Comparison Websites DE

15 products


  • Arduino Uno SMD Rev3

    Arduino Arduino Uno Rev3 SMD

    1 review

    The Uno differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Additional features coming with the R3 version are: ATmega16U2 instead of 8U2 as a USB-to-Serial converter. 1.0 pinout: added SDA and SCL pins for TWI communication placed near to the AREF pin and two other new pins placed near to the RESET pin, the IOREF that allow the shields to adapt to the voltage provided from the board and the second one is a not connected pin, that is reserved for future purposes. stronger RESET circuit. Microcontroller ATmega328P Operating Voltage 5 V Input Voltage 7 V - 12 V Digital I/O Pins 14 PWM Pins 6 Analog Input Pins 8 DC Current per I/O Pin 20 mA DC Current for 3.3 V Pin 50 mA Flash Memory 32 KB (ATmega328P) of which 0.5 KB used by bootloader SRAM 2 KB EEPROM 1 KB Clock Speed 16 MHz LED_Builtin 13 Length 68.6 mm Width 53.4 mm Weight 25 g

    € 22,95

    Members identical

  • Arduino Uno Rev3

    Arduino Arduino Uno Rev3

    Arduino Uno is an open-source microcontroller board based on the ATmega328P. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. You can tinker with your Uno without worring too much about doing something wrong, worst case scenario you can replace the chip for a few dollars and start over again. 'Uno' means one in Italian and was chosen to mark the release of Arduino Software (IDE) 1.0. The Uno board and version 1.0 of Arduino Software (IDE) were the reference versions of Arduino, now evolved to newer releases. The Uno board is the first in a series of USB Arduino boards, and the reference model for the Arduino platform; for an extensive list of current, past or outdated boards see the Arduino index of boards. Specifications Microcontroller ATmega328P Operating Voltage 5 V Input Voltage (recommended) 7-12 V Input Voltage (limit) 6-20 V Digital I/O Pins 14 (of which 6 provide PWM output) PWM Digital I/O Pins 6 Analog Input Pins 6 DC Current per I/O Pin 20 mA DC Current for 3.3 V Pin 50 mA Flash Memory 32 KB (ATmega328P) of which 0.5 KB used by bootloader SRAM 2 KB (ATmega328P) EEPROM 1 KB (ATmega328P) Clock Speed 16 MHz LED_BUILTIN 13 Dimensions 68.6 x 53.4 mm Weight 25 g

    € 24,95

    Members identical

  • Arduino Uno R4 WiFi

    Arduino Arduino Uno R4 WiFi

    The Arduino Uno R4 is powered by the Renesas RA4M1 32-bit ARM Cortex-M4 processor, providing a significant boost in processing power, memory, and functionality. The WiFi version comes with an ESP32-S3 WiFi module in addition to the RA4M1, expanding creative opportunities for makers and engineers. The Uno R4 Minima is an affordable option for those who don't need the additional features. The Arduino Uno R4 runs at 48 MHz, which provides a 3x increase over the popular Uno R3. Additionally, SRAM has been upgraded from 2 kB to 32 kB, and flash memory from 32 kB to 256 kB to support more complex projects. Responding to community feedback, the USB port is now USB-C, and the maximum power supply voltage has been raised to 24 V with an enhanced thermal design. The board includes a CAN bus and an SPI port, enabling users to reduce wiring and perform parallel tasks by connecting multiple shields. A 12-bit analog DAC is also provided on the board. The Arduino Uno R4 comes in 2 versions (Minima and WiFi) and offers the following new features compared to the Uno R3: Arduino Uno R4 Minima Arduino Uno R4 WiFi USB-C connector USB-C connector RA4M1 from Renesas (Cortex-M4) RA4M1 from Renesas (Cortex-M4) HID device (emulate a mouse or a keyboard) HID device (emulate a mouse or a keyboard) Improved power section (up to 24 V through VIN) Improved power section (up to 24 V through VIN) CAN bus CAN bus DAC (12 bits) DAC (12 bits) Op amp Op amp WiFi/Bluetooth LE Fully-addressable LED matrix (12x8) Qwiic I²C connector RTC (with support for a buffer battery) Runtime errors diagnostics Model Comparison Uno R3 Uno R4 Minima Uno R4 WiFi Microcontroller Microchip ATmega328P (8-bit AVR RISC) Renesas RA4M1 (32-bit ARM Cortex-M4) Renesas RA4M1 (32-bit ARM Cortex-M4) Operating Voltage 5 V 5 V 5 V Input Voltage 6-20 V 6-24 V 6-24 V Digital I/O Pins 14 14 14 PWM Digital I/O Pins 6 6 6 Analog Input Pins 6 6 6 DC Current per I/O Pin 20 mA 8 mA 8 mA Clock Speed 16 MHz 48 Mhz 48 Mhz Flash Memory 32 KB 256 KB 256 KB SRAM 2 KB 32 KB 32 KB USB USB-B USB-C USB-C DAC (12 bit) – 1 1 SPI 1 2 2 I²C 1 2 2 CAN – 1 1 Op amp – 1 1 SWD – 1 1 RTC – – 1 Qwiic I²C connector – – 1 LED Matrix – – 12x8 (96 red LEDs) LED_BUILTIN 13 13 13 Dimensions 68.6 x 53.4 mm 68.9 x 53.4 mm 68.9 x 53.4 mm Downloads Datasheet Schematics

    € 29,95

    Members identical

  • Arduino Uno R4 Minima

    Arduino Arduino Uno R4 Minima

    The Arduino Uno R4 is powered by the Renesas RA4M1 32-bit ARM Cortex-M4 processor, providing a significant boost in processing power, memory, and functionality. The WiFi version comes with an ESP32-S3 WiFi module in addition to the RA4M1, expanding creative opportunities for makers and engineers. The Uno R4 Minima is an affordable option for those who don't need the additional features. The Arduino Uno R4 runs at 48 MHz, which provides a 3x increase over the popular Uno R3. Additionally, SRAM has been upgraded from 2 kB to 32 kB, and flash memory from 32 kB to 256 kB to support more complex projects. Responding to community feedback, the USB port is now USB-C, and the maximum power supply voltage has been raised to 24 V with an enhanced thermal design. The board includes a CAN bus and an SPI port, enabling users to reduce wiring and perform parallel tasks by connecting multiple shields. A 12-bit analog DAC is also provided on the board. The Arduino Uno R4 comes in 2 versions (Minima and WiFi) and offers the following new features compared to the Uno R3: Arduino Uno R4 Minima Arduino Uno R4 WiFi USB-C connector USB-C connector RA4M1 from Renesas (Cortex-M4) RA4M1 from Renesas (Cortex-M4) HID device (emulate a mouse or a keyboard) HID device (emulate a mouse or a keyboard) Improved power section (up to 24 V through VIN) Improved power section (up to 24 V through VIN) CAN bus CAN bus DAC (12 bits) DAC (12 bits) Op amp Op amp WiFi/Bluetooth LE Fully-addressable LED matrix (12x8) Qwiic I²C connector RTC (with support for a buffer battery) Runtime errors diagnostics Model Comparison Uno R3 Uno R4 Minima Uno R4 WiFi Microcontroller Microchip ATmega328P (8-bit AVR RISC) Renesas RA4M1 (32-bit ARM Cortex-M4) Renesas RA4M1 (32-bit ARM Cortex-M4) Operating Voltage 5 V 5 V 5 V Input Voltage 6-20 V 6-24 V 6-24 V Digital I/O Pins 14 14 14 PWM Digital I/O Pins 6 6 6 Analog Input Pins 6 6 6 DC Current per I/O Pin 20 mA 8 mA 8 mA Clock Speed 16 MHz 48 Mhz 48 Mhz Flash Memory 32 KB 256 KB 256 KB SRAM 2 KB 32 KB 32 KB USB USB-B USB-C USB-C DAC (12 bit) – 1 1 SPI 1 2 2 I²C 1 2 2 CAN – 1 1 Op amp – 1 1 SWD – 1 1 RTC – – 1 Qwiic I²C connector – – 1 LED Matrix – – 12x8 (96 red LEDs) LED_BUILTIN 13 13 13 Dimensions 68.6 x 53.4 mm 68.9 x 53.4 mm 68.9 x 53.4 mm Downloads Datasheet Schematics

    € 19,95

    Members identical

  • Arduino Uno Mini (Limited Editie)

    Arduino Arduino Uno Mini (Limited Edition)

    Celebrating the Arduino Uno with a miniaturized limited edition The world's favorite development board has gone mini. Everything in this version of the Arduino Uno is unique. Black and gold, finishing, elegant design and packaging, all delivered to the highest standard. A little jewel to celebrate the Arduino community and what we’ve been doing together for all these years. Each item is unique and numbered on the PCB, and includes a hand-signed letter from the founders. It’s a limited edition, so get while it’s in stock! For serious Arduino Uno lovers Arduino Uno Mini Limited Edition is a collector’s item for serious Arduino Lovers: hobbyists, students, makers, reimaginers, dreamers, hopers, fans, engineers, designers, questioners, cake-makers, problem-solvers, puzzlers, gamers, debaters, developers, entrepreneurs, architects, future-shapers, musicians, scientists... 10 million projects based on (official) Uno boards that have contributed to this incredible story. Specifications The Arduino Uno Mini Limited Edition is a microcontroller board based on the ATmega328P. It has 14 digital inputs/outputs (six of which can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator, a USB-C connector, and a reset button. Contains everything needed to support the microcontroller. Simply connect it to a computer with a USB cable, use a power adapter, or connect a battery to get started. Microcontroller ATmega328P USB connector USB-C Built-in LED Pins 13 Digital I/O Pins 14 Analog Input Pins 6 PWM Pins 6 UART Yes I²C Yes SPI Yes Circuit operating voltage 5 V Input Voltage (limit) 6-12 V Battery connector None DC current per I/O Pin 20 mA DC current for 3.3 V Pin 50 mA Main processor ATmega328P (16 MHz) USB-serial processor ATmega16U2 (16 MHz) Memory ATmega328P 2 KB SRAM, 32 KB Flash, 1 KB EEPROM Weight 8.05 g Dimensions 26.70 x 34.20 mm Downloads Datasheet

    € 54,95

    Members € 49,46

  •  -24% Arduino Studenten Kit

    Arduino Arduino Student Kit

    The Arduino Student Kit is a hands-on, step-by-step remote learning tool for ages 11+: get started with the basics of electronics, programming, and coding at home. No prior knowledge or experience is necessary as the kit guides you through step by step. Educators can teach their class remotely using the kits, and parents can use the kit as a homeschool tool for their child to learn at their own pace. Everyone will gain confidence in programming and electronics with guided lessons and open experimentation. Learn the basics of programming, coding and electronics including current, voltage, and digital logic. No prior knowledge or experience is necessary as the kit guides you through step by step. You’ll get all the hardware and software you need for one person, making it ideal to use for remote teaching, homeschooling, and for self-learning. There are step-by-step lessons, exercises, and for a complete and in-depth experience, there’s also extra content including invention spotlights, concepts, and interesting facts about electronics, technology, and programming. Lessons and projects can be paced according to individual abilities, allowing them to learn from home at their own level. The kit can also be integrated into different subjects such as physics, chemistry, and even history. In fact, there’s enough content for an entire semester. How educators can use the kit for remote teaching The online platform contains all the content you need to teach remotely: exclusive learning guidance content, tips for remote learning, nine 90-minute lessons, and two open-ended projects. Each lesson builds off the previous one, providing a further opportunity to apply the skills and concepts students have already learned. They also get a logbook to complete as they work through the lessons. The beginning of each lesson provides an overview, estimated completion times, and learning objectives. Throughout each lesson, there are tips and information that will help to make the learning experience easier. Key answers and extension ideas are also provided. How the kit helps parents homeschool their children This is your hands-on, step-by-step remote learning tool that will help your child learn the basics of programming, coding, and electronics at home. As a parent, you don’t need any prior knowledge or experience as you are guided through step-by-step. The kit is linked directly into the curriculum so you can be confident that your children are learning what they should be, and it provides the opportunity for them to become confident in programming and electronics. You’ll also be helping them learn vital skills such as critical thinking and problem-solving. Self-learning with the Arduino Student Kit Students can use this kit to teach themselves the basics of electronics, programming, and coding. As all the lessons follow step-by-step instructions, it’s easy for them to work their way through and learn on their own. They can work at their own pace, have fun with all the real-world projects, and increase their confidence as they go. They don’t need any previous knowledge as everything is clearly explained, coding is pre-written, and there’s a vocabulary of concepts to refer to. The Arduino Student Kit comes with several parts and components that will be used to build circuits while completing the lessons and projects throughout the course. Included in the kit Access code to exclusive online content including learning guidance notes, step-by-step lessons and extra materials such as resources, invention spotlights and a digital logbook with solutions. 1x Arduino Uno 1x USB cable 1x Board mounting base 1x Multimeter 1x 9 V battery snap 1x 9 V battery 20x LEDs (5x red, 5x green, 5x yellow & 5x blue ) 5x Resistors 560 Ω 5x Resistors 220 Ω 1x Breadboard 400 points 1x Resistor 1 kΩ 1x Resistor 10 kΩ 1x Small Servo motor 2x Potentiometers 10 kΩ 2x Knob potentiometers 2x Capacitors 100 uF Solid core jumper wires 5x Pushbuttons 1x Phototransistor 2x Resistors 4.7 kΩ 1x Jumper wire black 1x Jumper wire red 1x Temperature sensor 1x Piezo 1x Jumper wire female to male red 1x Jumper wire female to male black 3x Nuts and Bolts

    € 104,95€ 79,95

    Members identical

  • Arduino Nano RP2040 Connect met Headers

    Arduino Arduino Nano RP2040 Connect with Headers

    The Arduino Nano RP2040 Connect is an RP2040-based Arduino board equipped with Wi-Fi (802.11b/g/n) and Bluetooth 4.2. Besides wireless connectivity the board comes with a microphone for sound and voice activation and a six-axis smart motion sensor with AI capabilities. An RGB LED is available too. 22 GPIO ports (20 with PWM support and eight analogue inputs) let the user control e.g. relays, motors and LEDs and read switches and other sensors. Program memory is plentiful with 16 MB of flash memory, more than enough room for storing many webpages or other data. Technical Specifications Microcontroller Raspberry Pi RP2040 USB connector Micro USB Pins Built-in LED pins 13 Digital I/O pins 20 Analog Input pins 8 PWM pins 20 (Except A6, A7) External interrupts 20 (Except A6, A7) Connectivity Wi-Fi Nina W102 uBlox module Bluetooth Nina W102 uBlox module Secure element ATECC608A-MAHDA-T Crypto IC Sensors IMU LSM6DSOXTR (6-axis) Microphone MP34DT05 Communication UART Yes I²C Yes SPI Yes Power Circuit operating voltage 3.3 V Input Voltage (VIN) 5-21 V DC Current per I/O pin 4 mA Clock speed Processor 133 MHz Memory AT25SF128A-MHB-T 16 MB Flash IC Nina W102 uBlox module 448 KB ROM, 520 KB SRAM, 16 MB Flash Dimensions 45 x 18 mm Weight 6 g Downloads Schematics Pinout Datasheet

    € 29,95

    Members € 26,96

  • Arduino Nano ESP32 with Headers

    Arduino Arduino Nano ESP32 with Headers

    1 review

    The Arduino Nano ESP32 (with and without headers) is a Nano form factor board based on the ESP32-S3 (embedded in the NORA-W106-10B from u-blox). This is the first Arduino board to be based fully on an ESP32, and features Wi-Fi, Bluetooth LE, debugging via native USB in the Arduino IDE as well as low power. The Nano ESP32 is compatible with the Arduino IoT Cloud, and has support for MicroPython. It is an ideal board for getting started with IoT development. Features Tiny footprint: Designed with the well-known Nano form factor in mind, this board's compact size makes it perfect for embedding in standalone projects. Wi-Fi and Bluetooth: Harness the power of the ESP32-S3 microcontroller, well-known in the IoT realm, with full Arduino support for wireless and Bluetooth connectivity. Arduino and MicroPython support: Seamlessly switch between Arduino and MicroPython programming with a few simple steps. Arduino IoT Cloud compatible: Quickly and easily create IoT projects with just a few lines of code. The setup takes care of security, allowing you to monitor and control your project from anywhere using the Arduino IoT Cloud app. HID support: Simulate human interface devices, such as keyboards or mice, over USB, opening up new possibilities for interacting with your computer. Specifications Microcontroller u-blox NORA-W106 (ESP32-S3) USB connector USB-C Pins Built-in LED pins 13 Built-in RGB LED pins 14-16 Digital I/O pins 14 Analog input pins 8 PWM pins 5 External interrupts All digital pins Connectivity Wi-Fi u-blox NORA-W106 (ESP32-S3) Bluetooth u-blox NORA-W106 (ESP32-S3) Communication UART 2x I²C 1x, A4 (SDA), A5 (SCL) SPI D11 (COPI), D12 (CIPO), D13 (SCK). Use any GPIO for Chip Select (CS) Power I/O Voltage 3.3 V Input voltage (nominal) 6-21 V Source Current per I/O pin 40 mA Sink Current per I/O pin 28 mA Clock speed Processor Up to 240 MHz Memory ROM 384 kB SRAM 512 kB External Flash 128 Mbit (16 MB) Dimensions 18 x 45 mm Downloads Datasheet Schematics

    € 24,95

    Members € 22,46

  • Arduino Nano ESP32

    Arduino Arduino Nano ESP32

    The Arduino Nano ESP32 (with and without headers) is a Nano form factor board based on the ESP32-S3 (embedded in the NORA-W106-10B from u-blox). This is the first Arduino board to be based fully on an ESP32, and features Wi-Fi, Bluetooth LE, debugging via native USB in the Arduino IDE as well as low power. The Nano ESP32 is compatible with the Arduino IoT Cloud, and has support for MicroPython. It is an ideal board for getting started with IoT development. Features Tiny footprint: Designed with the well-known Nano form factor in mind, this board's compact size makes it perfect for embedding in standalone projects. Wi-Fi and Bluetooth: Harness the power of the ESP32-S3 microcontroller, well-known in the IoT realm, with full Arduino support for wireless and Bluetooth connectivity. Arduino and MicroPython support: Seamlessly switch between Arduino and MicroPython programming with a few simple steps. Arduino IoT Cloud compatible: Quickly and easily create IoT projects with just a few lines of code. The setup takes care of security, allowing you to monitor and control your project from anywhere using the Arduino IoT Cloud app. HID support: Simulate human interface devices, such as keyboards or mice, over USB, opening up new possibilities for interacting with your computer. Specifications Microcontroller u-blox NORA-W106 (ESP32-S3) USB connector USB-C Pins Built-in LED pins 13 Built-in RGB LED pins 14-16 Digital I/O pins 14 Analog input pins 8 PWM pins 5 External interrupts All digital pins Connectivity Wi-Fi u-blox NORA-W106 (ESP32-S3) Bluetooth u-blox NORA-W106 (ESP32-S3) Communication UART 2x I²C 1x, A4 (SDA), A5 (SCL) SPI D11 (COPI), D12 (CIPO), D13 (SCK). Use any GPIO for Chip Select (CS) Power I/O Voltage 3.3 V Input voltage (nominal) 6-21 V Source Current per I/O pin 40 mA Sink Current per I/O pin 28 mA Clock speed Processor Up to 240 MHz Memory ROM 384 kB SRAM 512 kB External Flash 128 Mbit (16 MB) Dimensions 18 x 45 mm Downloads Datasheet Schematics

    € 23,95

    Members € 21,56

  • Arduino Nano 33 BLE Rev2 with Headers

    Arduino Arduino Nano 33 BLE Rev2 with Headers

    The Arduino Nano 33 BLE Rev2 stands at the forefront of innovation, leveraging the advanced capabilities of the nRF52840 microcontroller. This 32-bit Arm Cortex-M4 CPU, operating at an impressive 64 MHz, empowers developers for a wide range of projects. The added compatibility with MicroPython enhances the board's flexibility, making it accessible to a broader community of developers. The standout feature of this development board is its Bluetooth Low Energy (Bluetooth LE) capability, enabling effortless communication with other Bluetooth LE-enabled devices. This opens up a realm of possibilities for creators, allowing them to seamlessly share data and integrate their projects with a wide array of connected technologies. Designed with versatility in mind, the Nano 33 BLE Rev2 is equipped with a built-in 9-axis Inertial Measurement Unit (IMU). This IMU is a game-changer, offering precise measurements of position, direction, and acceleration. Whether you're developing wearables or devices that demand real-time motion tracking, the onboard IMU ensures unparalleled accuracy and reliability. In essence, the Nano 33 BLE Rev2 strikes the perfect balance between size and features, making it the ultimate choice for crafting wearable devices seamlessly connected to your smartphone. Whether you're a seasoned developer or a hobbyist embarking on a new adventure in connected technology, this development board opens up a world of possibilities for innovation and creativity. Elevate your projects with the power and flexibility of the Nano 33 BLE Rev2. Specifications Microcontroller nRF52840 USB connector Micro USB Pins Built-in LED Pins 13 Digital I/O Pins 14 Analog Input Pins 8 PWM Pins All digital pins (4 at once) External interrupts All digital pins Connectivity Bluetooth u-blox NINA-B306 Sensors IMU BMI270 (3-axis accelerometer + 3-axis gyroscope) + BMM150 (3-axis Magnetometer) Communication UART RX/TX I²C A4 (SDA), A5 (SCL) SPI D11 (COPI), D12 (CIPO), D13 (SCK). Use any GPIO for Chip Select (CS) Power I/O Voltage 3.3 V Input Voltage (nominal) 5-18 V DC Current per I/O Pin 10 mA Clock Speed Processor nRF52840 64 MHz Memory nRF52840 256 KB SRAM, 1 MB flash Dimensions 18 x 45 mm Downloads Datasheet Schematics

    € 29,95

    Members € 26,96

  • Arduino Nano

    Arduino Arduino Nano

    The Arduino Nano is a small, complete, and breadboard-friendly board based on the ATmega328 (Arduino Nano 3.x). It has more or less the same functionality of the Arduino Duemilanove but in a different package. It lacks only a DC power jack and works with a Mini-B USB cable instead of a standard one. The Nano was designed and is being produced by Gravitech. Specifications Microcontroller ATmega328 Operating Voltage (logic level) 5 V Input Voltage (recommended) 7-12 V Input Voltage (limits) 6-20 V Digital I/O Pins 14 (of which 6 provide PWM output) Analog Input Pins 8 DC Current per I/O Pin 40 mA Flash Memory 16 KB (ATmega168) or 32 KB (ATmega328) of which 2 KB used by bootloader SRAM 1 KB (ATmega168) or 2 KB (ATmega328) EEPROM 512 bytes (ATmega168) or 1 KB (ATmega328) Clock Speed 16 MHz Dimensions 0.73 x 1.70' (18 x 45 mm) Power The Arduino Nano can be powered via the Mini-B USB connection, 6-20 V unregulated external power supply (pin 30), or 5 V regulated external power supply (pin 27). The power source is automatically selected to the highest voltage source. Memory The ATmega168 has 16 KB of flash memory for storing code (of which 2 KB is used for the bootloader), 1 KB of SRAM and 512 bytes of EEPROM The ATmega328 has 32 KB of flash memory for storing code, (also with 2 KB used for the bootloader), 2 KB of SRAM and 1 KB of EEPROM. Input and Output Each of the 14 digital pins on the Nano can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 V. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. Communication The Arduino Nano has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega168 and ATmega328 provide UART TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An FTDI FT232RL on the board channels this serial communication over USB and the FTDI drivers (included with the Arduino software) provide a virtual com port to software on the computer. The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the FTDI chip and USB connection to the computer (but not for serial communication on pins 0 and 1). A SoftwareSerial library allows for serial communication on any of the Nano's digital pins. Programming The Arduino Nano can be programmed with the Arduino software (download). The ATmega168 or ATmega328 on the Arduino Nano comes with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It communicates using the original STK500 protocol (reference, C header files). You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header using Arduino ISP or similar; see these instructions for details. Automatic (Software) Reset Rather than requiring a physical press of the reset button before an upload, the Arduino Nano is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of theFT232RL is connected to the reset line of the ATmega168 or ATmega328 via a 100 nF capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload.

    € 22,95

    Members € 20,66

  • Arduino Mega 2560 Rev3

    Arduino Arduino Mega 2560 Rev3

    It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with an AC-to-DC adapter or battery to get started. The Mega 2560 board is compatible with most shields designed for the Uno and the former boards Duemilanove or Diecimila. Operating Voltage 5 V Input Voltage 7 V - 12 V Digital I/O 54 Analog Input Pins 16 DC Current per I/O Pin 20 mA DC Current for 3.3 V Pin 50 mA Flash Memory 256 KB of which 8 KB used by the bootloader SRAM 8 KB EEPROM 4 KB Clock Speed 16MHz LED_Builtin 13 Length 101.52 mm Width 53.3 mm Weight 37 g For more information, check out the Getting Started Guide from Arduino.

    € 44,95

    Members € 40,46

  • Arduino Giga R1 WiFi

    Arduino Arduino Giga R1 WiFi

    1 review

    The Arduino Giga R1 WiFi brings the power of the STM32H7 to the same form factor as the popular Mega and Due, being the first Mega board to include onboard Wi-Fi and Bluetooth connectivity. The board provides 76 digital inputs/outputs (12 with PWM capability), 14 analog inputs and 2 analog outputs (DAC) all easily accessible via pin headers. The STM32 microprocessor with dual-core Cortex-M7 and Cortex-M4, together with onboard memory and audio jack enables you to perform machine learning and signal processing on the edge. Microcontroller (STM32H747XI) This dual core 32-bits microcontroller allows you have two brain talking to each other (a Cortex-M7 at 480 MHz and a Cortex-M4 at 240 MHz) you can even run micropython in one and Arduino in the other. Wireless communication (Murata 1DX) Whether you prefer Wi-Fi or Bluetooth, the Giga R1 WiFi got you covered. You can even quickly connect to the Arduino IoT Cloud and keep track of your project remotely. And if you are concerned about the security of the communication, the ATECC608A keeps everything under control. Hardware ports and communication Following the legacy of the Arduino Mega and the Arduino Due, the Giga R1 WiFi has 4x UARTs (hardware serial ports), 3x I²C ports (1 more than its predecessors), 2x SPI ports (1 more than its predecessors), 1x FDCAN. GPIOs and extra pins By keeping the same form factor of the Mega and the Due, you can easily adapt your custom made shields to the Giga R1 WiFi (remember this board works at 3.3 V though!). Also, additional headers have been added so that the total number of GPIO pins is now 76, and two new pins have been added: a VRTC so you can connect a battery to keep the RTC running while the board is off and an OFF pin so you can shut down the board. Connectors The Giga R1 WiFi has extra connectors on board which will facilitate the creation of your project without any extra hardware. This board has: USB-A connector suitable for hosting USB sticks, other mass storage devices and HID devices such as keyboard or mouse. 3.5 mm input-output jack connected to DAC0, DAC1 and A7. USB-C to power and program the board, as well as simulate an HID device such as mouse or keyboard. Jtag connector, 2x5 1.27 mm. 20-pin Arducam camera connector. Higher voltage support: In comparison with its predecessors that support up to 12 V, the Giga R1 WiFi can handle a range of 6 to 24 V. Specifications Microcontroller STM32H747XI dual Cortex-M7+M4 32-bit low power ARM MCU (datasheet) Radio Module Murata 1DX dual WiFi 802.11b/g/n 65 Mbps and Bluetooth (datasheet) Secure Element ATECC608A-MAHDA-T (datasheet) USB USB-C Programming Port / HID USB-A Host (enable with PA_15) Pins Digital I/O pins 76 Analog input pins 12 DAC 2 (DAC0/DAC1) PWM pins 12 Misc VRT & OFF pin Communication UART 4x I²C 3x SPI 2x CAN Yes (requires an external transceiver) Connectors Camera I²C + D54-D67 Display D1N, D0N, D1P, D0P, CKN, CKP + D68-D75 Audio Jack DAC0, DAC1, A7 Power Circuit operating voltage 3.3 V Input voltage (VIN) 6-24 V DC Current per I/O Pin 8 mA Clock Speed Cortex-M7 480 MHz Cortex-M4 240 MHz Memory STM32H747XI 2 MB Flash, 1 MB RAM Dimensions 53 x 101 mm Downloads Datasheet Schematics Pinout

    € 89,95

    Members € 80,96

  • Arduino Braccio ++ RP2040 powered Robot Arm

    Arduino Arduino Braccio ++ RP2040 powered Robot Arm

    Out of stock

    The next evolution of the Tinkerkit Braccio robot, Arduino Braccio ++ is a robotic arm designed solely for higher education, including engineering schools and university institutes of technology – or even advanced high school and college students studying the sciences, industrial science or technology. Arduino Braccio ++ is fully optimized and can be assembled in several ways for multiple tasks, such as moving objects, mounting a camera and tracking your movements, or attaching a solar panel and tracking the movement of the sun. Its uses are almost limitless. Students will learn real life applications of physical concepts through lifting, placing, and rotating an item. These concepts include motions, forces, torque, gear ratios, stability, and weight of payload. Arduino Braccio ++ offers a multitude of expansive possibilities from the very outset, including a new Braccio Carrier with LCD screen, new RS485 servo motors, and a totally enhanced experience. The main material used to build the Arduino Braccio ++ structure is a recycled and eco-friendly plastic called EcoAllene, a plastic material obtained from recycled polylaminate found in food cartons, meaning that all the plastic parts of Arduino Braccio ++ are sustainable and 100% recyclable. Downloads Braccio Carrier

    Out of stock

    € 499,00

    Members € 449,10

  • Arduino Alvik

    Arduino Arduino Alvik

    Arduino Alvik is a powerful and versatile robot specifically designed for programming and robotics education. Powered by the Arduino Nano ESP32, Arduino Alvik offers diverse learning paths through different programming languages, including MicroPython, Arduino C, and block-based coding, enabling different possibilities to explore robotics, IoT and AI. Arduino Alvik simplifies coding and complex robot projects, enabling users of all levels to immerse themselves in the exciting world of programming and robotics. It’s also a cross-discipline tool that bridges the gap between education and the future of robotics with CSTA and NGSS-Aligned free courses. This innovative and versatile robot makes learning and creating more accessible and fun than ever before. Features Powered by the versatile Nano ESP32, Alvik streamlines the learning curve in robotics with its comprehensive programming suite that includes MicroPython and Arduino language. Designed to accommodate users of all skill levels, Alvik soon plans to introduce block-based coding, further enhancing accessibility for younger students and providing an engaging entry point into robotics design. Alvik’s Time of Flight, RGB color and line-following array sensors, along with its 6-axis gyroscope and accelerometer, allow users to tackle a range of innovative, real-world projects. From an obstacle avoidance robot to a smart warehouse automation robot car, the possibilities are endless! Alvik comes equipped with LEGO Technic connectors, allowing users to personalize the robot and expand its capabilities. Additionally, it features M3 screw connectors for custom 3D or laser-cutter designs. The Servo, I²C Grove, and I²C Qwiic connectors allow users to expand Alvik’s potential and take robotics projects to a whole new level. Add motors for controlling movement and robotic arms, or integrate extra sensors for data collection and analysis. Specifiations Alvik main controller Arduino Nano ESP32: 8 MB of RAM u-blox NORA-W106 (ESP32-S3) Processor up to 240 MHz ROM 384 kB + SRAM 512 kB 16 MB External FLASH Alvik on-board Core STM32 Arm Cortex-M4 32 Bit Power supply Nano ESP32 USB-C rechargeable and replaceable 18650 Li-Ion battery (included) Programming language MicroPython, Arduino & block-based programming Connectivity Wi-Fi, Bluetooth LE Inputs Time of Flight Distance Sensor (up to 350 cm)RGB Color Sensor6-axis Gyroscope-Accelerometer3x Line follower Array7x Touchable Buttons Outputs 2x RGB LEDs6 V Motors (No load speed 96 rpm, No load current 70 mA) Extensions 4x LEGO Technic connectors8x M3 screw connectorsServo motorI²C GroveI²C Qwiic Downloads Datasheet Documentation

    € 169,95

    Members € 152,96

Login

Forgot password?

Don't have an account yet?
Create an account