shown as red dots, while objects up to 4.5 m are displayed in digital form on the screen.
Specifications
Main Control Unit
ESP8266 microcontroller + expansion board
Material
Constructed from high-quality acrylic sheet, ensuring durability and a sleek, modern look
Operating Voltage
5 V/2 A
Operating Temperature
−40 to 85°C
Dimensions
145 x 95 x 90 mm
Installation
No soldering and programming required
Included
1x Servo motor
1x Ultrasonic transducer module
1x Microcontroller board
1x 2.8-inch display module
1x USB power supply
1x USB cable
Acrylic mechanical elements
All necessary cables, screws, nuts, and spacers
The AxiDraw is a simple, modern, precise, and versatile pen plotter, capable of writing or drawing on almost any flat surface. It can write with your favorite fountain pens, permanent markers, and other writing implements to handle an endless variety of applications. Its unique design features a writing head that extends beyond the machine, making it possible to draw on objects bigger than the device itself.
Designed for high performance
AxiDraw V3 is an all-new version of the AxiDraw, redesigned from the ground up for high performance. It features smooth rolling wheels on custom aluminum extrusions, specially designed for high stiffness and light weight. Its sturdy, rigid construction gives it finer quality output and in most applications allows it to operate at up to twice the speed of the previous AxiDraw.
Designed for longevity
AxiDraw V3 features a new, highly repairable, field-serviceable design for a long life. While no parts on AxiDraw require regular replacement, this new machine is built with a screws not glue design approach throughout, where essentially every component can be replaced by the end user if it should ever become necessary.
Applications
The AxiDraw is an extremely versatile machine, designed to serve a wide variety of everyday and specialized drawing and writing needs. You can use it for almost any task that might typically be carried out with a handheld pen.
It allows you to use your computer to produce writing that appears to be handmade, complete with the unmistakable appearance of using a real pen (as opposed to an inkjet or laser printer) to address an envelope or sign one's name. And it does so with precision approaching that of a skilled artist, and -just as importantly- using an arm that never gets tired.
Formal invitations
Place cards for formal dining
Signing diplomas and other certificates
Addressing envelopes and boxes
Handwritten wine lists and menus at restaurants
Decorating lunch bags
Computer generated artwork
Technical drawing
Thank you notes and cards
Writing signatures
Specifications
Performance
Usable pen travel (inches): 11.81 × 8.58 inches (Just over US letter size)
Usable pen travel (millimeters): 300 × 218 mm (Just over A4 size)
Vertical pen travel: 0.7 inch (17 mm)
Maximum XY travel speed: 15 inches (38 cm) per second
Native XY resolution: 2032 steps per inch (80 steps per mm)
Reproducibility (XY): Typically better than 0.005 inches (0.1 mm) at low speeds.
Physical
Major structural components are machined and/or folded aluminum.
Holds pens and other drawing instruments up to 5/8" (16 mm) diameter.
Overall dimensions: Approximately 21.5 × 16 × 4 inches (55 × 40.5 × 10 cm)
Maximum height with cable guides: Approximately 8.5 inches (22 cm)
Footprint: Approximately 17 × 3.5 inches (43 × 9 cm)
Weight: 4.75 Lb (2.2 kg)
Software
Compatible with Mac, Windows, and Linux
Drive directly from within Inkscape, using the AxiDraw extension.
Comprehensive user guide available for download.
Driver software software free to download and open source
Internet access is required to download software.
Additionally, AxiDraw Merge software available at no cost to AxiDraw owners.
Programming interfaces
Note: Programming is not required to use the AxiDraw.
Stand-alone command line interface (CLI)
Available AxiDraw Python API
RESTful API available for full machine control, stand-alone or accessible by running RoboPaint in the background.
Simplified 'GET-only' API available as well, for use in programming environments (such as Scratch, Snap) that permit only retrieval of URLs.
Direct EiBotBoard (EBB) command protocol available for use in any programming environment that supports communication with USB-based serial ports.
Code that generates SVG files can also be used to (indirectly) control the machine.
Included
AxiDraw V3 writing and drawing machine (fully assembled, tested, and ready to use)
Multi-plug power supply with EU adapter
USB cable
Easel (Board and clips) for paper holding
Downloads
User Guide
This Nixie Clock DIY Kit offers a captivating journey into the world of retro electronics and contains everything you need to assemble a luminous vintage-style masterpiece. At its heart are 4x IN-12 Nixie Tubes, whose mesmerizing neon light displays the digits with a charm reminiscent of the golden age of technology.
Designed for enthusiasts who appreciate both artistic expression and technical challenges, this kit allows you to create something truly special. Each tube operates with an ignition voltage of approximately 170 V, generated by an internal boost circuit. Although this high voltage produces the characteristic glow effect, it also requires careful handling. For safety reasons, it is recommended to use a glass cover (not included) during testing and operation to shield the components and avoid contact with exposed wires.
The assembly is as rewarding as it is complicated and requires a careful approach and a variety of tools such as soldering iron, solder, pliers, tweezers, multimeter, knife and screwdriver.
This DIY kit contains all components including 4x IN-12 tubes and a remote control. Please note that the glass cover and base are not included.
Raspberry Pi Pico is a great solution for servo control. With the hardware PIO, the Pico can control the servos by hardware, without usage of times/ interrupts, and limit the usage of the MCU. Driving the six servos on this robotic arm takes very little MCU capacity, so the MCU can deal with other tasks easily. This 6 DOF robotic arm is a handy tool for teaching and learning robotics and Pico usage. There are five MG996s (four are needed in the assembly and one for backup) and three 25-kg servos (two needed in the assembly and one for backup). Note that for the servos the angle ranges from 0° to 180°. All the servos need to be preset to 90° (with logic HIGH 1.5 ms duty) before the assembly to avoid servo damage during movement. This product includes all the necessary items needed to create a robotic arm based on Pico and Micropython. Included 1x Raspberry Pi Pico 1x Raspberry Pi Pico Servo Driver 1x Set '6 DOF Robot Arm' 1x 5 V/5 A Power Supply 2x Backup Servo Downloads GitHub Wiki Assembly Guide Assembly Video
LoRa HAT, a low-power consumption data transmission module, comes with an onboard CH340 USB to UART converter, Voltage Level Translator (74HC125V), E22-900T22S and E22-400T22S SMA antenna connector, IPEX antenna connector, LoRa Spread Spectrum Modulation technology with auto multi-level repeating. Features Onboard 1.14' LCD Voltage Level Translator (74HC125V) Communication range up to 5 km Supports auto repeating to transmit longer Low Power Consumption Highly Secured For Evaluating signal quality with the RSSI or 'Received Signal Strength Indicator' Wireless parameter configuration support Fixed-point transmission support SMA and IPEX Antenna Connector USB to LoRa and Pico to LoRa Communication via UART Comes with development resources and manual LED Indicators: RXD/TXD: UART RX/TX indicator AUX: auxiliary indicator PWR: power indicator Serial/USB selection jumpers: A: USB TO UART to control the LoRa module through USB B: control the LoRa module through Raspberry Pi Pico Data/Command mode selection jumpers: Short M0, short M1: Transmission mode Short M0, open M1: Configuration mode Open M0, short M1: WOR mode Open M0, open M1: Deep sleep mode Specifications Frequency: 850.125~930.125 MHz / 410~493 MHz (Programmable Range) Power: 22dBm Distance: Up to 5 km Interface: UART Communication Serial Port Module: E22-900T22S1B / E22-400T22S Voltage Level Translator: 74HC125V Included 1x LoRa Module
1x Antenna Note: Raspberry Pi Board is not included. Downloads GitHub Wiki
This category offers a wide spectrum of platforms to choose from. They all have different features and you can choose the platform that best suits your needs or project.