Bestsellers

57 products


  • SparkFun RP2040 mikroBUS Development Board

    SparkFun SparkFun RP2040 mikroBUS Development Board

    The SparkFun RP2040 mikroBUS Development Board is a low-cost, high performance platform with flexible digital interfaces featuring the Raspberry Pi Foundation's RP2040 microcontroller. Besides the Thing Plus or Feather PTH pin layout, the board also includes a microSD card slot, 16 MB (128 Mbit) flash memory, a JST single cell battery connector (with a charging circuit and fuel gauge sensor), an addressable WS2812 RGB LED, JTAG PTH pins, four (4-40 screw) mounting holes, our signature Qwiic connectors, and a mikroBUS socket. The mikroBUS standard was developed by MikroElektronika. Similar to Qwiic and MicroMod interfaces, the mikroBUS socket provides a standardized connection for add-on Click boards to be attached to a development board and is comprised of a pair of 8-pin female headers with a standardized pin configuration. The pins consist of three groups of communications pins (SPI, UART and I²C), six additional pins (PWM, Interrupt, Analog input, Reset and Chip select), and two power groups (3.3 V and 5 V). The RP2040 is supported with both C/C++ and MicroPython cross-platform development environments, including easy access to runtime debugging. It has UF2 boot and floating-point routines baked into the chip. While the chip has a large amount of internal RAM, the board includes an additional 16 MB of external QSPI flash memory to store program code. The RP2040 contains two ARM Cortex-M0+ processors (up to 133 MHz) and features: 264 kB of embedded SRAM in six banks 6 dedicated IO for SPI Flash (supporting XIP) 30 multifunction GPIO: Dedicated hardware for commonly used peripherals Programmable IO for extended peripheral support Four 12-bit ADC channels with internal temperature sensor (up to 0.5 MSa/s) USB 1.1 Host/Device functionality Features (SparkFun RP2040 mikroBUS Dev. Board) Raspberry Pi Foundation's RP2040 microcontroller 18 Multifunctional GPIO Pins Four available 12-bit ADC channels with internal temperature sensor (500kSa/s) Up to eight 2-channel PWM Up to two UARTs Up to two I²C buses Up to two SPI buses Thing Plus (or Feather) Pin Layout: 28 PTH Pins USB-C Connector: USB 1.1 Host/Device functionality 2-pin JST Connector for a LiPo Battery (not included): 500mA charging circuit 4-pin JST Qwiic Connector LEDs: PWR - Red 3.3V power indicator CHG - Yellow battery charging indicator 25 - Blue status/test LED (GPIO 25) WS2812 - Addressable RGB LED (GPIO 08) Buttons: Boot Reset JTAG PTH Pins 16MB QSPI Flash Memory µSD Card Slot mikroBUS Socket Dimensions: 3.7' x 1.2' Four Mounting Holes: 4-40 screw compatible Downloads Schematic Eagle Files Board Dimensions Hookup Guide Qwiic Info Page GitHub Hardware Repository

    € 19,95

    Members € 17,96

  • SparkFun Auto pHAT for Raspberry Pi

    SparkFun SparkFun Auto pHAT for Raspberry Pi

    The servo control is based on the SparkFun servo pHAT, and thanks to its I2C capabilities, this PWM add-on saves the Raspberry Pi's GPIO pins, allowing you to use them for other purposes. We have also provided a Qwiic connector for easy interfacing with the I²C bus using the Qwiic system. Whether you use the Auto pHAT with a Raspberry Pi, NVIDIA, Jetson Nano, Google Coral, or other SBC, it makes for a unique robotics addition and board with a 2x20 GPIO. The DC motor control comes from the same 4245 PSOC and 2-channel motor ports system used on the SparkFun Qwiic Motor Driver. This provides 1.2A steady-state drive per channel (1.5A peak) and 127 levels of DC drive strength. The SparkFun Auto pHAT also supports up to two motor encoders thanks to the onboard ATTINY84A to provide more precise movement to your creation! Additionally, the Auto pHAT has an on-board ICM-20948 9DOF IMU for all your motion-sensing needs. This enables your robot to access the 3-Axis Gyroscope with four selectable ranges, 3-Axis Accelerometer, again with four selectable ranges, and 3-axis magnetometer with an FSR of ±4900µT. Power to the SparkFun Auto pHAT can be supplied through a USB-C connector or external power. This will power either the motors only or power the motors and the Raspberry Pi that is connected to the HAT. We've even added power protection circuits to the design to avoid damage to power sources. Features 4245 PSOC and 2-channel motor ports programmable using Qwiic library Onboard ATTINY84A supports up to two DC motor encoders 5V pass-through from RPi Onboard ICM-20948 9DOF IMU for motion sensing accessible via Qwiic library PWM control for up to four servos Qwiic connector for expansion to full SparkFun Qwiic ecosystem Designed for stacking, full header support & can use additional pHATs on top of it Uninhibited access to the RPi camera connector & display connector. USB-C for powering 5V rail (Motors/Servos/back powering Pi) External power inputs broken out to PTH headers

    € 29,95

    Members € 26,96

  • SparkFun Thing Plus Matter (MGM240P)

    SparkFun SparkFun Thing Plus Matter (MGM240P)

    The SparkFun Thing Plus Matter is the first easily accessible board of its kind that combines Matter and SparkFun’s Qwiic ecosystem for agile development and prototyping of Matter-based IoT devices. The MGM240P wireless module from Silicon Labs provides secure connectivity for both 802.15.4 with Mesh communication (Thread) and Bluetooth Low Energy 5.3 protocols. The module comes ready for integration into Silicon Labs' Matter IoT protocol for home automation.What is Matter? Simply put, Matter allows for consistent operation between smart home devices and IoT platforms without an Internet connection, even from different providers. In doing so, Matter is able to communicate between major IoT ecosystems in order to create a single wireless protocol that is easy, reliable, and secure to use.The Thing Plus Matter (MGM240P) includes Qwiic and LiPo battery connectors, and multiple GPIO pins capable of complete multiplexing through software. The board also features the MCP73831 single-cell LiPo charger as well as the MAX17048 fuel gauge to charge and monitor a connected battery. Lastly, a µSD card slot for any external memory needs is integrated.The MGM240P wireless module is built around the EFR32MG24 Wireless SoC with a 32-bit ARM Cortext-M33 core processor running at 39 MHz with 1536 kb Flash memory and 256 kb RAM. The MGM240P works with common 802.15.4 wireless protocols (Matter, ZigBee, and OpenThread) as well as Bluetooth Low Energy 5.3. The MGM240P supports Silicon Labs' Secure Vault for Thread applications.Specifications MGM240P Wireless Module Built around the EFR32MG24 Wireless SoC 32-bit ARM-M33 Core Processor (@ 39 MHz) 1536 kB Flash Memory 256 kB RAM Supports Multiple 802.15.4 Wireless Protocols (ZigBee and OpenThread) Bluetooth Low Energy 5.3 Matter-ready Secure Vault Support Built-in Antenna Thing Plus Form-Factor (Feather-compatible): Dimensions: 5.8 x 2.3 cm (2.30 x 0.9') 2 Mounting Holes:4-40 screw compatible 21 GPIO PTH Breakouts All pins have complete multiplexing capability through software SPI, I²C and UART interfaces mapped by default to labeled pins 13 GPIO (6 labeled as Analog, 7 labeled for GPIO)All function as either GPIO or Analog Built-in-Digital to Analog Converter (DAC) USB-C Connector 2-Pin JST LiPo Battery Connector for a LiPo Battery (not included) 4-Pin JST Qwiic Connector MC73831 Single-Cell LiPo ChargerConfigurable charge rate (500 mA Default, 100 mA Alternate) MAX17048 Single-Cell LiPo Fuel Gauge µSD Card Slot Low Power Consumption (15 µA when MGM240P is in Low Power Mode) LEDs: PWR – Red Power LED CHG – Yellow battery charging status LED STAT – Blue status LED Reset Button: Physical push-button Reset signal can be tied to A0 to enable use as a peripheral device Downloads Schematic Eagle Files Board Dimensions Hookup Guide Datasheet (MGM240P) Fritzing Part Thing+ Comparison Guide Qwiic Info Page GitHub Hardware Repo

    € 34,95

    Members € 31,46

  • SparkFun Weather Shield

    SparkFun SparkFun Weather Shield

    The SparkFun Weather Shield uses the Si7021 humidity / temperature sensor, the MPL3115A2 barometric pressure sensor, and the ALS-PT19 light sensor. The shield utilizes the MPL3115A2 and Si7021 Arduino libraries. The SparkFun Weather Shield comes with two unpopulated RJ11 connector spaces and a 6-pin GPS connector. Finally, each Weather Shield can operate from 3.3 V up to 16 V and has built-in voltage regulators and signal translators. Check out the GitHub page, Schematics, and Eagle Files for more information.

    € 49,95

    Members € 44,96

  • SparkFun Sensor Kit

    SparkFun SparkFun Sensor Kit

    These are some of our favourite sensors from each category. But wait, there's more! The SparkFun Sensor Kit now includes several of our sensor boards that feature the Qwiic Connect System for rapid prototyping! This version of the kit has received a complete overhaul! This huge assortment of sensors makes an amazing gift for that exceptional electronics enthusiast in your life! Included Large Piezo Vibration Sensor (With Mass): A flexible film able to sense for vibration, touch, shock, etc. When the film moves back and forth an AC wave is created, with a voltage of up to ±90. Reed Switch: Senses magnetic fields, makes for a great non-contact switch. 0.25' Magnet Square: Plays nicely with the reed switch. Embed the magnet into stuffed animals or inside a box to create a hidden actuator to the reed switch. 0.5' Force Sensitive Resistor: A force-sensing resistor with a 0.5' diameter sensing area. Great for sensing pressure (i.e., if it's being squeezed). Flex Sensor (2.2'): As the sensor is flexed, the resistance across the sensor increases. Useful for sensing motion or positioning. SoftPot: These are very thin variable potentiometers. By pressing on various positions along the strip, you vary the resistance. Mini Photocell: The photocell will vary its resistance based on how much light it's exposed to. Will vary from 1kΩ in the light to 10kΩ in the dark. PIR Motion Sensor: Easy-to-use motion detector with an analog interface. Power it with 5-12VDC, and you'll be alerted of any movement. QRD1114 Optical Detector/Phototransistor: An all-in-one infrared emitter and detector. Ideal for sensing black-to-white transitions or can be used to detect nearby objects. IR Diode: This LED can handle up to 50mA of current and outputs in the 940-950nm IR spectrum. Use to send signal to talk to the included IR receiver diode or just turn off your neighbor's TV. IR Receiver Diode: This simple IR receiver will detect an IR signal coming from a standard IR remote control or the IR diode included in the kit. Resistor 1.0M Ohm 1/4 Watt PTH: Two 1/4 Watt, +/- 5% tolerance PTH resistors. Commonly used in breadboards and perf boards. The large resistor helps dampen any voltage spikes when using the large piezo vibration sensor with a microcontroller. Resistor 10K Ohm 1/4 Watt PTH – 20 pack (Thick Leads): 1/4 Watt, +/- 5% tolerance PTH resistors. Commonly used in breadboards and perf boards, these 10KΩ resistors make excellent pullups, pulldowns, and current limiters. Resistor 330 Ohm 1/4 Watt PTH – 20 pack (Thick Leads): 1/4 Watt +/- 5% tolerance PTH resistors. Commonly used in breadboards and perf boards, these 330Ω resistors make excellent current-limiting resistors for LEDs. SparkFun 9DoF IMU Breakout – ISM330DHCX, MMC5983MA (Qwiic): This breakout board includes a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. Connect this board over I2C using a Qwiic cable or solder wires or headers to the SPI pins to get started using one of the three sensors or using all three together to determine 3D orientation. SparkFun Atmospheric Sensor Breakout – BME280 (Qwiic): The SparkFun BME280 Atmospheric Sensor Breakout is an easy way to measure barometric pressure, humidity, and temperature readings, all without taking up too much space. SparkFun Indoor Air Quality Sensor – ENS160 (Qwiic): The SparkFun ENS160 Indoor Air Quality Sensor is a digital multi-gas sensor solution with four sensor elements that can be used in a wide range of applications including building automation, smart home, and HVAC. SparkFun Capacitive Touch Slider – CAP1203 (Qwiic): This little board acts great as a non-mechanical button. Use the three pads on the board or connect your own input for a great touch button or slider with no moving parts. Flexible Qwiic Cable (100 mm): Use these to connect up to four Qwiic boards in your kit. RGB and Gesture Sensor (APDS-9960): This board does a little bit of everything. You can measure ambient light or color as well as detect proximity and do gesture sensing all over I2C. Soil Moisture Sensor (with screw terminals): Ever wonder if your plant needs water? This sensor outputs an analog signal based on the resistance of the soil. Since water is conductive, the soil water content will be reflected in the soil resistance. Sound Detector: Ever need to know if there is noise in an area? This board will not only tell you, but it will also output amplitude as well as the full audio signal. Break Away Headers (Straight): Solder these pins to any of the breakouts to prototype on a breadboard. You'll want to solder these to boards that do not have Qwiic connectors such as the gesture sensor and sound detector.

    € 134,95

    Members € 121,46

  • SparkFun DataLogger IoT (9DoF)

    SparkFun SparkFun DataLogger IoT (9DoF)

    The SparkFun DataLogger IoT (9DoF) is a data logger that comes preprogrammed to automatically log IMU, GPS, and various pressure, humidity, and distance sensors. All without writing a single line of code! The DataLogger automatically detects, configures, and logs Qwiic sensors. It was specifically designed for users who just need to capture a lot of data to a CSV or JSON file and get back to their larger project. Save the data to a microSD card or send it wirelessly to your preferred Internet of Things (IoT) service! Included on every DataLogger IoT is an IMU for built-in logging of a triple-axis accelerometer, gyro, and magnetometer. Whereas the original 9DOF Razor used the old MPU-9250, the DataLogger IoT uses the ISM330DHCX from STMicroelectronics and MMC5983MA from MEMSIC. Simply power up the DataLogger IoT, configure the board to record readings from supported devices, and begin logging! Data can be time-stamped when the time is synced to NTP, GNSS, or RTC. The DataLogger IoT is highly configurable over an easy-to-use serial interface. Simply plug in a USB-C cable and open a serial terminal at 115200 baud. The logging output is automatically streamed to both the terminal and the microSD card. Pressing any key in the terminal window will open the configuration menu. The DataLogger IoT (9DoF) automatically scans, detects, configures, and logs various Qwiic sensors plugged into the board (no soldering, no programming!). Specifications ESP32-WROOM-32E Module Integrated 802.11b/g/n WiFi 2.4 GHz transceiver Configurable via CH340C Operating voltage range 3.3 V to 6.0 V (via VIN) 5 V with USB (via 5 V or USB type C) 3.6 V to 4.2 V with LiPo battery (via BATT or 2-pin JST) Built-in MCP73831 single cell LiPo charger Minimum 500 mA charge rate 3.3 V (via 3V3) MAX17048 LiPo Fuel Gauge Ports 1x USB-C 1x JST style connector for LiPo battery 2x Qwiic enabled I²C 1x microSD socket Support for 4-bit SDIO and microSD cards formatted to FAT32 9-axis IMU Accelerometer & Gyro (ISM330DHCX) Magnetometer (MMC5983MA) LEDs Charge (CHG) Status (STAT) WS2812-2020 Addressable RGB Jumpers IMU interrupt Magnetometer interrupt RGB LED Status LED Charge LED I²C pull-up resistors USB Shield Buttons Reset Boot Dimensions: 1.66 x 2.0' (4.2 x 5.1 cm) Weight: 10.7 g Downloads Schematic Eagle Files Board Dimensions Hookup Guide CH340 Drivers Firmware GitHub Hardware Repo

    € 94,95

    Members € 85,46

  • SparkFun MicroMod mikroBUS Carrier Board

    SparkFun SparkFun MicroMod mikroBUS Carrier Board

    The SparkFun MicroMod mikroBUS Carrier Board takes advantage of the MicroMod, Qwiic, and mikroBUS ecosystems making it easy to rapidly prototype with each of them, combined. The MicroMod M.2 socket and mikroBUS 8-pin header provide users the freedom to experiment with any Processor Board in the MicroMod ecosystem and any Click board in the mikroBUS ecosystem, respectively. This board also features two Qwiic connectors to seamlessly integrate hundreds of Qwiic sensors and accessories into your project. The mikroBUS socket comprises a pair of 8-pin female headers with a standardized pin configuration. The pins consist of three groups of communications pins (SPI, UART and I²C), six additional pins (PWM, Interrupt, Analog input, Reset and Chip select), and two power groups (3.3 V and 5 V). While a modern USB-C connector makes programming easy, the Carrier Board is also equipped with a MCP73831 Single-Cell Lithium-Ion/Lithium-Polymer Charge IC so you can charge an attached single-cell LiPo battery. The charge IC receives power from the USB connection and can source up to 450 mA to charge an attached battery. Features M.2 MicroMod (Processor Board) Connector USB-C Connector 3.3 V 1 A Voltage Regulator 2x Qwiic Connectors mikroBUS Socket Boot/Reset Buttons Charge Circuit JTAG/SWD PTH Pins Downloads Schematic Eagle Files Board Dimensions Hookup Guide Getting Started with Necto Studio mikroBUS Standard Qwiic Info Page GitHub Hardware Repo

    € 27,95

    Members € 25,16

  • SparkFun DLI Kit

    SparkFun SparkFun DLI Kit

    Reinforcing its commitment to widening the accessibility to and innovation in the area of deep learning, NVIDIA has created a free, self-paced, online Deep Learning Institute (DLI) course, “Getting Started on AI with Jetson Nano.” The course's goal is to build foundational skills to enable anyone to get creative with the Jetson Developer Kit. Please be aware that this kit is for those who already own a Jetson Nano Developer Kit and want to join the DLI Course. A Jetson Nano is not included in this kit. Included in this kit is everything you will need to get started in the “Getting Started on AI with Jetson Nano” (except for a Jetson Nano, of course), and you will learn how to Set up your Jetson Nano and camera Collect image data for classification models Annotate image data for regression models Train a neural network on your data to create your own models Run inference on the Jetson Nano with the models you create The NVIDIA Deep Learning Institute offers hands-on training in AI and accelerated computing to solve real-world problems. Developers, data scientists, researchers, and students can get practical experience powered by GPUs in the cloud and earn a competency certificate to support professional growth. They offer self-paced, online training for individuals, instructor-led workshops for teams, and downloadable course materials for university educators. Included 32 GB microSD Card Logitech C270 Webcam Power Supply 5 V, 4 A USB Cable - microB (Reversible) 2-Pin Jumper Please note: Jetson Nano Developer Kit not included.

    € 79,95

    Members € 71,96

  •  -23% SparkFun Qwiic IR Array MLX90640 Breakout

    SparkFun SparkFun Qwiic IR Array MLX90640 Breakout

    The MLX90640 SparkFun IR Array Breakout features a 32×24 array of thermopile sensors generating, in essence, a low resolution thermal imaging camera. With this breakout you can observe surface temperatures from a decent distance away with an accuracy of ±1.5 °C (best case). This board communicates via I²C using the Qwiic system developed by Sparkfun, which makes it easier to operate the breakout. However, there are still 0.1'-spaced pins in case you favour using a breadboard. The SparkFun Qwiic connect system is an ecosystem of I²C sensors, actuators, shields and cables that make prototyping faster and helps you avoid errors. All Qwiic-enabled boards use a common 1 mm pitch, 4-pin JST connector. This reduces the amount of required PCB space, and polarized connections help you connect everything correctly. This specific IR Array Breakout provides a 110°×75° field of view with a temperature measurement range of -40 °C ~ 300 °C. The MLX90640 IR Array has pull up resistors attached to the I²C bus; both can be removed by cutting the traces on the corresponding jumpers on the back of the board. Please be aware that the MLX90640 requires complex calculations by the host platform so a regular Arduino Uno (or equivalent) doesn't have enough RAM or flash to complete the complex computations required to turn the raw pixel data into temperature data. You will need a microcontroller with 20,000 bytes or more of RAM.

    € 109,95€ 84,95

    Members identical

Login

Forgot password?

Don't have an account yet?
Create an account