Displays & LEDs

7 products


  •  -10% 6-cijferige Nixie klok met IN-14 buizen

    Six Digit Nixie Clock with IN-14 Tubes

    Out of stock

    Features Fully assembled and tested Nixie clock Six tested IN-14 Nixie tubes mounted to the clock base Two neon colon tubes installed into the clock base 12 V DC power adapter IR remote control Built-in proximity sensor User manual This clock is a combination of modern technologies and vintage Nixie tubes. It is a perfect gift for your friend and definitely will fit into any interior. Warm glowing of the neon will fill your house with soft orange light at night and will serve as a night light. The clock is built with 6 numeric IN-14 Nixie tubes. A built-in RGB LED backlight (with 10 levels for each channel) allow you to set your favorite color. Time accuracy is provided with built-in RTC (Real Time Clock DS3231) module and backuped with CR2032 battery while the clock is powered off. At the end of each minute (could be configured to be set from 1-5 minutes period or completely disabled) starts 'Slot Machine' feature that helps to prevent cathode poisoning effect. It scrolls over all numbers from 0 to 9. It is necessary to prolong tubes lifespan. Current date is shown each 1-5-th minute in 3 various formats: DD:MM:YY, MM:DD:YY or YY:MM:DD. The current time could be configured to 12 or 24 hour format. There are also three modes for colon tubes: Blinks once a second (is set as a default option) Permanently OFF Permanently ON The clock could be set to beep once an hour (when hour starts). The clock also has an alarm feature. All settings are stored in non-volatile memory (settings are restored after power-offs). Dimensions Height: 20 mm Width: 175 mm Length: 70 mm Tube height: 45 mm

    Out of stock

    € 299,00€ 269,00

    Members identical

  • RA-08H LoRaWAN Development Board with integrated RP2040 and 1.8" LCD (EU868)

    RA-08H LoRaWAN Development Board with integrated RP2040 and 1.8" LCD (EU868)

    Lora technology and Lora devices have been widely used in the field of the Internet of Things (IoT), and more and more people are joining and learning Lora development, making it an indispensable part of the IoT world. To help beginners learn and develop Lora technology better, a Lora development board has been designed specifically for beginners, which uses RP2040 as the main control and is equipped with the RA-08H module that supports Lora and LoRaWAN protocols to help users realize development. RP2040 is a dual-core, high-performance, and low-power ARM Cortex-M0+ architecture chip, suitable for IoT, robots, control, embedded systems, and other application fields. RA-08H is made from the Semtech-authorized ASR6601 RF chip, which supports the 868 MHz frequency band, has a 32 MHz MCU built-in, which has more powerful functions than ordinary RF modules, and also supports AT command control. This board retains various functional interfaces for development, such as the Crowtail interface, the common PIN to PIN header that leads out GPIO ports, and provides 3.3 V and 5 V outputs, suitable for the development and use of commonly used sensors and electronic modules on the market. In addition, the board also reserves RS485 interface, SPI, I²C, and UART interfaces, which can be compatible with more sensors/modules. In addition to the basic development interfaces, the board also integrates some commonly used functions, such as a buzzer, a custom button, red-yellow-green three-color indicator lights, and a 1.8-inch SPI interface LCD screen with a resolution of 128x160. Features Uses RP2040 as the main controller, with two 32-bit ARM Cortex M0+ processor cores (dual-core), and provides more powerful performance Integrates the RA-08H module with 32 MHz MCU, supports the 868 MHz frequency band and AT command control Abundant external interface resources, compatible with Crowtail series modules and other common interface modules on the market Integrates commonly used functions like buzzer, LED light, LCD display and custom button, making it more concise and convenient when creating projects Onboard 1.8-inch 128x160 SPI-TFT-LCD, ST7735S driver chip Compatible with Arduino/Micropython, easy to carry out different projects Specifications Main Chip Raspberry Pi RP2040, built-in 264 KB SRAM, onboard 4 MB Flash Processor Dual Core Arm Cortex-M0+ @ 133 MHz RA-08H Frequency band 803-930 MHz RA-08H Interface External antenna, SMA interface or IPEX first-generation interface LCD Display Onboard 1.8-inch 128x160SPI-TFT-LCD LCD Resolution 128x160 LCD Driver ST7735S (4-wire SPI) Development environment Arduino/MicroPython Interfaces 1x passive buzzer 4x user-defined buttons 6x programmable LEDs 1x RS485 communication interface 8x 5 V Crowtail interfaces (2x analog interfaces, 2x digital interfaces, 2x UART, 2x I²C) 12x 5 V universal pin header IO 14x 3.3 V universal pin header IO 1x 3.3 V/5 V switchable SPI 1x 3.3 V/5 V switchable UART 3x 3.3 V/5 V switchable I²C Working input voltage USB 5 V/1 A Operating temperature -10°C ~ 65°C Dimensions 102 x 76.5 mm (L x W) Included 1x Lora RA-08H Development Board 1x Lora Spring Antenna (868 MHz) 1x Lora Rubber Antenna (868 Mhz) Downloads Wiki

    € 32,95

    Members € 29,66

  • 01Space RP2040-0.42LCD Development Board

    01Space RP2040-0.42LCD Development Board

    Arduino, MicroPython, and CircuitPython-compatible compact development board powered by Raspberry Pi RP2040RP2040-0.42LCD is a high-performance development board with integrated 0.42' LCD (70x40 resolution) with flexible digital interfaces.It incorporates Raspberry Pi's RP2040 microcontroller chip. The RP2040 features a dual-core Arm Cortex-M0+ processor clocked at 133 MHz with 264 KB internal SRAM and 2 MB flash storage.Specifications SoC Raspberry Pi RP2040 dual-core Cortex-M0+ microcontroller at up to 125 MHz, with 264 KB SRAM Storage 2 MB SPI flash Display 0.42-inch OLED USB 1x USB Type-C port for power and programming Expansion – Qwiic I²C connector– 7-pin and 8-pin headers with up to 11x GPIOs, 2x SPI, 2x I²C, 4x ADC, 1x UART, 5 V, 3.3 V, VBAT, GND Misc – Reset and Boot buttons– RGB LED, power LED Power supply – 5 V via USB-C port or Vin– VBAT pin for battery input– 3.3 V regulator with 500 mA peak output Dimensions 23.5 x 18 mm Weight 2.5 g DownloadsGitHub

    € 19,95

    Members € 17,96

  •  -17% Phambili Newt 2,7' IoT-scherm (powered by ESP32-S2)

    Phambili Newt 2.7" IoT Display (powered by ESP32-S2)

    A low-power, open source, 2.7-inch IoT display powered by an ESP32-S2 module and featuring SHARP's Memory-in-Pixel (MiP) screen technology The Newt is a battery-powered, always-on, wall-mountable display that can go online to retrieve weather, calendars, sports scores, to-do lists, quotes…really anything on the Internet! It is powered by an ESP32-S2 microcontroller that you can program with Arduino, CircuitPython, MicroPython, or ESP-IDF. It's perfect for makers: Sharp’s Memory-in-Pixel (MiP) technology avoids the slow refresh times associated with E-Ink displays A real-time clock (RTC) was added to support timers and alarms The Newt was designed with battery operation in mind; every component on the board was chosen for its ability to operate at low power. Newt was designed to operate 'untethered,' which means it can be mounted in places where a power cord would be inconvenient, for example a wall, refrigerator, mirror, or dry-erase board. With the optional stand, desks, shelves, and nightstands are also good options. Newt is open source, and all design files and libraries are available for review, use, and modification. However, doing that is not required. Each Newt is delivered with working code with the following features: Current weather details Hourly and daily weather forecast Alarm Timer Inspirational quotes Air-quality forecast Habit calendar Pomodoro timer Oblique Strategy cards Only following the Wi-Fi provisioning instructions is needed to get started. No app downloads are required. Specifications Display Sharp Memory LCD Screen Size 2.7 inch Resolution 240 x 400 Deep Sleep Current 30 uA Refresh Rate < 0.001 s Periodic Screen Refresh Required No Input Buttons 10 capacitive pads, 1 push button RTC included Yes Speaker included Yes Power Input USB Type-C Battery included No Programming Languages Arduino, CircuitPython, ESP IDF, MicroPython Dimensions 91 x 61 x 9 mm Microcontroller Espressif ESP32-S2-WROVER Module with 4 MB flash and 2 MB PSRAM Wi-Fi capable Supports Arduino, MicroPython, CircuitPython, and ESP-IDF Deep sleep current as low as 25 μA Display 2.7-inch, 240 x 400 pixel MiP LCD Capable of delivering high-contrast, high-resolution, low-latency content with ultra-low power consumption Reflective mode leverages ambient light to eliminate the need for a backlight Time Keeping, Timers, and Alarms Micro Crystal RV-3028-C7 RTC Optimized for extreme low-power consumption (45 μA) Able to simultaneously manage a periodic timer, a countdown timer, and an alarm Hardware interrupt for timers and alarms 43 bytes of non-volatile user memory, 2 bytes of user RAM Separate UNIX time counter Buzzer Speaker/buzzer with mini class-D amplifier on DAC output A0 can play tones or lo-fi audio clips User Input Power switch Two programmable tactile buttons for Reset and Boot 10 capacitive touchpads Power Newt is designed to operate for one to two months between charges using a 500 mAH LiPo battery. The exact run time varies. (Heavy Wi-Fi use, in particular, will reduce battery charge more quickly.) USB Type-C connector for programming, power, and charging Low-quiescence voltage regulator (TOREX XC6220) that can output 1 A of current and operate as low as 8 μA. JST connector for a Lithium-Ion battery Battery-charging circuity (MCP73831) Low-battery indicator (1 μA quiescence current) Software Newt hardware is compatible with open-source Arduino libraries for ESP32-S2, Adafruit GFX (fonts), Adafruit Sharp Memory Display (display writing), and RTC RV-3028-C7 (RTC) Arduino libraries and sample programs are under development and will be available in our GitHub repository before launch CircuitPython libraries and registration are on the roadmap, with the development of a CircuitPython library for the RV-3028 real-time clock as a key dependency Included Phambili Newt – Fully assembled with pre-loaded firmware Laser-cut desktop stand Mini-magnet feet Required screws Support & Documentation Full instructions for use GitHub: Arduino Library and Codebase GitHub: Board schematics Videos of prototypes or demos (build tracked on Hackaday)

    € 144,95€ 119,95

    Members € 107,96

  • Ulanzi TC001 ESP32-based Smart Pixel Clock

    Ulanzi TC001 ESP32-based Smart Pixel Clock

    Ulanzi TC001 is an LED pixel clock consisting of 256 individual addressable RGB LEDs (8x32) with built-in battery, buzzer, light, temperature and humidity sensor. The integrated rechargeable battery offers a runtime of up to 5 hours. The WiFi connection to the clock is made via an ESP32 chip. Ulanzi TC001 uses an ESP32-WROOM-32D module. Features Pixelated message display Simultaneous Display of the Number of Followers: Fan growth is immediately visible, suitable for YouTube, Bilibili, and Weibo. Pomodoro Clock Design: Manage your own time more scientifically. Explore unlimited possibilities: Multiple programs need to be installed through the control server to achieve more functions. Awtrix Makes it Better: Awtrix simulator in TC001’s firmware simulates an Awtrix matrix and allows you to control the clock using a standard Awtrix host. Hi-tech and stunning appearance: Modeling simple atmosphere, LED full-color pixel screen with better imaging. Built-in 4400 mAh battery with up to 5 hours of battery life. Specifications Number of LEDs: 256 (8x32) Operating voltage: 3.7 V Power: 3 W Battery capacity: 4400 mAh Interface: USB-C Dimensions: 200.6 x 70.3 x 31.9 mm Weight: 283 g Inbegrepen Ulanzi TC001 Smart Pixel Clock USB cable Manual Downloads Firmware

    € 89,95

    Members € 80,96

  •  -23% Ynvisible Segment E-Paper Display Kit

    Ynvisible Segment E-Paper Display Kit

    The Ynvisible Segment E-Paper Displays are thin & flexible, sunlight readable, very easy to operate, and that they are the most energy-efficient display technology on the market for most applications. Get started today! Evaluate the ultra-low-power, thin and flexible Segment E-Paper Displays. The kit contains display designs and includes a manual display driver as well as a display driver with I²C interface. Display parameters White Reflectance 40% Contrast Ratio (Yb/Yd) 1:3 Angle Dependency No, lambertian Thickness 300 µm Graphical layout Segments Segment dimensions 1-100 mm Response time 100-1000 ms Power parameters Driving voltage 1.5 V Driving method Direct drive Energy consumption 1 mJ/cm^2 Pulse energy 0.25 mJ/cm^2 Image retention w/o power 1-5 minutes Operating conditions -20°C - +60°C Activations/Cycles 1.000.000 Included Ynvisible Segment Displays (‍Segmented e-paper displays with different layouts, shapes, and symbols, suitable for testing and evaluation.) 3 single-digit display 1 double-digit display 5 single-segment/icon displays 4 progress bars (7-segment and 3-segment) Manual Display Clicker (Manual display controller for ON/OFF operations) Display Driver and Software Library (Dedicated display driver with I²C communication interface. Compatible with Arduino and other easy-to-use development boards.) Flexible Display Adapter (‍For convenient connection of the flexible displays on a plastic substrate to rigid electronics (such as development boards), using a FFC/FPC connector.) Downloads Datasheet Guide & Instructions

    € 109,95€ 84,95

    Members identical

  • PicoBoy Mini Game Console

    PicoBoy Mini Game Console

    The Picoboy is a powerful mini handheld measuring just 3 x 5 cm. It is suitable for learning programming, developing your own games or simply playing with it. An introduction to programming with the Arduino IDE and MicroPython is available. All you need is a PC, the PicoBoy and a USB-C cable. As the PicoBoy is compatible with the Raspberry Pi Pico and the Arduino IDE, there are countless other tutorials, examples and libraries on the internet to make programming easier. Specifications 1.3' OLED display with 128 x 64 pixels (black/white) RP2040 microcontroller makes it compatible with the Raspberry Pi Pico 2x 133 MHz ARM M0+ 2 MB Flash 264 KB RAM USB-C interface for programming and data transfer 3 Pre-installed games 5-way joystick Acceleration sensor (can now also be used in Python!) Power supply via USB-C or a CR2032 button cell Dimensions: 49,2 x 29,1 x 14,5 mm Downloads GitHub

    € 29,95

    Members € 26,96

Login

Forgot password?

Don't have an account yet?
Create an account