Bestsellers

13 products


  • Cytron Maker Pi Pico (with pre-soldered Raspberry Pi Pico)

    Cytron Cytron Maker Pi Pico (with pre-soldered Raspberry Pi Pico)

    The Cytron Maker Pi Pico (with Raspberry Pi Pico RP2040 soldered on Board) incorporates the most wanted features for your Raspberry Pi Pico and gives you access to all GPIO pins on two 20 ways pin-headers, with clear labels. Each GPIO is coupled with an LED indicator for convenient code testing and troubleshooting. The bottom layer of this board even comes with a comprehensive pinout diagram showing the function of each pin. Features Work out-of-the-box. No soldering! Access to all Raspberry Pi Pico's pins on two 20 ways pin headers LED indicators on all GPIO pins 3x programmable push button (GP20-22) 1x RGB LED – NeoPixel (GP28) 1x Piezo buzzer (GP18) 1x 3.5 mm stereo audio jack (GP18-19) 1x Micro SD card slot (GP10-15) 1x ESP-01 socket (GP16-17) 6x Grove port Specifications Core 32-bit ARM Cortex-M0+ CPU Clock 48 MHz, up to 133 MHz Flash Size 2 MByte Q-SPI Flash Programming Language MicroPython, C++ Board Power Input 5 VDC via MicroUSB Alternative Board Power 2-5 VDC via VSYS Pin (Pin 39) MCU Voltage 3.3 VDC GPIO Voltage 3.3 VDC USB Interface USB 1.1 Device Host Program Loading MicroUSB, USB Mass Storage GPIO 26x Input/Output ADC 3x 12-bit 500 ksps Temperature Sensor Built-in, 12-bit UART 2x UART I²C 2x I²C SPI 2x SPI PWM 16x PWM Timer 1x Timer with 4 x Alarm Real-Time Counter 1x Real Time Counter PIO 2x Programmable High-Speed I/O On-Board LED 1x Programmable LED On-Board Button 1x BOOTSEL Button

    € 24,95

    Members € 22,46

  •  -35% Cytron Maker Hat Base – HAT & GPIO Extension for Raspberry Pi 400

    Cytron Cytron Maker Hat Base - HAT & GPIO Extension for Raspberry Pi 400

    Maker Hat Base extends out all the GPIOs of the Raspberry Pi 400 in a quick and simple way – be it using your favorite HAT or building your own simple circuit with jumper wires on the mini breadboard.Since a ribbon cable is used for the connection, the Maker Hat Base is compatible with the Raspberry Pi 3 and Pi 4 too. This is especially useful when the Raspberry Pi is enclosed in a case and you want to extend its GPIOs out for HAT.Each GPIO pin is clearly labeled and its status LED is definitely helpful during testing and troubleshooting. The onboard buzzer and push buttons will get you to start coding in no time without the need of building your own circuit. Features Specially designed for Raspberry Pi 400 Compatible with Raspberry Pi 3 & 4 Extension pins for HAT Labeled GPIOs breakout for jumper wires Status LEDs for each GPIOs 1x programmable buzzer 4x programmable push buttons 3x Grove ports (GPIO, UART & I²C) for external modules Onboard 3.3 V regulator provides extra current up to 800 mA Included 1x Maker Hat Base 1x Mini Breadboard (Random Color) 1x 40 Ways Female to Female IDE cable (10 cm) 1x Flat Cable Clamper with Adhesive (60 mm) 4x Silicone Bumper 1x PC104 2x20 Header Pin Downloads Datasheet CAD File

    € 19,95€ 12,95

    Members identical

  • Cytron 10Amp 5-30 V DC Motor Driver

    Cytron Cytron 10Amp 5-30 V DC Motor Driver

    DC brushed motors are the most commonly used and widely available motors in the market. The Cytron 10 Amp 5-30 V DC Motor Driver will help you add functionality to your DC motor. It supports both sign-magnitude PWM signal and locked-antiphase. It is compatible with full solid-state components resulting in higher response time and eliminates the wear and tear of the mechanical relay. Features Supports motor voltage from 5 V to 30 V DC Current up to 13 A continuous and 30 A peak 3.3 V and 5 V logic level input Compatible with Arduino and Raspberry Pi Speed control PWM frequency up to 20 kHz Fully NMOS H-Bridge for better efficiency No heat sink is required Bi-directional control for one Brushed DC motor Regenerative Braking Downloads User Manual Arduino Library

    € 17,95

    Members € 16,16

  • Cytron Maker Pi RP2040 - Robotica met Raspberry Pi RP2040

    Cytron Cytron Maker Pi RP2040 - Robotics with Raspberry Pi RP2040

    Cytron Maker Pi RP2040 features the first microcontroller designed by Raspberry Pi – RP2040, embedded on a robot controller board. This board comes with dual channel DC motor driver, 4 servo motor ports and 7 Grove I/O connectors, ready for your next DIY robot / motion control project. Now you can build robot, while trying out the new RP2040 chip. The DC motor driver onboard is able to control 2x brushed DC motors or 1x bipolar/unipolar stepper motor rated from 3.6 V to 6 V, providing up to 1 A current per channel continuously. The built-in Quick Test buttons and motor output LEDs allow functional test of the motor driver in a quick and convenient way, without the need of writing any code. Vmotor for both DC and servo motors depends on the input voltage supplied to the board. Maker Pi RP2040 features all the goodness of Cytron's Maker series products. It too has lots of LEDs useful for troubleshooting (& visual effects), is able to make quite some noise with the onboard piezo buzzer and comes with push buttons ready to detect your touch. There are three ways to supply power to the Maker Pi RP2040 – via USB (5 V) socket, with a single cell LiPo/Li-Ion battery or through the VIN (3.6-6 V) terminals. However only one power source is needed to power up both controller board and motors at a time. Power supply from all these power sources can all be controlled with the power on/off switch onboard. Cytron Maker Pi RP2040 is basically the Raspberry Pi Pico + Maker series' goodness + Robot controller & other useful features. Therefore this board is compatible with the existing Pico ecosystem. Software, firmware, libraries and resources that are developed for Pico should work seamlessly with Cytron Maker Pi RP2040 too. CircuitPython is preloaded on the Maker Pi RP2040 and it runs a simple demo program right out-of-the-box. Connect it to your computer via USB micro cable and turn it on, you will be greeted by a melody tune and LEDs running light. Press GP20 and GP21 push buttons to toggle the LEDs on/off, while controlling any DC and servo motors connected to it to move and stop. With this demo code, you get to test the board the moment you receive it! While connected to your computer, a new CIRCUITPY drive appears. Explore and edit the demo code (code.py & lib folder) with any code editor you like, save any changes to the drive and you shall see it in action in no time. That's why we embrace CircuitPython – it's very easy to get started. Wish to use other programming lauguages? Sure, you are free to use MicroPython and C/C++ for Pico/RP2040. For those of you who loves the Arduino ecosystem, please take a look at this official news by Arduino and also the unofficial Pico Arduino Core by Earle F. Philhower. Features Powered by Rapberry Pi RP2040 Dual-core Arm Cortex-M0+ processor 264 KB internal RAM 2 MB of Flash memory the exact same specifications with Raspberry Pi Pico Robot controller board 4x Servo motors 2x DC motors with quick test buttons Versatile power circuit Automatic power selection: USB 5 V, LiPo (1-cell) or Vin (3.6-6 V) Built-in 1-cell LiPo/Li-Ion charger (over-charged & over-discharged protection) Power on/off switch 13x Status indicator LEDs for GPIO pins 1x Piezo buzzer with mute switch 2x Push button 2x RGB LED (Neopixel) 7x Grove ports (flexible I/O options: digital, analog, I²C, SPI, UART...) Preloaded with CircuitPython by default Mouting holes 4x 4.8 mm mounting hole (LEGO pin compatible) 6x M3 screw hole

    € 16,95

    Members € 15,26

  • Cytron 10Amp 7-30 V DC Motor Driver Shield voor Arduino (2 Channels)

    Cytron Cytron 10Amp 7-30 V DC Motor Driver Shield for Arduino (2 Channels)

    You can control the motor driver with PWM and DIR inputs. The Arduino pins for these inputs are configurable via jumpers. If the specified pins on Arduino are already used up by other application/shield, you can select another pin easily with the jumper. There is also a possibility to quickly and conveniently test the functionality of the motor driver with the onboard test buttons and output LEDs. Buck regulator which produces 5 V output is also available to power the Arduino mainboard, which eliminates the need of extra power supply for the Arduino mainboard. The board also offers various protection features. Overcurrent protection prevents the motor driver from damage when the motor stalls or an oversized motor is hooked up. When the motor is trying to draw current more than what the motor driver can support, the motor current will be limited at the maximum threshold. Assisted by temperature protection, the maximum current limiting threshold is determined by the board temperature. The higher the board temperature, the lower the current limiting threshold. As a result, the motor driver delivers its full potential depending on the current conditions without damaging any MOSFETs. Features Shield for Arduino form factor Bidirectional control for two brushed DC motors Control one unipolar/bipolar stepper motor Operating Voltage: DC 7 V to 30 V Maximum Motor Current: 10 A continuous, 30 A peak Buck regulator to produce 5 V output (500 mA max) Buttons for quick testing LEDs for motor output state Selectable Arduino pins for PWM/DIR inputs. PWM/DIR inputs compatible with 1.8 V, 3.3 V and 5 V logic PWM frequency up to 20 kHz (Output frequency is same as input frequency). Overcurrent protection with active current limiting Temperature protection Undervoltage shutdown Possible applications Mobile Robot Automated Guided Vehicle (AGV) Solar Tracker Game Simulator Automation Machine Downloads Datasheet Sample Code 3D CAD Files Packing List 1x 10Amps 7V-30V DC Motor Driver Shield for Arduino (2 Channels) MDD010

    € 29,95

    Members € 26,96

  • Cytron 25Amp 7-58 V High Voltage DC Motor Driver

    Cytron Cytron 25Amp 7-58 V High Voltage DC Motor Driver

    It is possible to control Cytron 25Amp 7-58 V High Voltage DC Motor Driver with PWM and DIR inputs. The input logic voltage ranges from 1.8 V to 30 V and the board is compatible with variety of host controllers (such as Arduino, Raspberry Pi, PLC). If you don't want to deal with programming to control the motor, there is an option to control the motor driver from a potentiometer (speed) and a switch (direction). You can also test the motor quickly and conveniently using the onboard test buttons and motor output LEDs without the need to hook up the host controller. It is possible to power the host controller with the buck regulator which produces 5 V output. This is especially useful for high voltage applications where no additional power source nor high voltage buck regulator is needed. This motor driver also incorporates various protection features. If the motor stalls or you've hooked up an oversized motor, the overcurrent protection will take care of the board and protect it from damage. If the motor is trying to draw current more than what the motor driver can support, the motor current will be limited at the maximum threshold. Assisted by temperature protection, the maximum current limiting threshold depends on the board temperature. The higher the board temperature, the lower the current limiting threshold. Note: Power input does not have reverse-voltage protection. Connecting the battery in reverse polarity will damage the motor driver instantaneously. Features Bidirectional control for one brushed DC motor Operating Voltage: DC 7 V to 58 V Maximum Motor Current: 25 A continuous, 60 A peak 5 V output for the host controller (250 mA max) Buttons for quick testing LEDs for motor output state Dual Input Mode: PWM/DIR or Potentiometer/Switch Input PWM/DIR Inputs compatible with 1.8 V, 3.3 V, 5 V, 12 V and 24 V logic (Arduino, Raspberry Pi, PLC, etc) PWM frequency up to 40 kHz (Output frequency is fixed at 16 kHz) Overcurrent protection with active current limiting Temperature protection Undervoltage shutdown Scope of delivery 1 × MD25HV (motor driver board) 1 × Potentiometer with connector 1 × Rocker switch with connector 4 × Nylon PCB Standoffs/Spacers Documents Datasheet Sample Code

    € 62,95

    Members € 56,66

  • Cytron 3Amp 4-16 V DC Motor Driver (2 Channels)

    Cytron Cytron 3Amp 4-16 V DC Motor Driver (2 Channels)

    Features: Supports motor voltage from 4 V to 16 V DC Bidirectional control for two brushed DC motor. Control one unipolar or one bipolar stepper motor. Maximum Motor Current: 3A continuous, 5A peak LEDs for motor output state. Buttons for quick testing. Compatible with Arduino and Raspberry Pi PWM frequency up to 20kHz Reverse polarity protection Here you can find the product's Datasheet. Check out the sample code provided by Cytron here.

    € 10,95

    Members € 9,86

  • Cytron Maker Uno

    Cytron Cytron Maker Uno

    1 review

    Features Piezo Buzzer: Acts as a simple audio output Micro USB Port Programmable Button 12 x LED: Provides visual output on board Specifications Microcontroller ATmega328P Programming IDE Arduino IDE Operating Voltage 5 V Digital I/O 20 PWM 6 Analog Input 6 (10-bit) UART 1 SPI 1 I2C 1 External Interrupt 2 Flash Memory 32 KB SRAM 2 KB EEPROM / Data Flash 1 KB Clock Speed 16 MHz DC Current I/O Pin 20 mA Power Supply USB only DC Current for 5 V USB Source DC Current for 3.3 V 500 mA USB to Serial Chip CH340G Programmable LED 12 at digital Pin 2 to 13 Programmable Push Button 1 at digital Pin 2 Piezo Buzzer 1 at digital Pin 8 Arduino vs Maker Uno

    € 14,95

    Members € 13,46

  • Cytron Maker pHAT for Raspberry Pi

    Cytron Cytron Maker pHAT for Raspberry Pi

    The Maker pHAT is the solution to the most common problems beginners face starting with Raspberry PI. Its intelligent and simple design makes it easy to attach to your Pi, and it helps you avoid all the tedious work of connection various other accessories. Additionally, the LEDs corresponding to each pin makes it extremely easy to see where a potential problem lies The Maker pHat has the same size as the Raspberry Pi Zero with all 4mounting holes aligned. However, it can be used with Raspberry Pi 3B, 3B+ and 3A+, by inserting a 2 x 20 stacking header. Features Raspberry Pi Zero size, stack perfectly on to Raspberry Pi Zero Compatible with standard size Raspberry Pi 3B / 3B+, medium size Raspberry Pi 3A+ and smaller size Raspberry Pi Zero / W / WH. Standard Raspberry Pi GPIO footprint. LED array for selected GPIO pins (GPIO 17, 18, 27, 22, 25, 12, 13, 19). 3x on board programmable push buttons (GPIO 21, 19 and 20, need to configure as input pull up). Onboard active buzzer (GPIO 26). Proper labels for all GPIOs, including SPI, UART, I2C, 5V, 3.3V, and GND. Utilize USB Micro-B socket for 5V input and USB to UART communication. USB serial facilitated by the FT231X Input voltage: USB 5 V, from a computer, power bank or a standard USB adapter. Mount on Raspberry Pi Zero Mount on Raspberry Pi 3B, 3B+ and 3A+

    € 14,95

    Members € 13,46

  • Cytron REKA:BIT – Robotics with micro:bit

    Cytron Cytron REKA:BIT - Robotics with micro:bit

    Program your REKA:BIT with Microsoft MakeCode Editor. Just add REKA:BIT MakeCode Extension and you’re good to go. If you’re a beginner, you can start with the block programming mode; simply drag, drop and snap the coding blocks together. For more advanced users, you can easily switch into JavaScript or Python mode on MakeCode Editor for text-based programming.REKA:BIT possesses a lot of indicator LEDs to assist your coding and troubleshooting. It covers the IO pins connected to all six Grove ports and DC motor outputs from the co-processor. One is able to check his/her program and circuit connection easily by monitoring these LEDs.Besides, REKA:BIT also has a power on/off indicator, undervoltage, and overvoltage LEDs built-in to give appropriate warnings should there be any problem with the power input.REKA:BIT features a co-processor to handle multitasking more efficiently. Playing music while controlling up to 4x servo motors and 2x DC motors, animating micro:bit LED matrix, and even lighting up RGB LEDs in different colors, all at the same time, is not a problem for REKA:BIT.Features 2x DC motor terminalsBuilt-in motor quick test buttons (no coding needed) 4x Servo motor ports 2x Neopixel RGB LEDs 6x Grove port (3.3 V) 3x Analog Input / Digital IO ports 2x Digital IO ports 1x I²C Interface DC jack for power input (3.6 - 6 VDC) ON/OFF switch Power on indicator Undervoltage (LOW) indicator & protection Over-voltage (HIGH) indicator & protection Dimensions: 10.4 x 72 x 15 mm Included 1x REKA:BIT expansion board 1x USB power and data cable 1x 4xAA battery holder 1x Mini screwdriver 3x Grove to female header cable 2x Building block 1x9 lift arm 4x Building block friction pin Please note: micro:bit board not included

    € 22,95

    Members € 20,66

  • Cytron Maker Drive – H-Bridge Motor Driver

    Cytron Cytron Maker Drive - H-Bridge Motor Driver

    Features Dual channel, Bi-directional control motor driver Support motor voltage from 2.5 V to 9.5 V DC Maximum current up to 1.0 A continuous and 1.5 A peak (<5 seconds) 5 V Output (200 mA) to power the controller. Inputs compatible with 1.8 V, 3.3 V and 5 V logic (Arduino, Raspberry Pi, etc). Solid state components provide faster response time and eliminate the wear and tear of mechanical relay Regenerative Braking Speed control PWM frequency up to 20 KHz (Actual output frequency is same as input frequency) Dimension: 43 mm (W) x 35 mm (L) x 14 mm (H) The Problem Faced by Beginners in Driving DC Brushed Motor Maker Drive is designed by taking into account feedback from users, especially 1st time users. If you are a beginner that needs a simple motor driver to drive DC brushed motor for building mobile robot or other purposes, you might come across some of these obstacles: Burning your Motor Driver - Many low cost motor driver does not come with Reserve Polarity Protection and this might result in smoke coming out from the driver if you connect the power in wrong polarity. This gives you a burnt motor driver and of course the waste of money and your precious time. Too Bulky for compact projects - Some motor drivers come with a big heat sink and take up too much space. Hard to test and troubleshoot - With normal motor drivers, beginners face a common problem during building project - difficulty in testing and troubleshooting the circuit. Yes, even with a clear schematic or diagram, the circuit will not work right after you complete the connection. Most of the time, you will need to test or troubleshoot. Without easy to use input and output indicator, you will need to write a program to test the motor driver. And that increases the complexity of debugging as you do not know whether the problem is due to wire connection or coding in your program. Separate Power for Low Voltage Motor - Many low cost motor drivers have an onboard 5 V linear voltage regulator, which is great to power your controller like Arduino. But this linear voltage regulator will not output 5 V if Vin is lower than 7 V. Yet, many small toy motors used in DIY projects are rated at lower than 7 V. These motors are suitable to be powered by two AA or AAA batteries (3 V or less) or single cell Li-ion 18650/Li-Po battery (3.7 V rated voltage). With that, you will need two separate power sources, one for the motors and another one to get stable 5 V output for controller such as Arduino board. Maker Drive is designed to solve the above problems while adding some useful features: Fool Proof - Maker Drive comes with Reverse Polarity Protection at Vin/Vmotor/Vbatt (Power for motor) terminal. With this protection it will greatly reduce the risk of damaging the motor driver Compact Design - Maker Drive is designed to be compact, roughly the size of a passport photo, 43 mm (W) x 35 mm (L) x 14 mm (H) 4 Test Buttons (2 for each channel) - Easily test the motor or your mechanism without any controller or coding. Maker Drive comes with two manual test buttons for each channel. Pressing one of the buttons will drive the output full speed in a direction (if there is motor connected) on respective channel. While another button will drive the output in another direction. These buttons are useful to test the motor direction, connection and operation; even without controller. You can also use these buttons as manual activation button. No programming is needed to use these buttons. 4 Indicator LEDs (2 for each channel) - Easily test your coding and wire connections. With these indicator LEDs, you can check output voltage direction even without connecting the driver to your motor. And combining with the Manual Test Buttons, you can test the Maker Drive easily even without controller and motor connected. You can also easily identify where the error occurs for easy troubleshooting. Of course no programming is needed here either. These LEDs are quite useful for testing and troubleshooting. Buck-boost regulator to produce 5 V output from input voltage as low as 2.5 V- Allows you to power a 5 V controller with 2 AA batteries. Maker Drive can produce output of 5 V with input voltage range, from 2.5 V up to 9.5 V. This 5 V output can supply 200 mA to an external circuit such as a controller (Arduino), saving the trouble of getting another power source for your controller. Now your project can be powered with a single power source. And with the wide input voltage range, you can power Maker Drive with two AA or AAA batteries (1.5 V x 2 = 3 V) or single cell Li-ion or Lipo batteries that have rated voltage of 3.7 V. Although Maker Drive is not an Arduino Shield, it is compatible with a number of Arduino main boards: Arduino Uno R3 Arduino Mega 2560 Arduino Nano Arduino Pro Mini in addition to that, it accepts 1.8 V, 3.3 V & 5 V logic (for control) and is compatible with controllers such as Raspberry Pi, BeagleBone, ESP8266, ESP32, etc. Requirements for the motor you use: DC Brush motor (Two Terminals) Operating voltage from 2.5 V to 9.5 V DC Rated Current <= 1.0 A Peak Current <= 1.5 A Suggested Power Sources 2 x AA/AAA batteries (2 x 1.5 V = 3.0 V) 3 x AA/AAA batteries (3 x 1.5 V = 4.5 V) 4 x AA/AAA batteries (4 x 1.5 V = 6.0 V) 1 x Li-ion 18650 battery (1 x 3.7 V, 3.0 V to 4.2 V) 2 x Li-ion 18650 batteries (2 x 3.7 V = 7.4 V, 6.0 V to 8.4 V) 1 x Li-ion 14500 battery (1 x 3.7 V, 3.0 V to 4.2 V) 2 x Li-ion 14500 batteries (2 x 3.7 V = 7.4 V, 6.0 V to 8.4 V) Documents Datasheet Arduino Sketch: Select PWM_PWM_DUAL under example Fritzing files

    € 8,95

    Members € 8,06

  • Cytron Maker Pi Pico Mini W (with pre-soldered Raspberry Pi Pico W & preloaded CircuitPython)

    Cytron Cytron Maker Pi Pico Mini W (with pre-soldered Raspberry Pi Pico W & preloaded CircuitPython)

    Love the Cytron Maker Pi Pico (SKU 19706) but can't fit it into your project? Now there is the Cytron Maker Pi Pico Mini W. Powered by the awesome Raspberry Pi Pico W, it also inherited most of the useful features from its bigger sibling such as GPIO status LEDs, WS2812B Neopixel RGB LED, passive piezo buzzer, and not forget the user button and reset button. Features Powered by Raspberry Pi Pico W Single-cell LiPo connector with overcharge / over-discharge protection circuit, rechargeable via USB. 6x Status indicator LEDs for GPIOs 1x Passive piezo buzzer (Able to play musical tone or melody) 1x Reset button 1x User programmable button 1x RGB LEDs (WS2812B Neopixel) 3x Maker Ports, compatible with Qwiic, STEMMA QT, and Grove (via conversion cable) Support Arduino IDE, CircuitPython and MicroPython Dimension: 23.12 x 53.85 mm Included 1x Maker Pi Pico Mini W (pre-soldered Raspberry Pi Pico W with preloaded CircuitPython) 3x Grove to JST-SH (Qwiic / STEMMA QT) Cable Downloads Maker Pi Pico Mini Datasheet Maker Pi Pico Mini Schematic Maker Pi Pico Mini Pinout Diagram Official Raspberry Pi Pico Page Getting started with Raspberry Pi Pico CircuitPython for Raspberry Pi Pico Raspberry Pi Pico Datasheet RP2040 Datasheet Raspberry Pi Pico Python SDK Raspberry Pi Pico C/C++ SDK

    € 19,95

    Members € 17,96

  • Cytron Maker Line Sensor

    Cytron Cytron Maker Line Sensor

    Maker Line is a line sensor with 5 x IR sensors array that is able to track line from 13 mm to 30 mm width. The sensor calibration is also simplified. There is no need to adjust the potentiometer for each IR sensor. You just have to press the calibrate button for 2 seconds to enter calibration mode. Afterwards you need to sweep the sensors array across the line, press the button again and you are good to go. The calibration data is saved in EEPROM and it will stay intact even if the sensor has been powered off. Thus, calibration only needs to be carried out once unless the sensor height, line color or background color has changed. Maker Line also supports dual outputs: 5 x digital outputs for the state of each sensor independently, which is similar to conventional IR sensor, but you get the benefit of easy calibration, and also one analog output, where its voltage represents the line position. Analog output also offers higher resolution compared to individual digital outputs. This is especially useful when high accuracy is required while building a line following robot with PID control. Features Operating Voltage: DC 3.3 V and 5 V compatible (with reverse polarity protection) Recommended Line Width: 13 mm to 30 mm Selectable line color (light or dark) Sensing Distance (Height): 4 mm to 40 mm (Vcc = 5 V, Black line on white surface) Sensor Refresh Rate: 200 Hz Easy calibration process Dual Output Types: 5 x digital outputs represent each IR sensor state, 1 x analog output represents line position. Support wide range of controllers such as Arduino, Raspberry Pi etc. Documentation Datasheet Tutorial: Building A Low-Cost Line Following Robot

    € 14,95

    Members € 13,46

Login

Forgot password?

Don't have an account yet?
Create an account