Radio | SDR

4 products


  • SDR Hands-on Book (E-book)

    Elektor Digital SDR Hands-on Book (E-book)

    The short-wave technique has a very particular appeal: It can easily bridge long distances. By reflecting short-wave signals off the conductive layers of the ionosphere, they can be received in places beyond the horizon and therefore can reach anywhere on earth. Although technology is striving for ever higher frequencies, and radio is usually listened to on FM, DAB+, satellite or the Internet, modern means of transmission require extensive infrastructure and are extremely vulnerable. In the event of a global power outage, there is nothing more important than the short-wave. Amateur radio is not only a hobby, it’s also an emergency radio system! Elektor’s SDR-Shield (SKU 18515) is a versatile shortwave receiver up to 30 MHz. Using an Arduino and the appropriate software, radio stations, morse signals, SSB stations, and digital signals can be received. In this book, successful author and enthusiastic radio amateur, Burkhard Kainka describes the modern practice of software defined radio using the Elektor SDR Shield. He not only imparts a theoretical background but also explains numerous open source software tools.

    € 24,95

    Members € 19,96

  • Raspberry Pi for Radio Amateurs (E-book)

    Elektor Digital Raspberry Pi for Radio Amateurs (E-book)

    Program and build RPi-based ham station utilities, tools, and instruments Although much classical HF and mobile equipment is still in use by many amateurs, the use of computers and digital techniques has now become very popular among amateur radio operators. Nowadays, anyone can purchase a Raspberry Pi computer and run almost all amateur radio software on the ‘RPi’, which is slightly bigger than the size of a credit card. The RTL-SDR devices have become very popular among hams because of their very low cost and rich features. A basic system may consist of a USB-based RTL-SDR device (dongle) with a suitable antenna, an RPi computer, a USB-based external audio input-output adapter, and software installed on the Pi. With such a simple setup it is feasible to receive signals from around 24 MHz to over 1.7 GHz. With the addition of a low-cost upconverter device, an RTL-SDR can easily and effectively receive the HF bands. This book is aimed at amateur radio enthusiasts, electronic engineering students, and anyone interested in learning to use the Raspberry Pi to build electronic projects. The book is suitable for the full range of beginners through old hands at ham radio. Step-by-step installation of the operating system is described with many details on the commonly used Linux commands. Some knowledge of the Python programming language is required to understand and modify the projects given in the book. Example projects developed in the book include a station clock, waveform generation, transistor amplifier design, active filter design, Morse code exerciser, frequency counter, RF meter, and more. The block diagram, circuit diagram, and complete Python program listings are given for each project, including the full description of the projects. Besides wide coverage of RTL-SDR for amateur radio, the book also summarizes the installation and use instructions of the following ham radio programs and software tools you can run on your Raspberry Pi: TWCLOCK, Klog, Gpredict, FLDIGI, DIRE WOLF, xcwcp, QSSTV, LinPsk, Ham Clock, CHIRP, xastir, and CQRLOG.

    € 29,95

    Members € 23,96

  • SDR Hands-on Boek

    Elektor Publishing SDR Hands-on Book

    The short-wave technique has a very particular appeal: It can easily bridge long distances. By reflecting short-wave signals off the conductive layers of the ionosphere, they can be received in places beyond the horizon and therefore can reach anywhere on earth. Although technology is striving for ever higher frequencies, and radio is usually listened to on FM, DAB+, satellite or the Internet, modern means of transmission require extensive infrastructure and are extremely vulnerable. In the event of a global power outage, there is nothing more important than the short-wave. Amateur radio is not only a hobby, it’s also an emergency radio system! Elektor’s SDR-Shield (SKU 18515) is a versatile shortwave receiver up to 30 MHz. Using an Arduino and the appropriate software, radio stations, morse signals, SSB stations, and digital signals can be received. In this book, successful author and enthusiastic radio amateur, Burkhard Kainka describes the modern practice of software defined radio using the Elektor SDR Shield. He not only imparts a theoretical background but also explains numerous open source software tools.

    € 29,95

    Members € 26,96

  •  -16% Raspberry Pi 5 RTL-SDR V4 (Bundle)

    Elektor Bundles Raspberry Pi 5 RTL-SDR V4 (Bundle)

    Program and build Raspberry Pi based ham station utilities, tools, and instruments The new improved RTL-SDR V4 allows you to receive radio signals between 500 kHz and 1.75 GHz from stations utilizing different bands including MW/SW/LW broadcast, ham radio, utility, air traffic control, PMR, SRD, ISM, CB, weather satellite, and radio astronomy. The new book Raspberry Pi 5 for Radio Amateurs gives extensive coverage of deploying the RTL-SDR kit through the use of a Raspberry Pi 5. This bundle contains: RTL-SDR V4 (Software Defined Radio) with Dipole Antenna Kit (normal price: €59.95) Raspberry Pi 5 for Radio Amateurs (normal price: €34.95) RTL-SDR V4 (Software Defined Radio) with Dipole Antenna Kit RTL-SDR is an affordable dongle that can be used as a computer-based radio scanner for receiving live radio signals between 500 kHz and 1.75 GHz in your area. The new RTL-SDR V4 offers several improvements over generic brands including use of the R828D tuner chip, triplexed input filter, notch filter, improved component tolerances, a 1 PPM temperature compensated oscillator (TCXO), SMA F connector, aluminium case with passive cooling, bias tee circuit, improved power supply, and a built in HF upconverter. RTL-SDR V4 comes with the portable dipole antenna kit. It is great for beginners as it allows for terrestrial and satellite reception and easy to mount outdoors and designed for portable and temporary outside usage. Features Improved HF reception: V4 now uses a built-in upconverter instead of using a direct sampling circuit. This means no more Nyquist folding of signals around 14.4 MHz, improved sensitivity, and adjustable gain on HF. Like the V3, the lower tuning range remains at 500 kHz and very strong reception may still require front end attenuation/filtering. Improved filtering: The V4 makes use of the R828D tuner chip, which has three inputs. The SMA input has been triplexed input into 3 bands: HF, VHF and UHF. This provides some isolation between the 3 bands, meaning out of band interference from strong broadcast stations is less likely to cause desensitization or imaging. Improved filtering x2: In addition to the triplexing, the open drain pin on the R828D can be also used, which allows to add simple notch filters for common interference bands such as broadcast AM, broadcast FM and the DAB bands. These only attenuate by a few dB, but may still help. Improved phase noise on strong signals: Due to an improved power supply design, phase noise from power supply noise has been significantly reduced. Less heat: Another advantage of the improved power supply is low power consumption and less heat generation compared to the V3. Included 1x RTL-SDR V4 dongle (R828D RTL2832U 1PPM TCXO SMA) 2x 23 cm to 1 m telescopic antenna 2x 5 cm to 13 cm telescopic antenna 1x Dipole antenna base with 60 cm RG174 1x 3 m RG174 extension cable 1x Flexible tripod mount 1x Suction cup mount Links User Guide Quick Start Guide SDR# User Guide Dipole Antenna Guide Book: Raspberry Pi 5 for Radio Amateurs The RTL-SDR devices (V3 and V4) have gained popularity among radio amateurs because of their very low cost and rich features. A basic system may consist of a USB based RTL-SDR device (dongle) with a suitable antenna, a Raspberry Pi 5 computer, a USB based external audio input-output adapter, and software installed on the Raspberry Pi 5 computer. With such a modest setup, it is possible to receive signals from around 24 MHz to over 1.7 GHz. This book is aimed at amateur radio enthusiasts and electronic engineering students, as well as at anyone interested in learning to use the Raspberry Pi 5 to build electronic projects. The book is suitable for both beginners through experienced readers. Some knowledge of the Python programming language is required to understand and eventually modify the projects given in the book. A block diagram, a circuit diagram, and a complete Python program listing is given for each project, alongside a comprehensive description. The following popular RTL-SDR programs are discussed in detail, aided by step-by-step installation guides for practical use on a Raspberry Pi 5: SimpleFM GQRX SDR++ CubicSDR RTL-SDR Server Dump1090 FLDIGI Quick RTL_433 aldo xcwcp GPredict TWCLOCK CQRLOG klog Morse2Ascii PyQSO Welle.io Ham Clock CHIRP xastir qsstv flrig XyGrib FreeDV Qtel (EchoLink) XDX (DX-Cluster) WSJT-X The application of the Python programming language on the latest Raspberry Pi 5 platform precludes the use of the programs in the book from working on older versions of Raspberry Pi computers.

    € 94,95€ 79,95

    Members identical

What is RF? What is RF used for?

Electromagnetic fields, radio waves, microwaves, and wireless signals are called radio frequency (RF) energy. RF currents are electrical currents that oscillate at radio frequencies and have unique characteristics. RF energy is all around us, and RF is used in a variety of electronics and devices, including radio and television broadcasting, cellular telephones, satellite communications, microwave ovens, radars, and industrial heaters and sealers. These are just a few examples.

What is software-defined radio (SDR), and what can you do with SDR?

In general, an electrical signal is generated by hardware components. It is quite complicated to process signals with hardware and has limitations to troubleshoot. With software-defined radio (SDR), RF communication takes place using software, which simplifies the limitations of signal processing with hardware. Instead of having to use mixers, filters, amplifiers, modulators, demodulators, and so on, SDR uses just an ADC and DAC, along with antennas, without the need for many hardware components.

The software for SDR can be used on a personal computer or an embedded system, providing a more flexible application and making it easy to troubleshoot problems. SDR is used in broadcast and amateur radio, radio astronomy, aircraft tracking and GSM network building, and many more applications. It's a good choice for many fun projects.

RTL-SDR is an affordable USB radio used to receive live radio broadcasts from a computer. Due to its popularity, users benefit from a wider variety of radio signals that just a few years ago would have cost hundreds or thousands of euros.

What does Elektor have to offer?

Elektor offers a variety of RF and SDR-related kits, such as the Elektor Raspberry Pi RTL -SDR Kit, which allows you to receive radio signals between 500 kHz and 1.75 GHz from stations using different bands, including MW/SW/LW broadcast, ISM, CB, ham radio, utility, and more. In addition, Elektor supplies its customers with telescopic antennas and magnetically mountable antennas, and much more. Browse our list to find a suitable solution for you.

What does the future hold for SDR?

The popularity of SDR solutions has been increasing since the widespread availability of 4G equipment. The prospects of upcoming technologies such as 5G, the Internet of Things (IoT), and sensor networks promise to further boost SDR . SDRs are built with more powerful FPGAs, and these applications are intended for increasingly complex tasks. As a result, FPGA tools that can manage growing amounts of data and complexity will inevitably gain popularity.

Login

Forgot password?

Don't have an account yet?
Create an account