Features: Universal pen for use on almost all surfaces Suitable for overhead projection Also suitable for use on CDs/DVDs Excellent smudge-proof and waterproof qualities on almost all surfaces Dries in seconds, therefore ideal for left-handed users Permanent, low-odour ink Lightfast colours: black, brown Weatherproof colour black Stand-up STAEDTLER box PP barrel and cap guarantee long service life DRY SAFE – can be left uncapped for days without drying up (Standard atmosphere according to ISO 554) Airplane-safe - automatic pressure equalization prevents pen from leaking on board aircraft Xylene and toluene-free ink Superb colour brilliancy Line width superfine approx. 0.4 mm Refillable
This 7' touch display convinces with its variety of different application possibilities. The display can be connected via HDMI as well as via VGA. It has a 3.5 mm audio connector and a 4-pin JST-connector, to which headphones or two 2 W / 5 Ω speakers can be connected. The integrated software allows you to configure settings such as contrast and brightness using the buttons on the side. Specifications LCD type IPS Resolution 1024 x 600 Contrast 800:1 Brightness 350 CD/m² Multitouch Capacitive, 5 Points Connections Connections HDMI, VGA, Audio 3.5 mm, JST connector for two 2 W / 5 Ω speaker Power supply 5 V/2 A Viewing angle 175° Colors 16,7 M Further special features Additional solder pads to lead the buttons to the Dimensions 165 x 124 x 13 mm Included 1x 7' Display 1x microUSB-cable 1x VGA-cable 1x HDMI-cable 1x HDMI-microHDMI-cable Downloads Datasheet Manual
This book is all about building your own DIY home control system. It presents two innovative ways to assemble such a system: By recycling old PC hardware – possibly extending the life of an old PC, or by using Raspberry Pi. In both cases, the main system outlined in this book will consist of a computer platform, a wireless mains outlet, a controller and a USB webcam – All linked together by Linux.
By using the Raspberry Pi in conjunction with Arduino (used as an advanced I/O system board), it is possible to construct a small, compact, embedded control system offering enhanced capacity for USB integration, webcams, thermal monitoring and communication with the outside world.
The experience required to undertake the projects within this book are minimal exposure to PC hardware and software, the ability to surf the internet, burn a CD-ROM and assemble a small PCB.
This IPS 7.9-inch HDMI touch display with 400 x 1280 resolution, 170° wide viewing angle and built-in ferrite Hi-Fi speaker can be used as a secondary screen for chassis and also supports Raspberry Pi and Jetson Nano.
Features
7.9-inch IPS display with a hardware resolution of 400 x 1280.
Zinc alloy case, toughened glass panel with up to 6H hardness.
When working as a computer monitor, it supports Windows without a driver.
When working with Raspberry Pi, it supports Raspberry Pi OS / Ubuntu / Kali and Retropie, driver-free.
When working with Jetson Nano, it supports Ubuntu, driver-free.
Support backlight control for power saving.
Support 5-point capacitive touch control.
Specifications
Display size
7.9"
Viewing angle
170°
Resolution
400 x 1280 pixels
Display area
191.08 x 60.40 mm
IPS version solor gamut
62% NTSC
Max brightness
550 cd/m²
Backlight adjustment
Adjusted by the key/HID software
Contrast
900:1
Color depth
16.7M
Refresh rate
60 Hz
Power port
USB-C
Display port
HDMI interface
Dimensions
211 x 73 x 20 mm
Included
1x 7.9-inch Side Monitor
1x HDMI to Micro HDMI adapter
1x USB Type-A to Type-C cable (1 m)
1x HDMI flat cable (1 m)
2x Nonskid rubber feet
Downloads
Wiki
NFC is a popular technology in recent years. Almost all the high-end phones in the market support NFC. Near field communication (NFC) is a set of standards for smartphones and similar devices to establish radio communication with each other by touching them together or bringing them into close proximity, usually no more than a few centimeters. This module is built around NXP PN532. NXP PN532 is very popular in the NFC area. Makerfabs developed this module based on the official document. A library for this module is available. Features Small dimension and easy to embed into your project Support I²C, SPI, and HSU (High-Speed UART), easy to change between those modes Support RFID reading and writing, P2P communication with peers, NFC with Android phone Up to 5~7 cm reading distance On-board level shifter, Standard 5 V TTL for I²C and UART, 3.3 V TTL SPI Arduino compatible, plugin and play with our shield RFID reader/writer supports Mifare 1k, 4k, Ultralight, and DESFire cards ISO/IEC 14443-4 cards such as CD97BX, CD light, Desfire, P5CN072 (SMX) Innovision Jewel cards such as IRT5001 cards FeliCa cards such as RCS_860 and RCS_854 Downloads Usage NFC Library
You could use Pirate Audio Headphone Amp to build a tidy, pocket-sized player for local audio files (MP3, FLAC, etc) or for streaming music from online services like Spotify. To help get you started, Pimoroni has built plugins for Mopidy that will let you display gorgeous album art, play/pause your tracks and adjust the volume. The DAC and headphone amp will give you crisp digital amplified audio through your wired headphones. Pirate Audio is a range of all-in-one audio boards for Raspberry Pi, with high-quality digital audio, beautifully-crisp IPS displays for album art, tactile buttons for playback control, and a custom Pirate Audio software and installer to make setting it all up a breeze. Features Amplified digital audio (24-bit / 192KHz) over I2S PAM8908 headphone amplifier chip Low-gain / high-gain switch (high-gain boosts by 12dB) PCM5100A DAC chip 3.5mm stereo jack 1.3' IPS colour LCD (240x240px) (ST7789 driver) Four tactile buttons Mini HAT-format board Fully-assembled Compatible with all 40-pin header Raspberry Pi models
Dimensions: 65x30.5x9.5mm Software The Pirate Audio software and installer installs the Python library for the LCD, configures the I2S audio and SPI, and then installs Mopidy and the custom Pirate Audio plugins to display album art and track info, and to use the buttons for playback control. Here's how to get started: Set an SD card up with the latest version of Raspberry Pi OS. Connect to Wi-Fi or a wired network. Open a terminal and type the following:git clone https://github.com/pimoroni/pirate-audiocd pirate-audio/mopidysudo ./install.sh
Reboot your Pi Downloads PAM8908 Datasheet PCM5100A Datasheet Pirate Audio software
The PeakTech 1265 is an affordable 30 MHz 2-channel digital storage oscilloscope with a high-resolution TFT color display and extensive additional functions. It has a sampling rate of up to 250 MS/s and convinces with its high quality and easy handling with the best price/performance ratio. To quickly display each incoming waveform, simply press the Autoset key and the oscilloscope itself searches for the best possible display. With Autoscale, however, the scaling of the time base can be adjusted in a user-friendly manner. This oscilloscope has a VGA output for displaying the oscilloscope display on an external monitor or projector.
Features
2-channel oscilloscope with 30 MHz analog bandwidth at max. 250 MS/s sampling rate
8 inch (20 cm) TFT color display with 800 x 600 pixels
LAN, USB host, USB device & VGA interface
Autoset function for user-friendly operation
Recording length of max. 10,000 points
Automatic measurement modes, XY mode and FFT function
Specifications
Bandwidth
30 MHz
Channels
2
Screen size (TFT)
8' (20 cm)
Resolution
800 x 600 Pixel
Display Type
Color-TFT
Sampling 1 CH
250 MS/s
Sampling 2 CH
125 MS/s
Hor. scale max.
100 s/div
Hor. scale min.
5 ns/div
Memory depth
10,000 Points
Rise Time
< 14 ns
Vert. resolution
8 Bit
Vert. scale max.
10 V/div
Vert. scale min.
2 mV/div
Interfaces
1x USB, 1x LAN, 1x VGA
Mains voltage
110/240 V AC; 50/60 Hz
Included
PeakTech 1265 Oscilloscope
USB cable
Software CD for Windows
Power cord
2 probes
BNC cable
Carrying case
Manual
Downloads
Software
Datasheet_DE-EN
Datasheet_FR
Datasheet_IT
Datasheet_ES
This book focuses more on practical aspects than on theory, and it has an contemplative nature, as though the author were viewing amplifiers from above. Knowledge elements are integrated and placed in the context of a broad overview.
Even now tube amplifiers still sound great perhaps better than ever before. In part that is because we now have access to modern components such as toroidal output transformers, extremely high-quality resistors and capacitors, and many sorts of wire with good acoustic properties. Modern audio sources, such as CD players, and the latest top-end loudspeakers also enable us to appreciate how well tube amplifiers reproduce music even better than before.
This new book from Menno van der Veen looks at tube amplifiers from more than just a theoretical perspective. It focuses primarily on the design phase, where decisions must be taken with regard to the purpose and requirements of the amplifier, and it addresses the following questions: How do these aspects relate to subjective and objective criteria? Which circuits sound the best, and why? If you want to develop and market an amplifier, what problems should you expect? What are the significance and meaning of measurements? Are they still meaningful, or have they lost their relevance?
Thanks to the enormous processing power of computers, we can now measure more details than ever before. How can these new methods be applied to tube amplifiers? Previously it was sufficient to measure the frequency range, power and distortion of an amplifier in order to characterize the amplifier. Are these measurements still sufficient, or should we start measuring according to how we hear, using real music signals instead of waveforms from signal generators? The author sketches a future where amplifier measurements that conform to our sense of hearing enable us to arrive at new insights.
This book focuses more on practical aspects than on theory, and it has an contemplative nature, as though the author were viewing amplifiers from above. Knowledge elements are integrated and placed in the context of a broad overview.
The PeakTech 6193 is a linear regulated 2-channel laboratory power supply with 0-30 V/0-5 A DC output. Its integrated safety transformer ensures reliable operation and high safety standards for lab and workshop use.
Key features include current preselection for safe setup, four-digit blue LED displays for voltage, current, and power, and an Output On/Off button to prevent accidental changes. The temperature-controlled fan provides efficient and quiet cooling.
With four precision potentiometers, output values can be adjusted quickly and accurately. A USB interface enables remote control and data readout via PC, making it ideal for versatile and automated applications.
Features
Two outputs adjustable from 0-30 V and 0-5 A DC
Fixed voltage output 5 V/1 A DC
With USB interface and PC software
4-digit segment displays for current and voltage
Channels can be used independently, in series or in parallel
Overload protection and short-circuit proof
Temperature-controlled fan
High load stability and low residual ripple
Sturdy metal housing with carrying handle
Output of safety extra-low voltage (SELV)
Specifications
Channels
2
Display Type
Segment
Output Voltage
0-30 V DC
Output Current
0-5 A
Input voltage
115-230 VAC 50/60 Hz
Auxillary output
5 V DC
Cooling
Active
Included
1x PeakTech 6193 DC Power Supply
1x Power cable
1x USB cable
1x CD-ROM
1x Manual
Downloads
Datasheet
Software
Interface Protocol
EASTER SALE: Order the Geekworm KVM-A3 Kit now and receive the e-book Raspberry Pi Full Stack (worth €35) for FREE!
KVM stands for Keyboard, Video, and Mouse and it is a powerful open-source software that enables remote access via Raspberry Pi. This KVM-A3 kit is designed based on the Raspberry Pi 4.
With it, you can turn your computer on or off, restart it, configure the UEFI/BIOS, and even reinstall the operating system using a virtual CD-ROM or flash drive. You can either use your own remote keyboard and mouse, or let KVM simulate a keyboard, mouse, and monitor – presented through a web browser as if you were directly interacting with the remote system. It's true hardware-level access with no dependency on remote ports, protocols, or services!
Features
Designed especially for KVM (an open and affordable DIY IP-KVM based on Raspberry Pi)
Compatible with Raspberry Pi 4 (not included)
Fully compatible with PiKVM V3 OS
Control a server or computer using a web browser
HDMI Full HD capture based on the TC358743 chip
OTG keyboard and mouse support; mass storage drive emulation
Hardware Real-Time Clock (RTC) with CR1220 coin battery socket
Equipped with a cooling fan to dissipate heat from the Raspberry Pi
Features solid-state relays to protect Raspberry Pi GPIO pins from computer and ESD spikes
ATX control via RJ45 connector: switch the machine on or off, reset it, and monitor HDD and power LED status remotely
10-pin SH1.0 connector reserved for future I²S HDMI audio support
4-pin header and spacers reserved for I²C OLED display
Included
KVM-A3 Metal Case for Raspberry Pi 4
X630 HDMI to CSI-2 Module (for video capture)
X630-A3 Expansion Board (provides Ethernet, cooling, RTC, power input, etc.)
X630-A5 Adapter Board (installed inside the PC case; connects the computer motherboard to the IO panel cable of the PC case)
0.96-inch OLED Display (128 x 64 pixels)
Ethernet Cable (TIA/EIA-568.B standard; also serves as the ATX control signal cable)
Downloads
Wiki
PiKVM OS
Order Payments Shipping Return & Warranty Questions? Order You have the possibility, as in an ordinary shop, to fill your shopping cart with the products of your choice. There is also the possibility to order multiples of a product or remove it from your cart altogether. You can place products...
Read more
Elektor International Media BVPO Box 116114 ZG SusterenThe Netherlands Phone: +31 46 4389444Email: service@elektor.com CoC Number: 34249926VAT Number: NL816146962B01 Director: Erik Jansen Bank Details ABN AMRO BankIBAN: NL61 ABNA 0578 3418 83BIC: ABNANL2A Copyright Notice The circuits described on this website and in Elektor magazine are for domestic, educational or...
Read more